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Surface diffusion on a stepped surface
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Surface diffusion of an adatom on a vicinal surface is investigated, using site-dependent hopping rates
based on a model surface-potential profile of a regularly stepped surface. We solved analytically the cou-
pled rate equations for the occupation probability of an adatom at a sufficiently long time, in analogy to
the tight-binding theory of electronic structure. From this, the general relation between the hopping
rates and the diffusion coefficient is derived. Formulas of both surface diffusion coef.Iicients, parallel and
perpendicular to a step edge direction, are obtained as functions of related atomic hopping rates at a ter-
race site, an upper edge site, and a lower edge site and of the step spacing. The fundamental mechanism
determining the crucial role of step arrays on surface diffusion is clarified. No difference was found be-
tween step-up diffusion and step-down diffusion, even in the absence of inversion symmetry on the
surface-potential profile. With Monte Carlo simulation, the effect of kink sites on surface diffusion is
studied. Kinks greatly suppress the parallel diffusion coefIicient, while they suppress only weakly the
perpendicular diffusion coefficient.

I. INTRODUCTION

Surface diffusion is the most fundamental process of
mass transport on the solid surface, and it plays a crucial
role in crystal growth, catalysis, and corrosion. Recently
vicinal surfaces have attracted interest both for the fun-
damental surface physics and for their applications to
crystal growth. ' Surface diffusion on a stepped surface
was investigated by Roulet for the first time. Since then
several experimental studies have been performed. In
some cases, strong enhancement of diffusion was ob-
served in the direction of a step edge, sometimes ac-
companied by suppression in the direction perpendicular
to a step edge. With respect to the difference between
step-up diffusion and step-down diffusion, two contradic-
tory results were reported, one detecting a difference and
the other failing to do so. Recently the surface-potential
profile for an adatom on a vicinal surface was calculated
for metal, ' using empirical many-body interatomic
potentials. On the Aat semiconductor surface, the first-
principles pseudopotential method was also applied" to
the calculation of the surface-potential profile. The cal-
culated potential profile depends strongly on both the
material and the index of a vicinal surface. However,
three common features emerge. (i) The binding energy of
an adatom at a lower edge site of a step is larger than that
on a terrace, i.e., a lower edge site acts as a trap center
for adatoms on a terrace. (ii) The diffusion activation en-
ergy is lower along a lower step edge than on a terrace.
(iii) The binding energy of an adatom at a kink site is
larger than that at a lower edge site, i.e., a kink site acts
as a trap center for adatoms diffusing along a lower step
edge. Recently molecular-dynamics calculation has been
applied' to a vicinal surface with short step spacings. In
molecular dynamics the hopping rates at specific sites can
be obtained directly, although the size of system is very
limited.

The purpose of this paper is to investigate the surface

diffusion of an adatom in both directions, parallel and
perpendicular to a step edge. We start from the coupled
rate equations for the adatom occupation probabilities,
using site-dependent hopping rates based on a model
surface-potential profile. ' From the long-time behavior
of this solution, we derive the general relation between
the diffusion coefficient and the hopping rates. With use
of this relation, the analytical formula of the surface
diffusion coefficient is obtained in the case of a regularly
stepped surface. The effect of kink sites is also studied by
means of Monte Carlo simulation.

II. SURFACE DIFFUSION
ON A REGULARLY STEPPED SURFACE

In this section we calculate the tracer diffusion
coefficient of an adatom on a regularly stepped surface,
based on a simple lattice-gas model' with a square lat-
tice. We assume for an adatom the simple potential
profile characterizing a regularly stepped surface as
shown in Fig. 1. Corresponding to this potential profile,
five kinds of characteristic hopping rates to the nearest-
neighbor sites are defined: I, the hopping rate from a
terrace site to its nearest-neighbor sites, and that from an
upper edge site to the nearest upper edge or terrace sites;
I, from a lower edge site to a terrace site; I 2 along a
lower step edge; I S from an upper edge site to a lower
edge site; and I &S from a lower edge site to an upper
edge site. Here S is the so-called Schwoebel factor, ' '
and it is related to the extra energy barrier Es (see Fig. 1)
at a step edge.

S = exp( Es lkT), —

where k is the Boltzmann constant and T the tempera-
ture. The surface potential of a regularly stepped surface
has a periodicity due to the step structure. Its unit cell
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has an area of a X na, indicated by a hatched region in
Fig. 1. a is a lattice constant of a square lattice and na is
a step spacing. We consider the tracer diffusion
coefficient' in the limit of a low adatom density, so that
both the exclusion principle and the interaction among
adatoms can be neglected. In this limit the tracer

diffusion coefficient becomes equal to the chemical
diffusion coefficient, ' and it is the most fundamental
quantity of surface diffusion.

The rate equations of the occupation probability
P, (l, m, t) at the jth site in the unit cell indexed by (l, m)
are written as follows:

P, (l, m, t) = —(2r2+r&+ rp')P&(l, m, t)+ I P2(l, m, t)+1 SP„(l —l, m, t)+I 2[P&(l, m + l, t)+P, (I, m—l, t)),d
dt

P2(l, m, t)= 4I Pz(l—, m, t)+I P3(l, m, t)+1 &P&(l, mt)+1 [P2(l, m + i, t)+P2(l, m —l, t)],dt 2'
d

P, (l, m, t)=. —41P, (l, m, t)+r[P, +,(1,m, t)+P, , (l, m, t)]+I [P,(l, m+ 1,t)+P (l, m —l, t)],
dt

(2)

d P„(l,m, t) = —(31 +I S)P„(l,m, t)+I &SP&(l + l, m, t)+I P„&(l,m, t)+I [P„(l,m + l, t)+P„(l,m —l, t)] .
dt

For each site in a unit cell from a lower edge site to an
upper edge site (see Fig. 1), j is numbered from l to n. It
should be noticed that the total sum of P, (I, m, t) with j, I,
and m is conserved. These coupled linear equations have
a similar form to those in the tight-binding theory of elec-
tronic structure, if t is replaced by

tlirt

and if hopping
rates are replaced by the corresponding Hamiltonian ma-
trix elements. So we can solve Eq. (2) using the analogy
with tight-binding theory. At first we calculate eigenval-
ues, and then expand P (l, m, t) with eigenfunctions, and
finally calculate the long-time behavior of PJ(l, m, t) by
determining the expansion coefficients from an appropri-
ate initial condition at t =0. This is the opposite of the
quantum Monte Carlo method' in which the ground

state is obtained as the asymptotic solution at a
sufficiently long time of the corresponding diffusion equa-
tion derived from the Schrodinger equation in imaginary
time.

The eigenvalues can be calculated with use of the
Fourier transform of P (l, m, t).

N N
1 —ik„a(nl+ j) —ik am

e
V'&„&y t ——i m=i

XP (l, m, t), (3)

where N and N are the number of unit cells in x and y
directions, respectively. The rate equations for
p (k„,k, t) can be written as

p, (k, k, t)=[—(2r, +r, +r,s)+2r, cos(k, a)]p, (k. , k„t)+re '
p (k, k, t)+1Se ' P„(k,k, t),

dt

p2(k k, t)=I,e p, (k, k, t)+[—41 +21 cos(k a)]p2(k, k, t)+I e "p3(k„,k, t),
(4)

p (k„k,t)=I e "p,(k„k, t)+[—41 +21 cos(k a)]p (k,k, t)+I e p +,(k, k, t),
dt '

p„(k,k~, t)=I &Se p&(k, k~, t)+re "p„,(k,k, t)+[—(31 +I S)+21 sc(kola)]p„(k, k, t) .
dt

The n X n matrix constituted by coefficients on
p (k, k~, t) on the right-hand side has three nonzero ele-
ments in each row, and is defined as H hereafter. The n

eigenvalues co&(k) (A, =1,2, . . . , n) of M are the solutions
of the following secular equation:

det(H eI) =g(k, e) =0, —

where I; =5, . With use of these eigenvalues co&(k),

p~(k, t) can generally be written as
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pj(k, t = ~ c;~(k)e"'"ii
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down directions.
Now, let us study the eigenvalues of the secular equation. g (k, e) defined by Eq. (5) can be written explicitly as

g(k, e)= [[—(21 +I,+I,S)+2I cos(k a) —e][—(31 +I S)+21 cos(k a) —e] —I,I S ]f„(k,e)

+ [
—r'[ —(2r, +r, +I,S)+21 cos(k a) —e] —l, l [ —(3I +I S)+21 cos(k a) —e]]f„3(k,e)

+I,I f„~(k,e)+1,S( —I )" '2cos(nk a) . (14)

—4I +21 cos(k a) —e

Here f (k, e) is defined as the determinant of the following jXjmatrix:
ik„aIe 0

f (k, e)=det

—ik are —4I +2I cos(k a) —e I e

—ik a
1 e ' —4I +2I cos(k a) —ey

(15)

f, (k, e)= + [e z(k) —e], (16)

where

f (k, e) can be simply written with use of their eigenval-
ues e z(k) (A, =1,2, . . . , j) as

Next we will calculate a„. This can be obtained as the
coefficient of a solution of the order of (k ) of Eq. (5) un-
der the condition of k =0. g(k, O, e) in Eq. (14) can be
expanded in e as

g(k~, O, e)=cie+c2e + ' ' +c„e

e „(k)=2I cos 7TA,

JA, j+1
J

—41 +2I'cos(k a) . (17)

+I,S( —I")" '2[ cos(nk„a) —1], (20)

since g (0,0,0)=0. Therefore the solution of the order of
k can be simply given by

At first let us notice the existence of a solution of ~=0
at k=0, i.e. , g (0,0)=0. This equation can be proved us-
ing the following relation:

J+ e, i(0)= ( —r)'( j +1),
A, =l

which can be derived from the mathematical formula

I",S( —1 )" '(nak, )

Ci

Thus a„ is written as

I,S( —I )" '(na)

Ci

(21)

(22)

A, 7T
sin j+1

j+1
2J

(19)
On the other hand, c, can be obtained from Eqs. (14) and
(20) as

n 3 n —4—21,(1+S)(n —2) g +(n —3)I, g1 1
'

i.=i &.—4, i.(0)

II n —2 11c, =(—I )" ' —(1+S) 1+ (n —1)+l,(1+2S)(n —1) g + 1+ (n —2)r , e„2i(0) 1

(23)

n/2 —1

csc
r=1 n

the next relation is derived:

n —4
6

for even n,

%'ith use of the mathematical formula

(24)

Then a„ is obtained as

1 (an)

1 r
n —1+— n —1+S

(27)

J 1

, e) i(0) 6I [(j+1) —1] .

Finally c I can be simply expressed as

c, = —( —I )" '[S(n —1)+1] (n —1)+1

(25)

(26)

Next we will derive the expression for ay In this case
we set k„=O, and calculate the solution of Eq. (5) in the
order of k . For that purpose, we define g as

q=e+2r —2r cos(k, a) .

Then g (0,k, q) in Eq. (14) can be written as
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g ( 0 ky 7) ) ( I 2( r I p ) [ 1 cos( ky a ) ] I ) ( 1 +S) g j [ I ( 1 +S ) g ] r )rS )f p( 0 0 7) )

+( —I [2(1 —I )[1—cos(k a)] —I,(1+S)—71]
—I,l [ —I (1+S) ri—])f„(o,o, ri)

+r,r'f„,(o,o, q)+2r, s( —r)" -'

g (0,k, g) can be expanded in q as before,

g o, k~, rl)=c, g+c~r1 + . +c„g"—2(1 —I z)[l —cos(k~a)][1 (1+S)+g]f„z(o,o, rI)

—I 2(l —I z)[1—cos(k a)]f„3(o,o, q) .

(29)

(30)

1
/1 2

(r —r, )r(1+s) ~ ~„„(o)
A, =1

Pl 3

+I ~(r —rz) + e„3z(0) (k~a)
A, =1

(31)

where c, is given by Eq. (26). Finally e can be written to
second order in k as

I (n —1)+I r
2

(ak )

n —1+ I
r,

So, a is written as

I (n —1)+I ~l /I,
n —1+I /I ]

(32)

(33)

Thus we can obtain the following formula for the
diffusion coeKcient D and D:X

D„(n, 2.O

Here the expansion coefticients c are the same as those inJ
Eq. (20). Therefore q can be obtained to second order of
k as

D n

n —1+— n —1+1 I
s r,

r r2
n —1+ r, I.

I a
n —1+ r,

. Ia

(34)

Here I a is a diffusion constant Do of an adatom on a
Aat surface.

To illustrate these results we take I, I,, and I 2 as
—Ed /kT=Ve
—(Ed +E( ) /k TI i

—ve

—Ed /kTI 2=ve

(35)

H ere v is a frequency factor and the same value was as-
sumed for simplicity. Hereafter a is taken as a unit of
length and I ' is taken as a unit of time. So a diffusion
constant Do of an adatom on a Oat surface becomes uni-
ty. D and D are characterized by four parameters:
(Ed Ed )/kT, E&/—kT, Es/kT, and a step spacing n D, .
and D are shown as a function of n in Fig. 2 in the case
of (Ed Ed )/kT =—E&/kT =Es/kT.

III. MONTE CARLO SIMULATION

2

We have performed Monte Carlo simulations' of the
surface diffusion of a single adatom to confirm the validi-
ty of Eq. (34), and also to study the effect of kink sites. It
was neglected in the derivation of Eq. (34), although
kinks exist inevitably in steps at Gnite temperatures.

The time dependence of the mean-square average ( x )
and (y ) of the displacement of an adatom was calculat-
ed. From Eq. (12), they are related with each diffusion
coeKcient D~ or Dy as

0
10 15

n
20 30 (x'& =2D, t,

(y'&=2D r .
(36)

FIG. 2. A parallel diA'usion coefticient D~ and a perpendicu-
lar diftusion coefficient D„ in a unit of Do on a regularly stepped
surface as a function of step spacing n. Here the relations of
(Ed —Ed )/kT =E&/kT =E~/kT are assumed with values of 2.0
(solid line and dotted line) and 1.0 (broken line and short broken
line).

The time variation of displacement of an adatom has

oppugn gbeen simulated with use of the site-dependent ho in
rates as indicated in Fig. 1. The ensemble average was
taken over 10000 adatoms. To study the long-time
behavior, it is necessary that the displacement be at least
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larger than the step spacing. The calculated results of
both (x ) and (y ) on a regularly stepped surface with
n = 10 are shown in Fig. 3 for the case of
(Ed Ed )lkT —=E~jkT=Es jkT=1. Both (x2) and
(y ) depend linearly on time t as expected from Eq. (36),
and D„and D are obtained as 0.691 and 1.43, respective-
ly. It is remarked that the linear dependence of (x ) on
time means (x ) =0, i.e., the step-up diffusion coefftcient
is equal to the step-down diffusion coefficient. Theoreti-
cal values derived from Eq. (34) are 0.728 and 1.40, and
the agreement is satisfactory.

0 50 100 150 200 250 300 350 400 450 500

t (units of r t)

FICx. 3. The mean-square displacements (x') and (y') in a
unit of a as a function of time t in a unit of I ' on a regularly
stepped surface with n = 10. Here (Ed —Ed ) /kT =EI /k T
=Ez/k1=1. 0 are taken. The best-fitted relations, 2D„t and

2' t, are drawn by a broken line and a solid line, respectively.

Next the effect of kink sites on surface diffusion is stud-
ied. We take the kink sites to be arranged periodically
along each step as shown schematically by a broken line
in Fig. 1(b). An extra binding energy Ek was assumed at
a kink site compared to a terrace site. The hopping rates
from a kink site to a lower edge site along a step, to an
upper edge site and to a terrace site, are therefore taken—(Ek —EI /kTo be P2exp ', p&S exp ', and—(Ek EI ~/kTI &exp ', respectively. We have calculated both
D and D as functions of a step spacing n, for three
values of kink spacings k =10, 20, and 30 in a unit of a.
We have assumed (Ed Ed ) jkT—=Es lkT =E& lkT
=(Ek E&)/kT—=2. The calculated results are summa-
rized in Fig. 4 with the corresponding functions of Eq.
(34). As the kink spacing is decreased, the parallel
diffusion coefficient is suppressed remarkably, especially
for smaller values of n. On the contrary, a perpendicular
diffusion coefficient is only weakly suppressed.

IV. DISCUSSION AND CONCLUSION

Let us discuss the relation with the steady-state solu-
tion, to clarify the meaning of each diffusion coefficient
given by Eq. (34). Under the steady-state condition, we
can solve easily the corresponding diffusion equation.
The steady diffusion Aux in the y direction can be brought
about by fixing the adatom concentrations on a terrace as
no at y =0 and 0 at y =L. Here no and L are appropri-
ate constants to maintain a stationary state. This bound-
ary condition means the adatom concentrations at a
lower step edge are noexp(E& IkT) at y =0 and 0 at y =L,
since the thermal equilibrium between a lower step edge
site and a terrace site at the same y coordinate is main-
tained in the steady state. The diffusion Aux J, along a
lower step edge and J, on a terrace is simply given as

2 El /kT
J~, =r2a noe IL,

(37)J,=l a no/L .

Thus the mean Ilux (J ) can be written as

no n 1(J ) = ra' — exp(E, jkT)+
L n r n

(38)

We define the "steady" diffusion coefficient D,~ by

( )
tto 1 EI/kT n 1

Sg (39)

0 2 4 6 8 10 12 14 16 18 20
n

FICx. 4. Parallel diffusion coefficients Dy and perpendicular
diffusion coefficients D„as a function of a step spacing n on a
stepped surface with a periodic kink arrangement along each
step. Kink intervals k =30, 20, and 10 are taken. Here
(Ed —Ed )/kT=EI /kT=E~/kT=(Ek —EI )/kT=2. 0 are as-
sumed. The diffusion coefficients Dy and D given by Eq. (34)
are shown by a solid line and a broken line, respectively.

since the coefficient of D,„ is just the average concentra-
tion gradient. Then D, is reduced to the same expres-
sion as Eq. (34),

D, =
r EI /kT

r e +n 1

EI /kTe' +n —1
Do . (40)

The above equation means each diffusion path
along a lower step edge and on a terrace has a
weight of exp(Et /kT) /[exp(EI IkT)+n —1] and
(n —1)l exp[(E&jkT)+n —1], respectively. This situa-
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1 1 Dc5= —+
I IS a

(41)

The "steady" diffusion coefficient D, is defined by the
next relation:

J =D, [c(n —2)a+5]/na, (42)

since the coefficient of D,„ is just the average concentra-
tion gradient. From the relation of J„=Doc, D, can be
obtained as

D, Do .
1

S

(43)

Equation (43) means the inverse of D,„ is given by the
weighted summation of D o with a weight of ( n —1 ) /n
and (DQS) ' with that of 1/n, as expected from the serial
connection of diffusion paths with Do and DDS. This
steady-state solution does not depend on I &, and cannot
reproduce the previous formula in Eq. (34). In the steady
state, the continuity of Aux determines the concentration
at a lower step edge site, and the effect of E& is canceled.
Contrary to the steady-state solution, the perpendicular
diffusion coefftcient in Eq. (34) is suppressed by two
effects at a step edge, the Schwoebel effect S and the bind-
ing effect of an adatom at a lower step edge. Both these

tion is also maintained in nonsteady situation, and so D,„
is equal to D„. The increase of a parallel diffusion
coefficient compared to Do is caused only if I z/I is
larger than unity. This effect is enhanced by the increase
of E&lkT or by the decrease of n T. he existence of kink
sites interrupts efficiently the diffusion path along a lower
step edge, as seen in Fig. 4.

On the other hand, the steady diffusion Aux in the x
direction is realized if the adatom concentrations are
fixed at two x coordinates. The steady state means the
concentration gradient on a terrace has a constant value c
independent of time and a coordinate. From the condi-
tion of the continuity of a fIux at a step edge, the
difference 5 between the concentrations at two sites on
both sides of a lower edge site can be written as

effects are strengthened as the step spacing decreases, as
seen in Fig. 2. However, the interruption effect at kinks
is not so effective as on parallel diffusion as seen in Fig. 4,
since there remain much easier diffusion paths across a
step edge.

In conclusion, we have succeeded in obtaining the ex-
act analytical formula of both surface diffusion
coefficients D parallel to a step edge and D„perpendicu-
lar to a step edge, based on a simple potential profile
characterizing a regularly stepped surface. No difference
was found between the perpendicular diffusion
coefficients in the step-up direction and step-down direc-
tion even in the presence of the Schwoebel effect S, i.e.,
without inversion symmetry of the potential profile be-
tween the step-up direction and the step-down direction.
This is because the product of the hopping rate from an
upper edge site to a lower edge site and that from the
lower edge site to a terrace site is just equal to the prod-
uct of the hopping rates of the reverse processes. The ob-
served difference between step-up diffusion and step-
down diffusion may be caused by the breaking of this re-
lation. The surface electromigration' is considered as
one of the origins of this difference.

In this paper, regular step array or periodic kink ar-
rangement was assumed. It is interesting to study the
step fluctuation effect on surface diffusion. Now its study
is planned with use of the terrace-step-kink model' ' for
a vicinal surface at finite temperature. Finally it is
remarked that Eq. (13) gives the general relation between
the hopping rates and the diffusion coefficient. So it is
promising to apply Eq. (13) to the study of diffusion on
reconstructed surfaces with superstructure. In these sys-
tems, plural unequivalent adsorption sites exist in a unit
cell.
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