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Vibrational dephasing at surfaces: The role of cubic anharmonicity and Fermi resonances
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We make a theoretical study of the vibrational contributions to the line shape of a top-bonded adsor-
bate. Dephasing of the adsorbate-substrate stretch occurs via anharmonic coupling to lower-frequency
modes. We find the surprising result that central forces, which are often much larger than bond-bending
forces, do not contribute to the linewidth, due to a cancellation between cubic and quartic terms in the
effective coupling to the dephasing modes. This cancellation is complete whenever the probed mode has
a frequency far above all others in the system, e.g., H/Si(111) or the C-O stretch in CO on metals. The
C-metal stretch in CO on metals is more complicated, as it lies well below the C-O stretch. If the CO
bond is treated as rigid, the cubic term introduces Fermi-resonance effects which greatly broaden the
linewidth and also give rise to extra peaks in the absorption spectrum. However, we show that the inter-
nal motion of the molecule, no matter how small, causes a dramatic reduction in the magnitude of these
effects, probably rendering them unobservable. We suggest that one must look to anharmonic terms in
the noncentral (bending) interatomic forces to explain the magnitude of the experimental dephasing
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linewidth.

I. INTRODUCTION

When an atom or molecule is adsorbed on a surface,
several additional vibrational normal modes are intro-
duced which are directly associated with the bonding to
the surface. The field of vibrational spectroscopy has
mainly concentrated on what can be learned about the
adsorbate-substrate bond from studies of the peak posi-
tions of the frequency spectra of such modes. It is only
recently that infrared techniques have achieved sufficient
resolution and signal to noise to study the detailed shapes
of the spectra of adsorbate-substrate stretch modes. The
present paper deals primarily with the shape of such a di-
pole active spectrum and how it is affected by the anhar-
monicity of the adsorbate-substrate bond. We also at-
tempt to answer the inverse issue: what can one learn
about the interatomic forces by a study of the shape of
this spectrum in the vicinity of the adsorbate-substrate
stretch?

We consider here the simplest case of an adsorbate on
a top site in which the normal modes may be divided into
two classes that do not couple (in the harmonic approxi-
mation): those with the same symmetry as the perpendic-
ular and parallel adsorbate motion, respectively. We also
restrict ourselves to systems where the frequency of the
adsorbate-stretch mode is located well outside the sub-
strate phonon band. The adsorbate-substrate stretch
mode is called the “ 4 mode in the case of an atomic ad-
sorbate and the “M” mode in the case of a molecular ad-
sorbate. In this case it has been shown!? that anharmon-
ic coupling of the 4 or M modes to the other substrate
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modes with the same symmetry as the perpendicular ad-
sorbate modes has a negligible effect, so that one is left
with the theoretical problem of an oscillator coupling
anharmonically with a field of oscillators of different sym-
metry. That these conditions are not very restrictive is
demonstrated by the fact that there have already been
several experimental studies of such systems. Dumas,
Chabal, and Higashi® have measured the 4 mode of
atomic H adsorbed on the (111) surface of Si. The M
mode of molecular CO adsorbed on Pt(111) has also been
extensively studied"** and CO/Ni(100) is currently being
studied,® although there also exists earlier work.”

We begin in the next two subsections by introducing
the problems, or rather the apparent contradictions, with
experimental observations that arise when trying to mod-
el the anharmonicity of the molecular-substrate bond
with a central force field. In the third subsection, we
present the main results in a physically intuitive and
transparent way. These not only resolve the above prob-
lems for a diatomic adsorbate, but also give an unexpect-
ed prediction for the monatomic one. In the final subsec-
tion, we given an outline of the sections in the paper in
which these results are derived in detail using many-body
diagrammatic perturbation theory.

A. Why are Fermi-resonance effects typically
not observed for diatomic adsorbates?

In order for this question to make sense we first give a
convincing argument for why one might expect to see
Fermi-resonance effects in the dipole spectrum in the vi-
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cinity of the M mode. To do this we must consider all
the adsorbate-induced modes. We focus on the case of
CO adsorbed on various transition metals where CO lies
on an axis perpendicular to the surface with C inward, as
there exists sufficient experimental data for this case.
Figure 1 is an illustration of such a case, indicating the
motions of the C and O atoms in the various modes,
while Fig. 2 illustrates the assumed density of states of
normal modes of the complete system.®> The frequency
w,, of the M mode is typically between 400—500 cm” !,
while the other perpendicular mode, consisting principal-
ly of the internal stretch of the CO molecule, which we
term the I mode, typically has a frequency over 2000
cm ™ !. Both of these are true normal modes of the sys-
tem, since they both lie above the phonon continuum. It
usually lies between 0 and about 300 cm ™! or less, and we
denote its highest frequency by w,,,. The difference be-
tween the frequencies is sufficiently large that the force
constant for the M mode is almost one order of magni-
tude smaller that for the I mode. This implies that the M
mode is indeed as we described it, essentially a rigid
stretch of the metal-CO bond, with only a small fixing of
the internal bond. This flexing is thus customarily
neglected in line-shape calculations of the type described
here. The parallel modes of the molecular adsorbate are
often termed a frustrated rotation R and a frustrated
translation T. The latter typically has a very low fre-
quency w7 of 50 cm ™! or less. It is not a true normal
mode, because there is an admixture of substrate pho-
nons, but this admixture is small because the phonon
density of states is necessarily small at such small fre-
quencies. We term it a quasimode, describable by a fre-
quency w; and a much smaller width or inverse lifetime
Yo- In contrast the R mode typically has a frequency wy
comparable to, but a bit less than, that of the M mode
and lies above the continuum. Note that because of the

FIG. 1. Schematic of CO atop a metal substrate, illustrating
the principal atomic motions in the various modes (T,R,M,I)
described in the text. The associated substrate motions have not
been indicated.
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FIG. 2. Schematic density of states of normal modes of the
coupled adsorbate-substrate system shown in Fig. 1. The ar-
rows indicate truly localized modes which have §-function den-
sities, while the hatched area is the phonon continuum.

high adsorption site symmetry, and two R modes and the
two T modes are degenerate and uncoupled for each
direction parallel to the surface, and in what follows we
only talk about a given pair.

The values of these mode frequencies for several sur-
faces are listed in Table I. Note that in all cases the fre-
quency difference wy, —wz —w is quite small in compar-
ison with w,,. This represents a typical Fermi-resonance
situation where one can, through dipole coupling, excite
the linear combination wg plus wy as well as w,,, exploit-
ing a small energy denominator in a second-order matrix
element. Of course, to do this requires the presence of
sufficiently large anharmonic terms with the right sym-
metry; we next argue that such terms are always present.

The energy required to stretch the C-metal bond is
1k(1—1y)* plus higher-order terms. Here, [, is the un-

TABLE I. Observed vibrational frequencies and binding pa-
rameters for top-bonded CO on some metal surfaces. All fre-
quencies are in units of cm™~!. Data are taken from a, Ref. 18; b,
Ref. 19; ¢, Ref. 20; d, from (b) and consistent with data in (i); e,
Ref. 21; f, Ref. 22; g, Ref. 23; h, extrapolated; i, Ref. 24; j» Ref.
25; k, Ref. 26; 1, Ref. 27; m, derived in LP; n, Ref. 28; o, Ref. 1;
p, Ref. 29.

Pt(111) Cu(100) Ni(100) Ir(100)
Omax 1832 2422 306° 229k
or 49° 28f 26! 53
R 410° 2858 (380)™ 4251
O 460° 3458 475" 497
oy 2100° 2090¢ 2069P 2068
Iy A 1.16 1.15 1.15¢ (1.16)
Iow A 2.05° 1.9 1.84¢ (1.99)
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stretched bond length and / is the actual instantaneous
value

(I—1)*=[V y+z)+x2—1,]?

~z +x%z/ly+. .., (1.1

where x and z refer to directions parallel and perpendicu-
lar to the surface, respectively. The last term in (1.1) has
the required symmetry, and gives rise to the interaction
Hamiltonian
2
k2, Mu®y

H, =—x"z x‘z ,
X~z

2, 2, (1.2)

where M,, is an effective mass for the M mode (=28
amu, a bit less for the less massive substrates). Terms
similar to (1.2) also arise from the noncentral or bond-
bending forces, but these are expected to be an order of
magnitude smaller because of the much smaller bending
force constants.

The matrix element connecting the state containing
one M excitation and the state containing one T and one
R excitation is now easily estimated by expanding x and z
in (1.2) in approximate normal modes,

x :(MT)—(1/2)qT+(MR )—(I/Z)qR ,
Z:(MM)—(I/Z)qM ,

(1.3a)
(1.3b)

where the ¢’s are the amplitudes of the canonical (mass-
weighted) normal coordinates (approximate, in the case
of g7). Because wy >>w, we know that the T"mode must
consist approximately of a rigid rotation of the
substrate-C-O atoms in a line, in order to avoid the bend-
ing of a bond with a stiff bending constant. Assuming a
rigid substrate, the mass M is that mass which, when
placed at the C position, would give the same moment of
inertia as that of the actual arrangement. Using the data
of Table I one finds for all surfaces listed that this is
~4M or around 50 amu. This means that in this pro-
jection the T mode is getting around + of the weight, so
that the R mode gets around 3 giving Mz ~4Mq or
around 16 amu. State-of-the-art calculations do not
change these numbers substantially. Upon substitution
of (1.3b) in (1.2), the matrix elements of Hx 2, between the
appropriate oscillator states can be written down by in-
spection as

172

(TR|H, |M)= ( : (1.4)

where |M ) is the state with one quantum in the M oscil-
lator and none in the other two, while |TR ) is the state
with one quantum in each of the T and R oscillators and
none in the M. Thus, one needs only to solve a 2X2
problem with the result that a second spectral line in ad-
dition to the original or M mode line should be excited.
The strength ratio of this line relative to the “original” is
given in terms of the parameter r=|(TR |Hx22 M)/
(wpy —wg —o7)| by r? when r is small and unity when r is
large. The second line is at the position wgz +w; when r
is small, but as r increases the lines repel so that the
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minimum splitting is 2|{ TR Iszz |M)|. The actual cal-
culated strength ratios from the data in Table I are given
below. [For the reader’s convenience we note that the
conversion factor from (amu) 'A™? to frequency in
cm ™ !is 33.5.]

Pt(111)
0.93

Cu(100)
0.14

Ni(100)
0.08

Ir(100)
0.28

Strength ratio

These numbers illustrate that one should see Fermi-
resonance effects in most of these adsorption systems.

This “prediction” arises from a term in the Hamiltoni-
an that is unquestionably present, and the estimate of
whose magnitude comes from very general arguments
which are very unlikely to be qualitatively incorrect. Yet
the fact is that these “‘predicted”” Fermi-resonance effects
are not seen experimentally. The solution to this dilem-
ma is one of the principal results of this paper.

B. Why is the dephasing width of the M mode so small?

The temperature-dependent line shape of the M mode
should generally be controlled by dephasing processes,
which can be thought of as thermal fluctuations in the
frequency of w,,. The quasimode T is expected to dom-
inate this dephasing process because of its sharpness
along with the fact that it can be thermally excited in the
experimental temperature range. Thus, np, the instan-
taneous quantum number of the 7 mode, is expected to
be the dominant fluctuating variable in the dephasing
process. In principle, two-phonon emission and absorp-
tion could also be a contributor to the temperature-
dependent line shape, but because of the requirement of
energy conservation, a significant contribution would re-
quire the accidental coincidence of there being peaks in
the appropriately projected phonon density of states at
two frequencies that add up to w,, (or one peak at
®yr/2). Therefore, we do not expect such a contribution
here.

In lowest-order perturbation theory dephasing arises
because the quartic terms (or more precisely biquadratic
x2z2 terms) in the Hamiltonian change the spacing be-
tween the oscillator levels of the M mode, and at finite
temperatures this spacing is a fluctuating quantity.
Terms of this type can come from higher-order terms in
the expansion of (1.1),

M 2
Hx222=—§x2z2=——$’ix2z2 : (1.5)
0 0

To lowest order the shift in the frequency of the M mode
is

AwM=<MnT|szzz|nTM>—(nT|Hx222|nT) ’ (1.6)
where |npM ) is the state with one M quantum and n; T
quanta, while |n; ) is the state with no M quanta and n,
T quanta. Using (1.3b) and (1.5), (1.6) can be evaluated
by inspection yielding

Awy=Aolnr+1), (1.7)
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where M,,
A,eﬂ*=}\.0 1 - +kFermi ’ (1.9)
@ pr MB
Ao=— —. (1.8)
21 OM TOT

Here, A, is the change Aw,, for a unit change in the fluc-
tuating variable n; and is by definition the coupling con-
stant for the dephasing problem, as it is the thermal fluc-
tuations in this shift that cause dephasing.

The exact solution of the dephasing of the M mode due
to biquadratic coupling of the type (1.5) with a T quasi-
mode was accomplished previously by two of us.? Using
(1.8) we then gave a solution free from adjustable parame-
ters. Reasonable agreement with experiment for
CO/Pt(111) was found over the whole temperature range,
the only system for which there was such data. Very
rough agreement was also found with the single experi-
mental point for CO/Ni(100).

So, what is the problem? It arises because the term
proportional to (I —I,)* in the Taylor expansion of the
C-metal bond-stretching energy [see text above (1.1)] also
makes a contribution to the x?z% term in the Hamiltoni-
an. Therefore, (1.5) is not complete. Of course the
coefficient of (I —1I,)* is not known exactly, but a reason-
able estimate of it may be made by fitting a Morse poten-
tial (or another reasonable two-parameter form) to the ex-
perimental values of w; and the well depth. The result is
that one’s best estimated value of H_, » is roughly an or-

der of magnitude larger than the value in what we call the
minimum anharmonicity model, (1.5). This is in contrast
to the situation with Hx 2, for which there are no such

corrections to (1.2). The result is that the predicted de-
phasing line shape was more than an order of magnitude
larger than experiment.? So we are faced with the ques-
tion of why what seemed the most physically reasonable
model gave nonsense. The solution to this dilemma is
another of the chief results of this paper.

C. Procedure and results

1. Cubic terms

The answer to part of the dephasing puzzle comes from
the inclusion of cubic terms. It has been shown®!© for
the perpendicular modes that if one made second-order
matrix elements out of cubic terms one could obtain de-
phasing contributions that were of the same order of
magnitude as the quartic contributions. However, in that
particular case the effect was quantitative, but not quali-
tative, and the matter was dropped when the renormal-
ization that made the effect of the perpendicular modes
negligible was discovered."? In Sec. III we show that the
cubic terms are important for dephasing by parallel
modes, and that here they have an important qualitative
effect. The reason that we were able to obtain an essen-
tially exact solution is that wy/w,, <<1 with these quan-
tities differing by an order of magnitude. We find to lead-
ing order in this ratio that the effective dephasing cou-
pling constant is

where Ag.q, is a contribution coming from the various
possible Fermi resonances which will be discussed a bit
later. The quantity My is a combined effective mass for
all low-energy parallel modes (T plus phonons). It is ap-
proximately equal to M; in the approximation (1.3b) this
approximate equality becomes exact.

The above equation already includes two important re-
sults of this paper. The first is that all the terms involv-
ing higher-order stretching force constants, such as the
coefficient of the (I —I,) term in the bond-stretching en-
ergy, have cancelled out. This means that only the quad-
ratic terms in the bond-stretching energy are important for
dephasing. It also means that the “minimal anharmonici-
ty model” is exact, provided that the coupling constant
Ao in the Langreth-Persson theory? is replaced in that
theory by A.;. The second important result occurs when
we specialize in the case of a monatomic adsorbate. In
that case Ag,m,; =0 and My, =Mp=M , and one obtains
the remarkable result that A.;=0. This means that the
stretching of the adsorbate-substrate bond does not give
rise to any dephasing in the case of a monatomic adsor-
bate. Whatever dephasing that exists in this case must
come from the much smaller noncentral bond-bending
forces. The physics of this remarkable result is discussed
via a simple example in Sec. III C 3.

Returning to the diatomic adsorbate case, there are
still problems. The introduction of cubic terms cures one
problem but introduces two more: first, it predicts unob-
served Fermi resonances already discussed, and second
these resonances cause a large unobserved enhancement
in the dephasing coupling constant through A.4. Here we
give a simplified version of our results on this second
point to facilitate the discussion of the physics.

The presence of a Fermi resonance can cause the term
Afpermi tO be large, because the shift of the resonance fre-
quency is dependent on the fluctuating variable ny. To
see this we must recalculate the matrix element (1.4) in
the presence of an initial nonzero value for this variable.
This is easily done with the result that the right side of
(1.4) should be multiplied by v/ n;+1. Then solving the
2 X2 for the eigenvalues gives the frequency shift of the
M mode due to this mechanism,

Aerrmi:%[V(wM_wR _COT)2+8(J)%W

—((UM'_CK)R _COT)] 5 (1.10)

where here and in (1.12) below the radical sign denotes
that square root that has the same sign as the quantity
(wy —wgr —o7) and where

3
MMCDM

=T (1.11)
210MRMTCL)R0)T

8(0%{ (nT+1) .

The contribution to Age.ny; is then
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aAerrmi

Fermi 3
nr

My 0y 1
— Ao )
4Mpog \/(wM—a)R —o7 ) +80,

(1.12)

This expression still contains the fluctuating variable n
through the 8w,, term in the square root, so that one has
not obtained a meaningful coupling constant unless (i)
one is sufficiently far from the Fermi resonance that the
Sdw,, term can be neglected, or (ii) it is valid to replace ny
by its average thermal value; the latter is the case if the
resulting coupling constant is small enough to make
lowest-order perturbation theory valid. We also mention
that there are smaller nonresonant contributions to
A®gem; that we omit in this section so as not to obscure
the essential argument. The central result is that there is
a large increase in the dephasing coupling constant be-
cause the M mode frequency is a rapidly varying function
of the fluctuating variable nt near a Fermi resonance.

Using the data in Table I in Eq. (1.12), one obtains
values of Ag., that are an order of magnitude larger
than the minimum harmonicity model value (;). Such
values would imply dephasing linewidths nearly two or-
ders of magnitude larger than those consistent with ex-
periment.

2. The role of internal C-O bond

We believe that the theory summarized above and de-
tailed in Sec. III coupled with the work of Ref. 2
represents essentially the exact solution to the model
presented, and that the violent disagreement with experi-
ment in the case of a diatomic adsorbate means that a
new starting point must be invoked. The new physics
came upon the realization that the standard arguments
for the neglect of the internal stretching of the molecule
when considering the M mode need to be modified in one
important respect. It is indeed true that the stretching z;
of this bond is small relative to the stretching z,, of the M
mode, that is z; < (k,, /k;)z,,, where the k’s are the ap-
propriate force constants whose ratio differs by almost an
order of magnitude. This means that in all harmonic
terms and most anharmonic terms the internal stretch
motion is negligible. However, cubic terms of the type
(1.2) applied now to the internal mode are no longer
negligible. In this type of term that has exactly one
power of z;, the smallness of z; is exactly balanced by the
largeness of the k; out front. Thus, no matter how stiff
the internal stretch is, no matter how small the internal
stretch motion is, it must be included to avoid throwing
away terms that are formally as important as those that
come from the M mode stretch.

One might perhaps be discouraged from pursuing this
avenue as a possible solution to the Fermi-resonance
dilemma, because while it introduces considerable com-
plexity, one expects it to produce only small quantitative
changes. One should now expand the sum of two terms
such as (1.2) in normal coordinates and calculate the ma-
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trix element analogous to (1.4). In the frozen lattice ap-
proximation with widely separated frequencies
(w; >>wyy; wg >>w7) this may be done analytically, and
one finds that this matrix element is (1.4) multiplied by a
geometric factor and a mass ratio factor. Although each
of these factors could be considered of order unity, the
overall result is a major change. More quantitatively, the
mass ratio factor is =4 and the geometric factor is ~1,
and since the matrix element is always squared, the
overall effect of these factors is to reduce the importance
of the Fermi resonance in this problem by a factor of
or so. One obtains a new set of strength ratios analogous
to the bare strength ratios given above.

Pt(111) Cu(100)

0.005

Ni(100)
0.003

Ir(100)
0.013

Strength ratio (see text)

Thus, in at least three out of four cases the Fermi reso-
nance is probably too weak to be seen. In the case of Pt,
the frequencies are so close to resonance that the predict-
ed value is extremely sensitive to the exact values used;
the experimental values for the frequencies are not
sufficiently accurate to predict this case with any reliabili-
ty. For example, if we use wg =410 cm~ ! we obtain a
strength of 0.61, but if we use 420 cm™!, we obtain a
strength of 0.044. In Sec. IV the calculation was per-
formed via a correlation function method, where it was
unnecessary to make the rigid lattice and widely separat-
ed frequency approximation. The results predict even
larger strength reductions than for the simple analytic
model.

Calculations of the dephasing line shape were also car-
ried out for this model where the internal stretch is taken
into account. The first important result is that the
minimum anharmonicity model is still exact, that is the
large anharmonic coefficients arising from bond-
stretching energies of the form (I —1;)* still completely
cancel out of the expression for the dephasing coupling
constant of a high-frequency M mode. The second im-
portant result is implied by the Fermi-resonance reduc-
tion discussed above: Age, in Eq. (1.12) is renormalized
by multiplying the numerator of the right side (as well as
the 8w, in the square root) by the reduction factor (= 5
in the analytically solvable model). Finally, the non-
Fermi part of the effective coupling constant [the first
term in Eq. (1.9) for A.4] also gets reduced. This too is
typically a substantial reduction of approximately a fac-
tor of k. Thus, one is left with |Ag| <<|Ay|, which
means that central forces are not responsible for the ob-
served line shapes, and presumably noncentral forces
need to be invoked to explain experimental results.

D. Outline of paper

In Sec. II we introduce the basic Hamiltonians that
will be used throughout the paper: First, the harmonic
Hamiltonian for a monatomic adsorbate case and then a
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diatomic adsorbate case; then the anharmonic terms that
come from stretching a single bond, terms which apply to
each of the subsequent sections.

Section III gives the solution to monatomic adsorbate
case and also to the case of a diatomic adsorbate where
only a single bond is allowed to stretch, thus including
everything discussed through Sec. IC 1 of this introduc-
tion. After further introduction to the notion of dephas-
ing in Sec. III A, we outline the calculation of the renor-
malized coupling constant in Sec. III B via a full many-
body calculation of the correlation function directly relat-
ed to the experimental measurement; the renormalized
coupling constant appears in the form of an effective ver-
tex in the expansion of this correlation function, and we
show for a high-frequency M mode that this procedure is
exact. In Sec. IIIC we specialize these results to the
monatomic adsorbate case and in addition give a simple
example that explains the physics of why there is no de-
phasing from bond stretching in this case. Finally, in
Sec. III D we include the high-frequency R mode in our
formalism and derive the results in the presence of a Fer-
mi resonance.

In Sec. IV we generalize the previous results to the case
where the stretching of both bonds is allowed. Section
IV A explicitly generalizes the Hamiltonian to cover this
case. Sec. IVB 1 introduces and calculates the necessary
generalizations of the correlation functions in the har-
monic approximation. In Sec. IV C we apply them to the
calculation of the Fermi resonance, finding that it renor-
malized as discussed above. In Sec. IVD we are able to
generalize the effective vertex results to the case where
both bonds stretch, and derive the dephasing coupling
constant in this model as discussed above. Finally, in
Sec. IV E we apply our results to the materials in Table 1.

II. HAMILTONIAN

In this section, we define the harmonic part of the
Hamiltonian for this problem. We begin with the case of
an atomic adsorbate, and follow with that of a diatomic
adsorbate. We then define the anharmonic contribution
to the Hamiltonian, but only for the case of a single
anharmonic bond. For a diatomic molecule, the single-
bond anharmonic model means not allowing the internal
stretch to move. We stress here that this model for the
dephasing of a diatomic adsorbate is incomplete, as is
shown by our results of Sec. III, and we develop a com-
plete model for the diatomic case in Sec. IV.

A. Harmonic approximation
for atomic adsorbate in a top site

We consider the general situation of having an
adsorbate-substrate stretch (AS) of an atomic adsorbate
in an on-top site. A prime example of such a system is H
on Si(111) but we also later investigate to what extent the
stretch modes of a molecular adsorbate such as CO can
be reduced to this situation.

The symmetry of an atomic adsorbate in a top site
makes the motion perpendicular and parallel to the sur-
face decouple in the harmonic approximation, and we
can decompose Hy, onic 28
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Hharmonic =H1+H|| . (21)

The adsorbate-substrate stretching vibration and sub-
strate modes coupled to it are all included in H,. We as-
sume that the AS vibrational frequency is determined by
a central force between the adsorbate and the nearest-
neighboring substrate atom and H | is given by

2
_ Pl,z

2MA +%kA(zl _22)2+Hiubstratc ’ (2.2)

H,
where the subscripts 1 and 2 refer to the adsorbate and
substrate atoms, respectively, and z is the coordinate per-
pendicular to the substrate. In the frozen substrate situa-
tion, the AS vibrational frequency w'{*’ is simply deter-
mined from the force constant k 4 as k ;=M ,o' .
all situations of interest in this paper, »'{°’ is typically
much larger than the maximum substrate phonon fre-
quency o, which makes the displacement field of the
AS mode closely correspond to a bond stretch even when
coupled to the substrate modes. This behavior is best un-
derstood from an analysis of the correlation function L*
for z, —z, in the harmonic approximation as defined by
Langreth and Persson (hereafter referred to as LP).2 The
localized AS mode gives rise to a pole in L" and near this
pole one finds that

Lf(w)'—'-l——zz—Az— , (2.3

M 0" —wy
where u, is the reduced mass of the adsorbate and the
substrate atom
1 1 1

—_—=—t—. 4

my M, Mg @4
The coupling to the substrate modes shifts the vibrational
frequency ©'{°’ in the frozen substrate situation up to o 4
and to leading order in (@, /® 4 )%,

M
1+ 2 |ole? . 2.5)

2
ok =
4 Mg

The spectral strength Z of the mode is in this high-
frequency limit bounded below by

4
M A WOmax

1——“
M¢+M, (o‘;

<Z,=1. (2.6)
In most situations of interest in this paper o 4 >,
the strength Z 4 is then very close to unity and exhausts
the zero-moment sum rule and this fact together with the
result for w 4 in (2.5) illustrates that the AS mode is well
localized to the adsorbate and the nearest-neighboring
substrate atom.

In the situation of adsorbate modes polarized parallel
to the surface, noncentral forces are needed for nonzero

vibrational frequencies. For instance, noncentral forces
can be modeled by a simple valence force field as

pi+tp}

H =
I 2M ,

+%B 92 +Hﬁubstrate , 2.7)

where the bending angle 6 is the deviation of the AS bond
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axis from the surface normal, B is the associated bending
force constant, and x and y are the coordinates parallel to
the surface. Typically, angle-bending forces are much
smaller than central forces. For instance, the H-Si
stretch frequency of 2084 cm ! as compared to 637 cm ™!
for its parallel mode gives almost a factor of 10 difference
between the restoring force constants K, and B /I3,
where [, is the AS equilibrium distance. Note that the
low mass of H compared to that of Si makes the adsor-
bate vibrational frequencies for a frozen substrate negligi-
bly different from those for a dynamic substrate. In this
work we make frequent use of the fact that the high sym-
metry of the on-top site in (111) and (100) surfaces makes
the parallel modes in H; doubly degenerate and it is
sufficient to consider modes along only one direction, e.g.,
the x direction.

B. Harmonic approximation for top-bonded CO

As we stressed in the Introduction the adsorbate modes
of top-bonded CO show a very similar behavior on many
metal surfaces as can be seen from Table I. We model
these vibrational modes and the substrate modes by a
minimal force-constant model introduced by Leiro and
Persson'! (hereafter referred to as JP) for bridge-bonded
CO molecules and later extended by LP to top-bonded
molecules. In order to have an easy reference, we explic-
itly introduce here the details of this force-constant mod-
el for the molecular adsorbate while the details of the
substrate force field are not important and the reader is
referred to LP or JP.

The high symmetry of the CO molecule adsorbed on a
top site on the (100) and (111) surfaces is as high as for an
atomic adsorbate and the decomposition in (2.1) of the
Hypormonic  Still applies. The perpendicular adsorbate
modes are assumed to be determined by central force
constants as

(pl,z >2 (pO, )2
lzﬂ—c— T]gzo—'f'%kM(zl —z, )2

+%k1(20 -z, )2+Hiubstrate , (2.8)
where the subscripts 0,1 now refer to the O and C atoms,
respectively. The high vibrational frequency of the I
mode compared to the frequency of the M mode suggests
that the changes in the C-O separation can be assumed to
be small at the frequency of the M mode and we can
make the pole approximation in (2.3) for this mode but
now with M =M +My and k ,=k,,. In a later sec-
tion we will see that while this is a good approximation
for the vibrational frequency, the approximation that the
C-O separation is rigid is not valid in the modeling of the
anharmonicity. We have checked all these approxima-
tions for CO on Pt(111) by numerically calculating the
adsorbate vibrational frequencies by fitting k; and k,, to
the observed frequencies in Table I,

(M) (1)
3.24 16.65

k, (mdyn/A)
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[For thg reader’s convenience, we note the conversion 1
mdyn/A =1.697 X 10% cm 2 amul].

In order to have a nonzero frequency of the modes
parallel to the surface it is also necessary in this situation
to have noncentral forces. Here, these forces are modeled
by angle-bending force constants as

_ (P1x )2+(P1,y )? + (Po,x )2+(p0,y
i 2M ¢ 2M

+%BR 9%{ +%BT92T+Hﬁubstrate ,

)2

(2.9

where By and By are the bending force constants associ-
ated with the bending angles 8z and 6. The angle 01 is
the deviation of the angle of the bond axis C-S from the
surface normal and 7+ 6y is the angle between the bond
axes S-C and C-O.!!

In the frozen substrate situation H in (2.9) gives rise
to two doubly degenerate adsorbate modes denoted by T
and R with frequencies 0°’ and o/, respectively. The
frequency %y’ of the mode T is well below w,,,, and ac-
quires a small shift and broadens into a narrow resonance
when coupled to the substrate modes while the mode R
with a frequency wj%®’ well above w,,, shifts upwards in
frequency and is still localized. These effects have been
calculated in LP by adjusting the bending force constants
By and By to the observed frequencies,

(T) (R)
0.33 0.47

B, (mdyn/A)

Also, in this case the angle-bending force constants
B /12,,=0.08 mdyn/A and By /I3,=0.35 mdyn/A are
much less than the stretching force constants k,, and k;
above.

In general, the correlation function Lﬁ' for x;, —x, in
this situation has exactly the form

Zg

— 5 (2.10)
w(@® =)

Liw)=L{"*(0)+

thus separating out the discrete normal mode at wy from
the continuous band part. Here, wy is the frequency of
the frustrated rotation or R mode and Zj its spectral
strength, and where

1 1 1
—_—=—t—.
Ky M: Mg

(2.11)
The effective mass My introduced earlier is related to Zz
by the relation Zg =p,/My. Similarly, if we introduce a
weight for the continuous band spectrum Zz;=1—Z,,
then the effective mass My is given Zp=p ,/Mp. The
above are exact quantities. However, the calculations
above show that this band part may be adequately
represented by a single pole representing the T"mode with
only a negligible amount of weight (several percent) left
over for the rest of the continuum band (phonons). The
resulting correlation function Lﬁ’ for x, —x, can there-
fore be well approximated by the two-pole approximation
and may be written (for Imw > 0) as
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Z V4 (3K;31,—2K,)
Lio)m ————— X, @2 Kj=—-—"1 (2.15a)
pllo"—wr)tioy,] plo*—og) 215

where wy, ¥y, and Z, are the frequency, width, and K= 5_2_ (2.15b)
strength of the bending resonance T. The mass M intro- I, ’ '
duced earlier is defined in terms of Zr as Zy=pu,/My. L L

The above representation is approximate. That it is a Ki=K,4 K3=K;. (2.15¢)

good approximation is demonstrated by the fact that the
sum of the calculated spectral strengths in Table IV as
shown below is close to unity.

Finally, the good quality of the bending force-constant
model for the parallel modes is demonstrated by its appli-
cation to the observed isotope shifts of the mode R of CO
on Cu(100). This model gives the isotope shifts Aw™y
for the R mode C'?0'® which should be compared with
the observed shifts AwgP by Hirschmugl et al.1?

Aw}{‘e‘”y AoR? cm ™!
C12018 —3 ~0
CcBo!® —-12 —-12

As can be seen from this comparison the agreement is
good.

C. Anharmonicity of a single bond

Here we use the same anharmonic model as developed
in LP which assumes that the anharmonicity derives sole-
ly from the central force associated with the bond
stretch. From the presentation in the two previous sub-
sections this model is motivated by the following two ob-
servations: (i) the displacement fields for the perpendicu-
lar adsorbate modes correspond primarily to a bond
stretch, and (ii) the force field is dominated by its central
part. The potential U(/) of this force then depends only
on the bond distance I. The perpendicular and parallel
components of I — I are denoted by z and x, respectively.
In the case of the stretch mode M and for the molecular
mode I, ! is the C-S and the C-O separation, respectively,
and x=x;—x, and z=z,—z,, and x=xy—x,; and
z=2z,—z,, respectively. We expand U(l) about its
minimum at [ =1,

UD=K,(I1—1,?+K;(I =1+ K, (I—1)*+. ..,
(2.13)

Here, K, =k , /2 in the case of the atomic adsorbate and
K,=ky /2 and K, =k, /2 for the stretch modes M and I
of the CO molecule, respectively. The anharmonic part
H, . =H—H,, o Of the Hamiltonian H for the
adsorbate-substrate is obtained by expanding U(/) up to
fourth order in x and z,

H,, =Klx%2?+K|x%2+Kiz*+Kiz?, 2.14)
where the quadratic terms have been incorporated in
Hyormonic- We only write this series up to fourth order, as
estimates of higher-order terms yield vanishingly small
contributions. The anharmonic force constants are then
given by

Note that K} depends only on the harmonic part of the
central force. Since it is hard to calibrate the intrinsic
anharmonicity of U, it is instructive to introduce a
minimal anharmonicity model defined as one in which
only the quadratic term in (2.13) is kept, K3 =K, =0.

III. DEPHASING IN THE SINGLE-BOND
ANHARMONIC MODEL

In this section, we first restate the results derived by
LP in their treatment of dephasing by an anharmonic
Hamiltonian which contains only biquadratic terms. We
then demonstrate that, although cubic terms contribute
significantly to dephasing in this model, they can usually
be treated as an effective quartic interaction, and the re-
sults of LP may therefore be generalized to include them.
This demonstration is at the heart of all the calculations
in this paper. In Sec. III C, we discuss dephasing in three
special cases: by a monatomic adsorbate, by the internal
CO stretch, and by a simple model, designed to illustrate
why there is no dephasing in the monatomic case. Final-
ly, in Sec. IIID 1 we discuss the possibility of Fermi-
resonance effects for CO, giving an estimate of the weight
of a second line which in principle could appear. We also
show how the single-bond model yields absurd results for
realistic diatomic systems, leading us directly to Sec. IV,
where a more complete model is treated.

A. Dephasing

In this paper, we consider the dephasing of the stretch
modes of an atomic adsorbate and also of an adsorbed
CO molecule in the high adsorbate frequency limit, i.e.,
Opax <<wyr, Where o, is the largest frequency of pho-
nons causing dephasing and w,, is the stretch frequency
of interest. This high-frequency limit is often a good ap-
proximation and is well satisfied for the systems studied
here. One important simplification in the treatment of
the effects of anharmonicity on the line shape in this limit
is that perpendicularly polarized phonon modes do not
contribute to the line shape.’? Furthermore, the line-
shape problem has been solved in this limit for
H,;,=K|x%z? by Langreth and Persson® for arbitrary
coupling strengths in the case of dephasing by a quasi-
mode.

In particular, in the weak-coupling limit for the de-
phasing by a quasimode characterized by its strength Z,
frequency @y, and width y,, LP recovers the standard re-
sult!3 of a Lorentzian line shape with shift Aw,, and
width full width at half maximum T given by

Awy=(n+1/2)A,
F=2n(n+1)A%/y,,

(3.1a)
(3.1b)
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where n is the thermal occupation factor
n={nr)=(e “T—1)7! for the quasimode. LP showed
that the coupling constant A, which has the units of fre-
quency, is given in this model by

where we have changed LP’s notation slightly to be con-
sistent with what becomes necessary later in this paper.
We denote by A, the value of A for the specific case of the
minimal anharmonicity model, which is obtained by set-
ting K| =—k,,/2(15)* in (3.2) and hence yielding (1.8).
The force constant k,, can be estimated from k,, ~u, 0,
while the weight Z, [0<Z < 1] can be estimated from
Eq. (4.34) for the frozen substrate case. Finally, we have
in the diatomic adsorbate case,

1 1 + 1

—_— E , (3.3)

My B Mc+M,

but y is still given by (2.11). This definitional asymmetry
was introduced to reflect the fact that in the single-bond
anharmonic model the relative C-O z coordinate is fixed,
while the corresponding x coordinate is not. We never-
theless retain the above definitions for p, and y, from
now on, and in particular we still use them in Sec. IV
when the internal bond is allowed to flex. The effective
mass M), introduced earlier is for all practical purposes
equal to u, because, for the reasons discussed in Sec. II A,
the renormalization factor Z associated with this mode
differs negligibly from unity.

The above results may be specialized to the monatomic
adsorbate case by letting My =0 and M-=M , so that
H#=p, and also letting Z=1.

The weak-coupling result in (3.1b) is valid as long as
A <<7,. For instance, this weak-coupling result has been
used by Dumas, Chabal, and Higashi® in the analysis of
the temperature dependence of the linewidth for the H-Si
stretch mode, and an overall best fit was obtained with
wr=210cm™ !, A=—5cm ™}, and y,=52 cm~!. In this
case they attributed the dephasing to a single surface
phonon band and A was found to be close to the value ob-
tained from a Morse form for the central force with ap-
propriate binding parameters. On the other hand, in the
case of CO on Pt(111) and Ni(100), the Morse model for
the anharmonicity gave typically far too large a value for
A in comparison with observed line shapes, whereas the
coupling constant A, gave line shapes in reasonable agree-
ment with experiment. In these situations, the quasimode
is the narrow bending resonance (T) in (2.12) and it was
necessary to go beyond the weak-coupling limit and use
the more general solution for the line shape.

A principal aim of the rest of this paper is to calculate
the effective value of A, i.e., A4, to use either in (3.1b) if it
turns out that A4 <<y, or in the more general theory of
LP, Ref. 2, otherwise. In this section we consider the
contribution to A4 due to the inclusion of cubic terms to
higher orders. In Sec. IV we, in addition, include the
effects on A4 of allowing the internal bond to flex.
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B. Effective vertex

As was first pointed out for this problem by Zhang and
Langreth,’ the cubic terms in (2.14) can have contribu-
tions comparable to the x2z2 term. In the high-frequency
limit, we show that these contributions can usually be re-
garded as being due to an effective Hamiltonian with a
single term, HST =%|x?z2. We first show this result in
the situation when the frequencies of all parallel modes
are well below w,,, and later generalize to include a possi-
ble higher-frequency mode such as the R mode for CO.
However, it is not true in the presence of a Fermi reso-
nance.

To find the infrared response and line shape, we calcu-
late the self-energy of the propagator for the AS stretch
using the same formalism and notation as LP.? Many-
body perturbation theory yields seven diagrams'* contrib-
uting to the dephasing to second order in K} which are
shown in Fig. 3. The four-legged vertices correspond to
an interaction involving the first term of H,, in (2.14),
the three-legged vertices with all solid lines to the second
term, and the three-legged vertices with one solid and
two dashed lines to the third. As was first pointed out by
Zhang and Langreth,’ two orders of the cubic interac-
tions are equivalent to one order of the quartic interac-
tion. A complete discussion of the many diagrams that
can arise is given by Zhang'® in the context of perpendic-
ular modes.

\ N
N AN
<\
~ 3
- - —
\ N Ve N
\ N d h
\ / \
—_— —e 6 — — — — —_ —

FIG. 3. All second-order (see text) contributions to the
linewidth involving both cubic and quartic interactions. The
solid lines represent the high-frequency localized mode, while
the dashed line represents parallel polarized phonons.
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All of these diagrams may be summarized by a single
diagram, the first in Fig. 3, with both quartic vertices re-
placed by effective quartic vertices which include pairs of
cubic interactions. The resulting effective vertex is shown
diagrammatically in Fig. 4, and may be written, using the
Matsubara formalism, as

ﬁﬂ(lwv’lpwlqv)=Kﬂ+3KJ3-K!Lf(lpv+lqv)
+HKL{io,~ip,)

+Liio,~ig,)], (3.4)
where L" and L|'|‘ are the correlation functions introduced
in (2.3) and (2.12) and w,, p,, and g, are all Matsubara
frequencies. The numerical factors are determined by the
usual combinatorial factor at each bare vertex (2!2! for
K, 2172 for K}, and 3! for K3), divided by the number of
interchanges of external legs leaving the vertex un-
changed [i.e., 4 for (a) and (b), and 2 for (c¢)].

To continue the argument for an effective vertex to all
orders in perturbation theory, one must check that, in the
high-frequency limit, all diagrams involving two or more
cubic interactions can be rewritten as part of a diagram
involving only effective vertices. Figure 5 contains two
third-order diagrams which appear very similar. Howev-
er, in Fig. 5(a), the cubic interactions may be viewed as
(b) of the effective vertex of Fig. 4, whereas topology
prevents this in Fig. 5(b). Thus, Fig. 5(b) appears to con-
tradict our result. Fortunately, the fact that the two cu-
bic interactions are not joined by a single parallel propa-
gator in 5(b) also means that the corresponding term in
the perturbation series contains an extra energy denomi-
nator, so that it is of order O(wy/w,,) relative to the
contribution from 5(a), and may be neglected in the
high-frequency limit. This argument applies to all such
undesirable diagrams, establishing the regime of validity
of the vertex approximation in (3.4) for all coupling
strengths.

Now, when we use this vertex in the first diagram of
Fig. 3 to evaluate the contribution to the linewidth at the
localized mode frequency w,, to leading order in pertur-
bation theory, we must make the analytic continuation
iw,—wy+i0". The sum of the other Matsubara fre-
quencies picks up contributions from the poles at .
Since @y is negligible compared to w,, in the high-
frequency limit, these contributions can be evaluated us-
ing the zero-frequency limit of L” and the high-frequency
limit of Lﬁ'. The zero-frequency limit of Lf can be ob-

Pn - -
7 7
iw, ’ 7 i N /K
n / o /
\ \
AN AN
iq"\ ~

(@ (®) ()

FIG. 4. Renormalized vertex, in terms of which all diagrams
of Fig. 3 may be adsorbed into the first one. The solid and
dashed lines have the same meaning as in Fig. 3.
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FIG. 5. Two apparently similar third-order (see text) dia-
grams, but (a) can be included in a third-order diagram involv-
ing only effective vertices, whereas (b) cannot. The solid and
dashed lines have the same meaning as in Fig. 3.

tained directly from (2.3),

L"w)—— (3.5)

—211<—2, w—0 .
where we have used the relation in (2.5). We later show
that this zero-frequency limit is a general result for a
nearest-neighboring central force-constant model for the
stretch mode. The high-frequency limit of Ll’l' can be ob-
tained from a sum rule for the corresponding spectral
function or more directly from the fact that —-L‘lr(w) is
the response of x to an external force F,,, acting on the
relative x with frequency w, and that in the limit o — oo,
the forces in the x direction between the atoms can be
neglected. In this limit the equations of motion for x,
and x, are given by

—Mcw*x;=F,, , (3.6a)
—Mgw’x,=—Fq, , (3.6b)
which immediately yields
L{;(w)ﬂ%, w—>®, 3.7)
@

where p is given by (2.11). As a corollary one finds from
(2.10) that
Zp

2 b
©yo

(0)— (3.8)

Lﬁl,band w—>©

where Zp=1—Zy as always. These two limiting
behaviors of L” in (3.5) and Lﬁ’ in (3.7) then yield an
effective #} of

LELS!

Hi=K}| -3 +2

(K|)?
2

(3.9

Inserting in (2.15¢) the definitions of the anharmonic
force constants in terms of the anharmonic coefficients of
U(I) defined in (2.13) into (3.9), we obtain

K, K3

..I_(z)

F|= (3.10)

Hence, %) depends only on the harmonic part of U(])

and the anharmonic part cancels and gives no contribu-
tion. This is one of the central results of this paper.

C. Important special cases

There are two important special cases for which the
model considered so far is sufficiently complete that
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definitive predictions can be made. These are discussed
briefly below. We also give a simple model example
which shows directly why the surprising results occur.

1. Dephasing of a monatomic adsorbate

First, we apply this result to a monatomic adsorbate.
Using the definition in (3.2) and the relation between K,
and w,, implied by (2.5), we can define the effective cou-
pling constant A g as

-

}‘eﬂ‘ = A'O u :

(3.11)

Comparing this with (1.9) of the Introduction, we see
here that Ag,.,;=0, because there are no Fermi reso-
nances in this case. We consider the stretch mode of an
atomic adsorbate such as H on Si. In this case, the fre-
quency of the parallel mode is much less than w,,, so that
the result in (3.11) is directly applicable, which gives
Aeg=~0 since u;=p,. Thus, we have shown that there is
essentially no dephasing for a monatomic adsorbate due
to the stretching of the principal adsorbate-substrate
bond. Small remnant contributions exist due to the fact
that w%,/w% is not truly infinite, but for practical pur-
poses we have the remarkable result that neither the
anharmonic nor the harmonic part of the central force
gives a contribution to the dephasing linewidth. Thus, in
the case of H on Si, for example, where an explanation of
the experimental data in terms of a central Morse poten-
tial has great appeal, one may well have to look to cubic
and quartic anharmonicities in the very small noncentral
(bending) forces in order to obtain substantial dephasing.

2. Dephasing of the internal stretch mode of CO

This case is formally identical to the monatomic adsor-
bate case, because so far as the above results are con-
cerned, C may simply be considered to be part of the sub-
strate and O as a monatomic adsorbate. Because of the
high vibrational frequency of the I mode in comparison
with all other modes, the results in (2.3), (2.5), and (2.6)
can be directly applied to the correlation function for
Zo—2q, but now with the reduced mass
purl=pr'=Mc'+MG! and 0% =k;/u;. Similarly,
(2.11) becomes p; '=Mg'+Mc'=p!. Therefore the
dephasing of the I mode likewise is very small because of
the cancellation in (3.11), and again one must look for
anharmonicities in the small noncentral bending force.
Thus, estimates of the strength of the coupling constant,
which we denote A, from experimentally observed
linewidths and shifts,! should be interpreted with the un-
derstanding that the central forces do not contribute.

3. Simple model for cancellation
of central force anharmonicity

Why does the central force model produce such a can-
cellation? For simplicity, consider a single dephasing
mode of frequency wy in the parallel direction. The har-
monic part of the Hamiltonian is then
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2

2 2 2 2 2
P + 14 U Z HOTX
H harmonic — = £

20 2 2

and the anharmonic part is correct up to fourth order in
the displacements given by (2.14). Now we make a coor-
dinate transformation from Cartesian coordinates to the
separation coordinate / and the angle 6 between the
adsorbate-substrate direction and the perpendicular. In
terms of these coordinates, the full Hamiltonian becomes

(3.12)

_pl P
2u 2ul?
where p; and p, are conjugate momenta to / and 6. Then,

the anharmonic part is given up to fourth order in the
displacement / —/,, the angle 6 and the momentum p,

+uoti%in?/2+U() , (3.13)

2
Do
H =K} |156°— | ——— | [(I=1y)*
t i 0 #wTO 0
p 2
+K| (1202 +3 |—2— | |u—1,)
Iil 0 ”leo 0

+K3(1—1y)+K5(1—1y)*, (3.14)

where now K| =pw% /1y, K| =po?/(21%), K3=K,, and
K;=K,. The p, terms come from the kinetic term in
(3.13), where (py)/(uwy13) has the same amplitude as 6.
In terms of these stretching and bending coordinates the
coefficients of the anharmonic terms K| and K| are
down by a factor of (wr/wy )% Thus, in the high-
frequency limit (effectively, wy /@y, —0), these terms are
negligible, and we are left with a harmonic oscillator with
a single high frequency, no longer coupled to a low-
frequency mode. Such a system cannot dephase. Howev-
er, if the potential were not simply central and had some
6 dependence, then one could not ignore 6 in this limit
and it could cause dephasing.

D. Possible Fermi-resonance effects for CO

1. The structure of L | (w)

As discussed in Sec. I A, one consequence of the cubic
anharmonic term K|x?z that couples the parallel modes
to the stretch mode is that Fermi-resonance effects may
appear. Such a resonance is present even in the lowest-
order cubic self-energy diagram, and we verify here that
it gives to a characteristic satellite to the main line. The
infrared line shape is determined from the spectral func-
tion of L)(w) which is related to the self-energy S(w)
through a Dyson equation,

L (o0)=[L¥w) '-S(w)]7". (3.15)

The lowest-order self-energy diagram S5 due to the cubic
term for L, is shown in Fig. 6 and is given by

FIG. 6. Lowest-order cubic self-energy diagram.
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s3(iwv)=—% S 2KU2L g, L] i, ~ig,) -
iq,,

(3.16)

Now, we evaluate the Matsubara sum over ig, using the
two-pole approximation for L{ in (2.12) where we have
also neglected the width of the quasimode. After doing
the analytic continuation iw,—® M+O+, the resonant
part for >0 of S5 is given by

11104800}
2(n+1)

. 20 -
§fermi = (n+1) +n ,

(3.17)

where 8w, is given by (1.11) with n; replaced by its
thermal average value n and where wi=wgp*wy. In
writing (3.17) we have written only those terms that are
possibly resonant, and we have assumed no thermal occu-
pation of the R mode. In the case represented in Table I
it is the first term in (3.17) that is resonant, so we neglect
the second one; we also take ©>0 so that
20, /(w*— 0% )=(0—w, )" ! neglecting the nonresonant
term (w+w,)”!. Inserting the single-pole approxima-
tion for L"(®) in (2.3) into (3.15) gives

1

L (0)= (3.18)

S,
2piou (@~ on g T

This result shows that the stretch mode splits into two
modes with frequencies

(3.19a)
(3.19b)

Q=0+ Aoperm;
Qrr =g + 07— A®Ope; »

where Awpem; is given by (1.10). In the limit of weak
coupling 8wy, << |wy —wgp —@7|, the quantity A®gem;
vanishes, which implies that the mode at Q,, derives
from the M or stretch mode, while the mode at Qyr
derives from a combination of the modes R and T. The
relative weight Wy /W, of these two modes is given by

80)M 21172
L —1
I:;’:= Ou 521; o, (320
1+ | ——F— +1
Wy —@Op —@OT

where here the radical sign implies the positive square
root.

If we take the values of the parameters from Table I
then one obtains the following values (in cm™!) for w,,
and 0y —wg —wr at T=0:

Pt(111) Cu(100)  Ni(100)  Ir(100)
dw g 26 28 42 28
Wy — W —OT 1 23 69 19

These were the values used to calculate the bare strength
ratios Wgr/W,, that appear in the Introduction, which
were in conflict with experiment. Technically, one
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should use the measured value of the M mode for Q,,
rather than w,,, and if there were any hope to use such a
procedure to remedy the conflict with experiment we
would have been more careful. However, for example,
for the Pt(111) case if one took Q,;, —wr —wr to be 1
cm ™! as on the first line above, then it is clearly smaller
than the theoretical minimum for this quantity (18w,,)
even at T=0 and the conflict just shows up in another
way.

2. Renormalized coupling constant A.g

In the case of the M mode of the adsorbed CO mole-
cule, wg is comparable to w,;, and we can no longer use
the high-frequency limit of Lfl’ in (3.7). Therefore we
evaluate the effective vertex in (3.4) for CO using an ap-
propriate Lﬁ' for the parallel motion. Nevertheless, we
can still use the static limit for L in (3.5), because we
still have @), >>w. This means that the cancellation of
the cubic and quartic terms in the bond stretching still
cancel exactly [arising from the first two terms in (3.9)],
which implies that the minimal anharmonicity model and
the Morse potential model are identical. This is satisfy-
ing because LP showed for CO/Pt(111) that the minimal
anharmonicity model gave linewidths of the right order
of magnitude to be consistent with experiment, while the
“more realistic” Morse model gave linewidths that were
more than an order of magnitude too large (before con-
sideration of the above cancellation from the cubic terms,
which was then not known). However, as discussed in
Sec. IC 1, the cubic terms that cause this cancellation
themselves give rise to additional predictions in this
single-bond model which are not observed experimental-
ly.

In evaluating the contribution of Lﬁ' to the effective
vertex (3.4) we use (2.10). As mentioned earlier, we can-
not take the infinite frequency limit in the second term,
because w is comparable to wg. However the first term
Lﬁ"b’“‘d(a}) can be replaced by its high-frequency limit

(3.8) because @ >>w,,,,. We therefore obtain

}\.eﬂ‘:A-o I_ZB_IJ'—J.

Ky

The quantity Ag,,; comes from the contribution of the
last term of (2.10) to (3.4), which is

+ Afermi - (3.21)

(K)? | 204 20_
5 >+ 3 (3.22)
2014y | 0* 0% @'—ol
There are several cases to consider. The first is
lwy — o] >80y . (3.23)

Then, one is only marginally close to a Fermi resonance
and the various frequency and spectral weight renormal-
izations discussed in Sec. III D 1 are unimportant. Then,
one may set @ =w,,, and one finds that

2w 20 _

A
0 2 2 2 2
dpop | oy —0i @ oy—or

(3.24)
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Thus, one obtains an effective coupling constant which
can be greatly enhanced by the presence of the nearly res-
onant denominators. The arguments that lead to it can
be rigorously checked by evaluating the diagrams for
finite w,;, and then taking the high-frequency limit. Fur-
thermore, the classical limit (which contains diagrams to
all orders) also exhibits exactly the same effective cou-
pling constant, and obeys the same criterion for break-
down of the vertex approximation.'

We note here several regimes for Ag,; in (3.24). In
the limit wgp <<®p, Apemi= —AoZgu/p; and A
reduces as it should to the result in (3.11). Equation
(3.21) also exhibits the correct limit for a monatomic ad-
sorbate, where Z =0, Zz=1—Z, =1, hence yielding
(3.11), which in this case gives zero because u;=p;. In
the intermediate regime, however, Ag.; can attain much
larger absolute values than A, due to the denominators,
which brings us to the second case discussed below.

Next we consider the case where the condition (3.23)
fails because one is too close to the resonance at w.,.
Then the first term in (3.22) dominates and other contri-
butions can be neglected. However, the Fermi-resonance
renormalizations must be included. If one wants to cal-
culate the dephasing for the resonance at ,,, then the
relevant term in (3.22) is (i) to be evaluated at @ =Q,, in-
stead of w=w,,, and (ii) it is to be multiplied by W,, as
defined by (3.20), where W, ,+Wgxr=1. The latter
correction occurs because the vertex connects two L,
correlation functions for which the resonance at Q,, has
the weight W,,; each such correlation function contrib-
utes a factor of V/ W, to the effective vertex. The overall
result of these corrections is to give a Ag.., equal to that
of (1.12). The warnings about the validity below (1.12)
apply to this derivation as well, because it is hard to see
how this argument could be extended beyond second-
order perturbation theory. The third case, where the
condition (3.23) fails because one is too close to the reso-
nance at o _, is equally easy to discuss, but we do not give
the details because it does not seem relevant to the ma-
terials for which we have experimental data.

For the materials in Table I the values for dw,, and
Wy —wgp —or given above indicate that it is the second
case that is most relevant. Using these data we calculate
the following values for A4 Values of A are also includ-
ed.

Pt(111) Cu(100) Ni(100) 1r(100)
Ao 169 7.5 8.3 11
Ao —-0.73 —1.07 —1.66 —0.77

As one can see, the values produced by this theory are
preposterous and would lead to linewidths too large by
orders of magnitude. That the theory that produced
them would breakdown for values this large is not the
greatest of our problems.

IV. DEPHASING AND FERMI-RESONANCE EFFECTS
IN THE DOUBLE-BOND ANHARMONIC MODEL

In the case of the AS stretch mode of the CO molecule
we found strong resonance effects in the single-bond

15 881

anharmonic model arising from the cubic term K |x?z in
(2.14). We show here that the single-bond anharmonic
model is incomplete for the M stretch mode due to the
presence of a stretch mode I of higher frequency, which
makes it necessary to introduce the anharmonicity from
the central force of the internal bond of the CO molecule.

A. Double-bond anharmonic model

The inclusion of the anharmonicity from the central
force associated with the internal stretch is straightfor-
ward. The total potential energy associated with the
stretching of the two bonds is given by the sum
Uy (1) + Ui(I;) of the potential energies of the C-S bond
and the C-O bond (they are hereafter referred to as M
and I, respectively) where /,, and /; are the correspond-
ing bond distances. We make the same kind of expansion
of Uy, and U; around their potential minima at /,,=1,,
and /; =1, respectively, as done in the single-bond case
in (2.13),

UM(IM)+ U](l[):KZ,M(lM_IOM)Z
+Ks,M(lM‘loM )3+K4,M(IM_IOM )*
+Kz,1(11_101 )2+K3,1(11‘—101 )?

+K, (=), 4.1)

where the contributions from the different bonds are dis-
tinguished by introducing the subscripts M and I. The
anharmonic part H,, is then obtained by expanding
Iye— oy and I;—1y; in their parallel and perpendicular
coordinates X; and Z;, respectively, as given in terms of
the atomic coordinates by

X=X Xy,

Z1=2,—2y, Z,=29—2Z;, (4.2)
and keeping terms in the potential energy up to fourth or-

der in these coordinates,
H;p, :K!,MX%ZI +Kl ;x77, +Kﬁ,Mf%f% +K) %725
+KY yzi +KY 23K 2t K 2y . 43)

The anharmonic force constants K 5/, K} pr 7, K4 415,
and K|, , are determined from the expansion
coefficients of the central potentials in the same manner
as in (2.14) for the single-bond case. Note that the mag-
nitude of the anharmonic force constants in (4.3) are set
by the stretching force constants k) =2K,, and
k;=2K, .

The larger anharmonicity of the bond I by a factor
about k;/k,, is reduced in the case of the dephasing of
the mode M. This arises because the high frequency of
the I mode compared to the frequency of the M mode
gives a much smaller stretching 2, of the bond I than the
stretching Z; of the M bond. Earlier, we let Z, =0, an as-
sumption which reduces the double-bond anharmonic
model in (4.1) to the single-bond anharmonic model in
(2.13). This assumption is invalid, however, and we will
show later that to leading order in k,, /k,,
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z Mok
f2__ oMM X (4.4)
7, (Mo+Mok;

Although this ratio is small, it is not sufficiently small to
overcome that fact that the internal stretch has a much
larger force constant, and it is the force constant times
the displacement to a power determined by which term
one is considering in (4.3) which is the important quantity
in discussing anharmonic effects. Hence, anharmonic
terms due to U; with single powers of Z, do give a contri-
bution to the anharmonicity in this limit. The only term
in (4.3) with this property is the cubic term K| ;x%2, and
we will show later that this is the only relevant anhar-
monic term introduced by U; for the dephasing in the
limit k; /ky;— 0.

B. Correlation functions in the harmonic approximation

Before generalizing the diagrammatic expansion to the
double-bond anharmonic model, we need to introduce the
necessary correlation functions for the perpendicular and
parallel displacements of the molecule. We give analyti-
cal expressions for these functions in the frozen substrate
situation when taking the appropriate limit of widely
separated adsorbate-mode frequencies. The effects of
coupling the adsorbate modes to the substrate modes are
calculated numerically for CC on Pt(111) using adsorbate
lattice-dynamical techniques.

1. General considerations and sum rules

The particular form of H;, in (4.3) shows that we need
matrices of correlation functions L} ;; and L| ,,, for the
parallel and perpendicular displacements, respectively,
when evaluating the diagrammatic expansion of the self-
energy. As shown in LP, these matrices can be ex-
pressed, using the normal modes of the adsorbate-
substrate system, as

Eﬁ,kl((o)ZE M N (4.5)
i VMM,
where the collective indices i,j each label both an atom
and a Cartesian direction in space and R is a resolvent
matrix to the dynamical matrix D, for the displacements
belonging to the same symmetry classes as for the per-
pendicular o0 =1 and parallel adsorbate modes o =||, re-
spectively. The resolvent R, of a dynamical matrix D,

is defined in the usual way as
Ra’,ij(w)=[(w21_DU)_1]ij . (4-6)

The expansions coefficients f; relate the bond coordi-
nates to the atomic coordinates and are simply defined as

z =2 fuzi > (4.7a)
X =3 fomiXi > (4.7b)

where the index i now runs only over the O, C, and the
nearest-neighboring substrate atom. These coefficients
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are given directly by the relations in (4.2) and are summa-
rized below in matrix form:

0 1 2
f=1/0 1 -—1{, (4.8)
2(1 —1 O

where the numbers on the top border represent the values
of i corresponding to the atomic coordinates, while the
numbers on the left border represent the values of k cor-
responding to the bond coordinates. The relationship be-
tween the various coordinates labeled by these subscripts
is illustrated in the mnemonic below:

o) C S
ij 0 ~ 1 ~ 2
kimn

«—2—

In addition, in Table II we summarize the subscripts used
in this section.

In the frozen substrate situation, we have two perpen-
dicular and parallel modes, respectively, and the resol-
vents in (4.6) for 0 =1 and || are given as a sum over two
simple poles,

(o0)

el e(w')

Rﬂ,ij(w):z - }\’,j

—_— 4.9)
¥ [0 ("] (

where A=M,I and A=T,R for 0 =1 and |, respectively.
The normal modes A have the normalized mass-weighted
displacement fields

e(;j)oc\/ﬁ,-xi for A=T,R ,
e()\f‘})m\/ﬁizi for A=M,I ,
and frequencies w}®’. They are the eigenvectors and ei-

genvalues of the dynamical matrix in the rigid substrate
situation, defined by

3 Dlzjely =taf" Vel
J

(4.10a)
(4.10b)

(4.11)

As already stressed in Sec. II, the vibrational frequencies
for the M, I, and R modes are well above w,,,. They ex-
perience an upward shift when coupled to the substrate
modes, and therefore remain above the phonon continu-
um. The relation between the correlation functions and
the resolvent in (4.5) shows directly that the correlation
functions are given by a sum over the substrate phonon
band contribution and the localized adsorbate modes as

Lt o)=Lt w)+ 3 € CoLilw), (4.12)

localizedA

TABLE II. Summary of subscript and superscript indices
used in Sec. IV. The final column indicates whether the Ein-
stein summation convention is implied on repeated indices.

Symbol Meaning Values Summation
o which symmetry L no
A which mode or pole M,I, T,R no
kimn which bond 1,2 yes
ij which atom 0,1,2 no
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,u”(wz—wi) , (4.13)
and p is given as before by (2.11). By localized A in (4.12)
we mean those modes with frequencies lying outside the
phonon band, that is A=M,I for c=1 and A=R for

=||; in an exact treatment the 7 mode is a resonance in
L k, band(w) as further clarified below; for the frozen lattice
approx1mat10n to adsorbate motion, however, it is most
convenient to take L"%"(»)=0 and include the T mode
in the sum over localized A. Here we anticipate a con-
venient representation for the treatment of the dephasing
of the mode M by having the same mass y, for all L " and
also by choosing the normalization

Cp, =1. (4.14)

The spectral strengths Z, in (4.13) can then be shown
from (4.5), (4.9), (4.19), and (4.14) to be given in terms of
the normalized mass-weighted displacement fields e, ; by

u 172 2
Zfl, ”' e 4.15)
l
and the expansion coefficients C, , defined in (4.19),
2 le l-(l/z
Cra= S FoM-07 (4.16)
1i

In the frozen substrate situation we have according to
(4.7b) and (4.10b) that these C, ,’s are just displacement
ratios of the bond coordinates

¥4
Cci\s)=— for A=M,I (4.17a)
’ 71 w=m()‘°°)
ciy)=="2 for A=T,R . (4.17b)
’ 55] w=w&w)

Later, we will calculate Z, and C, , in the full lattice-
dynamlcal situation by calculating numerically the resi-
dues of L" 0,11 and L" 0,21 at a) ; by a continued fraction
technique for the resolvent.!

The remaining parallel adsorbate mode T overlaps with
the substrate phonon band and broadens into a narrow
resonance which is not a well-defined normal mode with
a localized displacement field. Such a resonance is
characterized by the dynamical matrix having a complex
eigenvalue (wy;—iyo/2)* close to the real axis, with a
non-normalizable eigenmode. This gives rise to a pole in
the correlation functions on the unphysical sheet of the
Riemann surface. In deriving the generalized vertex ap-
proximation, we use only the single pole in the band con-
tribution to the external legs while we use only the high-
frequency limit for the band contribution to the internal
legs. We find the matrix of residues for this single pole as
can be seen from Table III to be well approximated by a
factorizable form,

CriCr L), (4.18)
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TABLE III. Pole and band parameters in the correlation
functions for the parallel adsorbate modes of CO on Pt(111).
The band weights of the correlation functions L I,k (@) are given
by the integrals ([L||/7T)fband dwa)l” w(®), and the residues
by Zm,u,“[(d/da))(L”,k,) 171, yo is the width of the reso-

nance mode T and is calculated as
Yo=2(L{ ) '"[(d/deo)(L]) '] "

Lﬁ',u Lﬁ',xz Lﬁ',zz
Band weight 0.229 —0.117 0.061
T residue 0.216 —0.112 0.0585
Yo (em™Y) 1.9 1.9 1.9
R residue 0.771 0.851 0.939

where we have the same normalization of Cr; as in (4.14)
and L%(w) is defined as in (4.13), but now with a pole at

2—170/2 This single pole is the only contribution to
L ba“d(a) ) in the frozen substrate situation where the res-
onance turns into a true localized state and the parame-
ters Cy; and Z; can then be calculated as in (4.15) and
(4.16). While in the full lattice-dynamical calculation
these quantmes were calculated numerically from the
residues of L I,11 and L! I.21 at ®=w by a continued frac-
tion technique for the resolvent.!! In this latter situation
we will later see that this single pole in (4.18) dominates
the band contribution to L% ().

In the case of the perpendicular modes we find to a
very good approximation that we can neglect the band
contribution, so that in the both cases we arrive at a
two-pole approximation for the correlation function,

L o ECUCML (@) . 4.19)

In particular, L“’11 =L} +L} has the same form as in

(2.12) with the same definition of the spectral strengths

Zp 7 The quality of the two-pole approximation can be
checked by the sum rule

do , + Suifu

J 2220, @)=, —%4—’ (4.20)

which mazl eas11y be derived from Eq. (35) in LP. The

quantity 75 ;; is the spectral function of L o, kI
Th (w)=—2ImL! , (0+i0") . @.21)

Applying this sum rule to (4.19) for k =I=1 gives for the

parallel and perpendicular modes separately,
>z,=1. (4.22)
A

For the general case the sum should include the contribu-

tion from the band. In particular for the parallel modes,

the contribution from the T mode is included in the band
contribution.

2. 1 modes

We now turn to the calculatlon of the Cy, and the
zero-frequency limit of L* Lk1 (@) which are needed to cal-



15 884

culate the dephasing of the mode M. This can be done
readily in the frozen substrate situation in the limit
k;/kg— o using the equation of motion for Zi“ x rather
than diagonalizing the dynamical matrix. From the
definition of L ;, in (4.5), it follows that —L" , | (@) gives
the response of the coordinate Z; to an external force F,,,
with frequency o acting on the coordinate Z;. In the rig-
id substrate situation z, =0, the equations of motion for
the atomic coordinates in the presence of this external
force are given by

(4.23a)
(4.23b)

—Mow*zyg=—ki(z4—2,),
—Momzzl = _kI(Zl _Zo)_kle +FCX[ .

The equation of motion for the C atom and the coordi-
nate transformation in (4.2) then gives directly

> 2
5 Myw

~ _ 2 -
zZ, ki—Myo

N

(4.24)

Now, we can eliminate k; from (4.23b) and inserting the
relation between Z, and Z; into (4.24) which gives the
response of Z| to F,,, as,

F

ext

Z1=

YRR (4.25)
[0)

g — (Mo + Mg — ——20—
k] _Mocl)

This expression gives then directly Ef” (w) and to lead-
ing order in ky, /k;,

1
(MC +MO )(COZ_CO]z”)
+ Mo
Mo(Mo+Mc)0®—o?)

Lt ()=

> (4.26)

where in this limit 0}, =k, /(Mc+Mg) and 0} =k, /u,.
Now, using Eq. (4.17b), we obtain directly from (4.24)

Mk :
oM (4.27a)

C = - -
M2 (Me+Mo)k;, ’
M.
C1,2=— tl-*—*M: (4.27b)

This result also proves the relation between z, and Z, in
(4.4) in this limit. In Table IV, we have compared the re-
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sult for Cyp, in (4.27b) with the result from the full
lattice-dynamics calculation.

The zero frequency of Iji x1(@) can be evaluated
directly in the full lattice-dynamical calculation without
making any restrictions such as having a rigid substrate
or taking the limit &k, /k;—0. This is because
—Ef‘kl(w=0)=i,~ is the response of Z; to an external
static force F,,, applied to the coordinate Z;. The equi-
librium conditions in the presence of F,, for the coordi-
nates z; of the atoms i=O0,1 are in the nearest-
neighboring force-constant model given by

(4.28a)
(4.28b)

0= —kI(ZO—Zl) ,
0= _k[(Zl —ZO)—kM(zl —ZZ)+Fext .

These conditions give right away that z,=0 and
z,=F,, /k);, which proves directly the general result
Lt (0=0)=——. 4.29)
This zero-frequency result can then simply be understood
from the fact that the response of the bond M to an ap-
plied static force is not influenced by its environment.
Finally, we note from the fact that the calculated spec-
tral strengths for the two adsorbate modes exhaust the

spectral sum rule to a very good approximation which
justifies our neglect of the band contribution.

3. || modes

Now, we turn to the evaluation of the coefficients C, ,
and Z, for the adsorbate modes R and T and the high-
frequency limit of L ﬁ"’,?,a"d. In the frozen substrate situa-
tion, we do the evaluation of these coefficients by directly
diagonalizing the (2X2)-dynamical matrix in the limit
w7 <<wpg and use the results in (4.15) and (4.16). The re-
sulting normal mode frequencies are given by

2

M l B
(2= [1+ =2 14+ — (4.30a)
M. Lom I5iMo
B
()= 1 e, (4.30b)
1+Mo i+ Lor lomMc
MC IOM

with mass-weighted displacement fields,

TABLE IV. Coefficients, spectral strengths and renormalization parameters for CO on Pt(111). The
label a denotes either the continuum band of phonons B, or an adsorbate mode 7, R, M, or I.

a= B T R M I

Z, 0.229 0.216 0.771 0.404 0.596

AN 0.234 0766 0.429 0.571

Can 0.665 —1.417 0.117 —1.66

cl=) 0.566 —1.479 0.111 —-1.75
a,2

gar 2.15 2.16 2X107¢

gL 1.75 0.024




47 VIBRATIONAL DEPHASING AT SURFACES: THE ROLE OF . ..

ekt __ [ Me | low (4.31a)
e,‘(:’;) Mo log+lom ’ '
er’s _ M, 2 Lor 1oy 4.31b)
eyt Mc lom '

Note that the displacement field e(Tf;’) /N M; associated
with the mode T is a pure rotation around the substrate
atom. The coefficients C, , can now be obtained from
(4.31b) by use of (4.10b) and (4.7b) to obtain the bond am-
plitude ratios for use in (4.17b). One finds

MC l()M

14+ —M
MO lOM+IOI

’ (4.323)

(4.32b)

Then, the spectral strength of the mode T may be ob-
tained, for example, from (4.15) as

1

VASRES T . (4.33)

!
1+-%

M
1+-2
lOM

Mc

These results for C, , and Z are compared with the re-
sults obtained numerically in full lattice-dynamics calcu-
lation in Table IV.

The high-frequency limit of L™
term w2 and can be expressed as

_ ZsBju

2
o

is dominated by the

L™ (o) (4.34)

W—> 0 .,

Here, we anticipated a form that conforms with (4.13)
and (4.19) and Zj is determined from the normalization
B, ;;=1. For instance, if keeping only the single-pole
contribution (4.18) in the band and neglecting the band
contribution, Zz =Z; and B ;;=Cr,;Cr;. Now, in the
full lattice-dynamical calculation, Zp and B ;; can be
determined from the observation that the coefficient of
™% of the high-frequency limit of L] /() is given by
the moment 3;(fy;f;)/(M;) in the sum rule (4.20) and
the corresponding limit of the pole from the localized
mode (R) in (4.12) as

Zy=1-2g, 4.352)
ZpB = ‘—;L —ZgrCr2 > (4.35b)
ZBBII,22=%_ZRCI%,2 . (4.35¢)

Note that the calculated single-pole strength Z, accounts
almost for all strength Zp in the band, Z;/Z 3z ~0.94 for
CO on Pt(111).

4. Application to the effective charge

The infrared line shape is determined from the spectral
function of the correlation function for a dipole active
displacement field » *. In this case, u * has contributions
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from both bonds,

u*=yelz, , (4.36)
k

where e are the corresponding effective charges. This

shows that we need to consider El,k,, Eq. (4.19). Now,

we are primarily interested in the mode M and near the

corresponding resonance frequency, Ef,k, in (4.13) is

dominated by a single pole. Therefore for w=~w,, the

sum over A in (4.19) collapses, leaving
El,kl(w)sz,kCM,lLM(a’) . (4.37)

Then, using (4.36) to construct the dipole-dipole correla-
tion function, one finds using (4.14) that it is

(e )Ly (w), (4.38)
where
eyy=ef +Cpies . (4.39)

This implies that the effective charge for the mode M has
a contribution from the internal bond. For instance, in
the case of CO on Pt(111) this contribution can be most
important. The measured effective charge for the mode
M, lej;|=0.17¢ is much smaller than the measured
effective charge |ef|=1.5¢ for the mode I where
ef =ej +et /C;,."" This gives two possible values for
the contribution of the internal bond stretch to the dipole
activity of M, relative to that of the adsorbate-substrate
stretch, i.e., Cy;,e5 /e =3 and —0.5. In particular, for
the in-phase alternative, the internal bond stretch dom-
inates this dipole activity.

C. Cubic anharmonicity and Fermi-resonance effects

Here we first consider the effect of the lowest-order cu-
bic self-energy diagram on the line shape. The self-
energy Sy, of the L, ;, is defined from the matrix Dyson
equation as

= =y —n -
Ly y=Ljy+L|uSerLyrr (4.40)
where the summation over repeated bond indices is im-
plied. Again, we are interested in the case o =~w,, so that
the single-pole expression (4.37) suffices. Inserting it into
(4.40) gives a scalar Dyson equation

Ly(0)=Li(0)+Li(0)Sy(0)Ly(w) (4.41)
with a self-energy
S =Chr,1Car, 1k - (4.42)

Now, we turn to the evaluation of the lowest-order cu-
bic self-energy diagram in the double-bond anharmonic
model. First, we have to give an expression for the vertex
for the cubic interaction between the perpendicular and
parallel modes in this model. This cubic interaction cou-
ples three L’s in the combination K, LT 13 L /L s
where

I?g,klm =KQ,M'5k15115m1 +K§,15k25125m2 . (4.43)
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The lowest-order cubic self-energy diagram in Fig. 6 is
built up by two such vertices and is given by

(lw )——_ EKS kmnK3 Im’ nLﬁ'mm’(iqv)

XL . io,—ig,) . (4.44)

Now we can use the double-pole approximation for Eﬁ'mn
and the definition in (4.42) to obtain

Sylio,)=— L S S (KL, PLtg, )L iw,—ig,) ,
Bz "
(4.45)
where
K45 2 =Cy iKY 11mCi1Chm (4.46)

Hence, in the double-bond harmonic model the coupling
constants to the different modes get renormalized from
the values in the single-bond anharmonic model and are
also dependent on the mode indices. On comparing
(3.16) with (4.45) one finds that these renormalizations
are given by

2
K,

Kl 3

where K| has become K} ; in the notation appropriate to
this section. Using the normalization of C,, in (4.14)
and the definition in (4.43) and the explicit result for K; ,
in (2.15¢c) one obtains

Ean

(4.47)

krlom
1 + TC-I—CM'ZC}\"ZCA'"Z
Mtor

i (4.48)

This renormalization is finite in the limit k,, /k; — o due
to the factor ky, /k; in Cy,,; see Eq. (4.27b). In particu-
lar, the strength of the Fermi-resonance effects are
influenced by gz ;. In this situation the renormalized cou-
pling constant 8% is given by

(800Sf)2= (4.49)

gRT(SCOM)

i eff, ||
Ky

with the same Matsubara frequencies iw,, ip,, and iq,,.

mn(ia)wipwiqv):Kﬂv,klmn +3I?é,quif,q’q(ipv+iqv)1?3
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By this we mean to indicate that dw,, in (3.17) is to be re-
placed by the much smaller 8wSf. Before giving explicit
results for the magnitude of this renormalization of the
Fermi-resonance effects for CO on Pt(111), we first gen-
eralize the vertex approximation to the double-bond
anharmonic model.

D. Generalized effective vertex

Here we generalize the diagrammatic expansion by
considering the self-energy Sj; defined in (4.40) and its
counterpart for the mode M defined in (4.42). This can be
done in a compact way by working with the propagator
matrices introduced in the corresponding Sec. IVB 1. In
this section, we make heavy use of the Einstein summa-
tion convention on the bond indices kimn (see Table II).

First, we have to give expressions for a few more ver-
tices besides the cubic vertex defined in (4.43) generated
by H;,, in (4.3). We still have the same kind of vertices as
for the single-bond anharmonic model with the main
difference being that the vertices are not scalar quantities
but rather matrices connecting the different correlation
matrices. The cubic interaction couples the L’s of the
perpendlcular modes in the following combination:
K3 am L oL 111 LY e where

K3 kim =K1 38118118,1 + K138128128 5 - (4.50)

The only quartic term of interest for the effective vertex
is the one that couples the parallel and perpendic-
ular modes, which can be written as

= =h  =h Th  #h
K& kimnL 1 ikl 1 p1L e L | un» Where

K jimn =K} 318518118,,18,1 + K} 18228128,,28,, . 4.51)

The same kind of diagrammatic argument for the
effective vertex both for the dephasing of the M mode and
the I mode also goes through in this case for the correla-
tion matrices. The resulting effective vertex is then given
by

mn TR Y kmg (L[ gglio,—ip V+L} . (i0,~ig,)IKY 4,

(4.52)

Here, we are only interested in the dephasing of the stretch mode M, so that in all external solid legs, we get the dom-
inant contribution from the corresponding pole Cy, ; Cy, ;L 4 in (4.19). Furthermore, since we are considering tempera-
tures where all modes except the dephasing quasnnode T are thermally unoccupied, the dominant contribution to the
external dashed legs comes from the pole Cr, m C T,,LT Hence, in the evaluation of the self-energy S,,, we are left with
a subset of diagrams of propagators L), and L with an effective scalar vertex K ™! given by

RN, ip,»iq,) =K §ilmn(i©,,iP,,1q,)Chs k Cag, I Cr,m Cry - (4.53)

Now we can evaluate this effective vertex using the normalization in (4.14) and make use of the fact that only the anhar-
monic terms introduced by U, that contains single factors of C,,, survive in the limit k;/ky;— 0. The resulting
effective K| is then given by
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k:ﬁ)‘] (iwv’ ipwiqv):Kzul,‘t +3KH,MEf,q’1 (ipv +lqv )Eg,q’mn CT,m CT,n

+Eg,kquM,k CT,m [Eﬁiq:q(iwv—‘ipv)+Iiﬁ',q:q(ia)v—iqv)]I?g’q:b, CM,ICT,n .

(4.54)

Hence, the only anharmonic force constant introduced by U; that survives in this limit is K}, present in the vertex

Kg,kml'

Now, we turn to the evaluation of the two first terms on the right-hand side of (4.54). As in the case for the effective
vertex in (3.4), we can use the zero-frequency limit of L i’ « in the Matsubara summation over ip, and ig,. From the re-
sult in (4.29), we obtain in this static limit from the two first terms on the right-hand side of (4.54) an effective anhar-

monic force constant ‘! given by

K4 pK s p

HY =K, ,~3
’ kM

(4.55)

Inserting the explicit results for the anharmonic force constants Kj;, and K 5, in (2.15¢) in terms of anharmonic

coefficients of U,, into (4.55) gives

KZ,M

F D= —
: 21%,

(4.56)

Hence, even in this more general anharmonic model the intrinsic anharmonicities of the central forces associated with
the two bonds give no contribution to the effective anharmonic force constant and we are left with the results from the

minimal anharmonicity model.

Now it remains to evaluate the contribution #}?’ to the effective anharmonic force constant from the third term on
the right-hand side of (4.54). First, we can simplify this term by introducing the exact form for L(l”m,, in (4.12) and us-

ing the definition in (4.46) as

I?lfl,kquM,kCT,m [E{r,q’q(iwv_ipv)_i-tﬁt,q

=K

Here, the most important difference from the vertex ap-
proximation for the single-bond anharmonic model is
that we have different coupling constants to the mode R
and the mode T in the band. In performing the Matsu-
bara summation and making the analytic approximation,

'q(iwv_iqv )]Eg,q'ln CM,ICT,n

3,kmgq CM,kCT,m [Eh,band(iwv—ipv)+Eh‘band(iwv~iqv )]Efi,q’ln CM,ICT,n

Ihq'q Iha'q
+(K Y g [Lgliow,—ip,)+Lglio,—ig,)] . 4.57)
Kl |?
8sr= |~ (4.61)
Kl s
with K3 pr given by (4.59) and
XFermizgRT)\‘Fermi . (4-62)

we obtain in a similar way using the high-frequency limit
f I’:h,band( )
o I, ki w),

7{11»(2>=2(ng”)223 (K r7)’Zg
@iy 4 @r
20)+ 2w _
X wZ_wZ + wZ_wZ ’
+ p
(4.58)
where

(KQ,BT)zsz,kCT,mkléll,kqu Eg,q'lnCM,IcT,n .

(4.59)

Ihq'q

Now, we can collect our results for #}'" and #}'® and
obtain an effective coupling constant A4 of the same form
asin (3.11),

;\‘eﬂ'= )\/0 1 —gBTZB % (4-60)

It

+ XFermi

and where we have in analogy with (4.47)

The main important difference from the result for A in
(3.21) is the presence of the renormalization constants
gpr and ggr, defined in (4.47), which we find change
drastically our results from those of the single-bond mod-
el.

E. Application to CO on Pt(111)

Here, we explicitly consider the results from the
double-bond anharmonic model for the coupling constant
8wS¥ appearing in the Fermi resonance and A for the de-
phasing. The most important quantities that appear in
these coupling constants are the renormalization
coefficients gpr and gp defined in (4.47). Using the re-
sults for the various coefficients that determine gz and
grr in the frozen substrate situation and in the limit of
widely separated frequencies, one obtains
2

M 1
() — +____0 _or 4
8BT 1 Mo+Mc 1oy , (4.63a)
M 21 2
(0)— C or
ErT Mo+Mc 'IOM+IOI ] ’ (4.630)
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This result for g ,‘f}) shows directly that we expect a large
reduction of the Fermi-resonance effect as discussed in
Sec. III D for most top-bonded CO molecules due both to
a mass factor M /(Mo+Mc)=1 and a geometric factor
of Iy, /(o +1op)=%. This reduction is clearly demon-
strated by the calculated values of g,({;i) and the corre-
sponding 8@}’3 for the systems in Table I,

Pt(111) Cu(100) Ni(100) Ir(100)
gL 0.024 0.026 0.027 0.025
St 4.0 4.6 7.0 4.4

With the exception of CO on Pt(111), the Fermi-
resonance effects are reduced dramatically by these small
values for gy, since 805F << |wy —wg —wr|. The calcu-
lated values for the renormalized strength ratios
Wgrr /Wy, as already presented in the Introduction, are
negligible. Nor are these small values for gz, an artifact
of either the frozen lattice or wide-frequency approxima-
tions. For instance, in the full lattice-dynamical calcula-
tion for CO on Pt(111), we obtain from the calculated pa-
rameters in Table IV that, in fact, ggr=2X107° and
8wT=5X1075. These are essentially zero and there is
no Fermi-resonance effect, despite the near-resonance
condition wy —wgr —wr=0.

Now we turn to the effective coupling constant for de-
phasing, and discuss several different cases. Note first in
the limit w,; >>wpg,

~ Ky
Aeg=MAo |1 —(8prZp +grrZr );“
I

(4.64)

In the wide-frequency and frozen lattice situation one
finds that

Mc

Zi g+ Zhe gl = S
My+Mc

(4.65)

(note that Zz =Z and gpr=g{$’ in this situation), and
$0 A.=0. This is the analog of our exact result in the
monatomic case. Although the cancellation is not com-
plete in the full lattice-dynamical calculation, where
Xeg~ —0.061, for CO on Pt(111), this value is still much
less than the corresponding value of —1.2A, in the
single-bond model.

Another straightforward case is the opposite limit
wp >>w )y, Where Aperm; =g rTMpermi =0 and

. p
Xer=Ao |1—8prZp— (4.66)
Ky
This reduces to
M Iy I
T —glew)_ 70 | IO
Aer=2Z4" Mot is | T } Ao (4.67)

in the wide-frequency and frozen lattice situation and is
typically much less than the corresponding single-bond
value
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2

o |

1+

MO
i Tl |

C

Ao (4.68)

for the systems in Table I. In the case of CO on Pt(111)
the corresponding values are 0.04A, and 0.45A,, respec-
tively. This large reduction prevails also in the full
lattice-dynamical calculation, where the corresponding
value is —0.06A,. Thus, in either of these limits there is
an almost complete cancellation of the harmonic contri-
bution to the effective coupling constant in the double-
bond model.

The actual values for wg for the systems in Table I
(Refs. 18-29) are intermediate to these two limits and
there is a possibility of having enhanced effective cou-
pling constants due to the resonance denominators in
Afermi- However, the small value for gz makes this con-
tribution small, as already discussed above. This effect
can be seen by making the wide-frequency and frozen lat-
tice approximations for all terms in A, as given by
(4.60). One must take care to include the resonant
denominators in Ag.m; correctly, by using (4.62) and
(3.24). This yields

Pt(111)
—14

Cu(100)
—0.15

Ni(100)
—0.10

Ir(100)
—0.33

The values for the effective coupling constants are no
longer preposterously large, as they were in the singie-
bond model. The value for CO on Pt(111) is relatively
large compared to other cases due to the near-resonance
condition for wg =410 cm™ !, but as already stressed the
experimental uncertainties are too large in this case to get
any reliable results. Furthermore, in the full lattice-
dynamical calculation the extremely small value for gz
makes A.;~0 even for @z =410 cm ™! which gives a near
cancellation of the harmonic part, A g~ —0.06A,.

Finally, LP noted that the observed temperature-
dependent shift and broadening for the M mode of CO on
Pt(111) are both consistent with a coupling constant of
about A,. We now find that such a large value cannot be
obtained in the double-bond model. Thus, also in this
case as for the dephasing of the internal mode I one needs
to scrutinize cubic and quartic terms in the small noncen-
tral forces in order to obtain a convincing explanation of
the observable dephasing.

V. CONCLUDING REMARKS

One of the interesting questions that arises in the study
of vibrational linewidths of adsorbates can be formulated
as the following: What kind of information can be ob-
tained about the interatomic forces from the dephasing of
an adsorbate? We have found the remarkable result that
central forces usually do not contribute to the dephasing
of a high-frequency perpendicular mode of a top-bonded
adsorbate. So, unlike the vibrational frequencies them-
selves whose values are determined largely by the central
forces, the dephasing of these modes is presumably dom-
inated by noncentral forces. Therefore the results suggest
that the line shape contains information about the non-
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central forces, rather than the central forces, as one
would naively assume.

The above broad statements are based on several dis-
tinct theoretical results. We have shown that central
forces do not contribute to dephasing at all whenever the
mode being probed has a frequency far above all other
modes. This result is based on an effective vertex derived
in many-body diagrammatic perturbation theory for the
coupling constant for dephasing. In deriving this result,
we find that not only the quartic terms in the anharmoni-
city but also the cubic terms play a most important role.
In fact, these two contributions cancel to give the final re-
sult. This result can also be understood in a simple mod-
el without any reference to many-body perturbation
theory, just by a coordinate transformation to stretch and
angle-bending coordinates. This complete cancellation
applies both to H on Si(111) and the internal CO stretch
for CO adsorbed on metal substrates, so that we suggest
noncentral forces be studied to determine the source of
dephasing in both these systems.

For the adsorbate-substrate stretch of a diatomic ad-
sorbate, we see a richer behavior due to the existence of
several perpendicular and parallel adsorbate modes. We
have therefore been much more specific in doing a de-
tailed analysis of CO adsorbed in an on-top site on the
(100) surface of Cu, Ni, and Ir and also on the Pt(111)
surface. The adsorbate vibrational structures of all these
systems are very similar, and many of the conclusions we
arrive at for this class of systems should have a wider
range of applicability. By including cubic anharmonicity
we find that, if we make the natural assumption that the
C-O bond is rigid during the dephasing of the C-metal
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stretch, strong Fermi resonances appear between the C-
metal mode and a combined frustrated translation and
rotation. Such resonances lead to both satellites and a
greatly enhanced linewidth, but neither have been seen in
experiments. In fact, by allowing the internal mode to
move, we find the important and surprising result that
this motion, despite being very small, has a large impact
on the effect of the Fermi resonances. This slight stretch
of the internal mode not only makes the satellite
strengths negligible, but also drastically reduces the
effective coupling for dephasing. This can be seen analyt-
ically, by making both the widely separated frequencies
and the frozen lattice approximations. We have also
shown these approximations to be valid, by checking
them with a full surface lattice-dynamical calculation for
CO on Pt(111). Finally, if all the parallel modes were at
much lower frequencies than the mode being probed,
once again the effective coupling vanishes, at least within
the frozen lattice approximation, just as in the cases dis-
cussed in the previous paragraph. In fact, the central
force model for the anharmonicity leads to substantial de-
phasing only if Fermi resonances occur, and they are
strong enough to overcome the reduction factor due to
the motion of the internal stretch.
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