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Kinetics of a quasi-one-dimensional electron gas in a transverse magnetic field.
II. Arrays of quantum wires
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The quantum kinetic equation for the one-electron distribution function is derived for an array
of quantum wires in the presence of a magnetic field perpendicular or parallel to the plane of the
wires. Screening is treated dynamically in the random-phase approximation. The results are valid
for array periods large enough that tunneling between the wires can be neglected. The energy and
momentum relaxation frequencies are evaluated when only the lowest level is occupied for scattering
by three- or two-dimensional impurities and by acoustical phonons.

I. INTRODUCTION

Currently systems of reduced dimensionality, such as
quantum wires, are the subject of numerous investiga-
tions due to their potential device applications; cf. Refs.
1—6 and references cited therein. In previous papers 2 we
have proposed a first-principles transport formalism for
the quasi-one-dimensional electron gas (Q1DEG) which
we applied to arrays of quantum wiress 4 and which we
extended later on7 for one Q1DEG in the presence of a
magnetic field B. In this paper we consider transport in
periodic arrays of quantum wires in a nonzero field B
To our knowledge this subject has not been treated.

The problem of arrays is in some respects qualitatively
different from that of the isolated wires because of two
important effects: the tunneling between the wires, for
relatively short interwire separations, and the mutual
screening of the scattering potentials by electrons from
different wires. The latter is present even when the in-
terwire separation is long due to the long range of the
Coulomb interaction. Here we will consider only the lat-
ter effect relegating the treatment of tunneling to a future
work.

In the next section we present the general formalism
for multilevel occupation. In Sec. III we present sim-
plified results for the one-level occupation and in Sec.
IV the corresponding relaxation frequencies evaluated
for a degenerate electron gas scattered by impurities or
acoustical phonons. Summary and conclusions follow in
Sec. V.

Taking the vector potential A = [ B(y —p—l), 0, 0] the
one-electron Hamiltonian H„ in the pth quantum wire is
given by

H„' = (P + eA)'/2m* + V„+V, + H,',

where P is the momentum operator, m* the effective
mass, and H, the standard spin Hamiltonian. The po-
tentials U„and U, determine the form of the quantum
wells in the corresponding directions. Due to the pe-
riodicity we have V„= V(y —p/) for all p. For sim-
plicity we will take the confining potential V„parabolic:
V„= m*A2iy2/2 = h qiy /2. The eigenvalues corre-
sponding to Eq. (1) are then given by

EA = EA = h~A = M(a+1/2)+h k /2m+E, , +E,
(2)

where ~ = gcu2+ A2i, m = m'~z/Ai, and cu, is the cy-
clotron frequency. The last two terms on the right-hand
side are, respectively, the energy along the z direction
and the spin energy. Further, A = (a, a„k~) is the set
of the quantum indices and k = k~ is the wave vector
in the z direction. The corresponding normalized wave
function has an orbital part given by

II. QUANTUM KINETIC EQUATION
AND COLLISION INTEGRAL

We consider a periodic array of quantum wires, of
length I = L, in the xy plane, with period t, as shown
in Fig. 1. The wires are parallel to the 2; axis and in-
dexed by p = +1,+2, ... . The magnetic field B is parallel
to the z axis; later on it will be taken in the xy plane.

FIG. 1. Geometry of the array of quantum wires; the ar-
ray period is t.
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@"(r)= L e'" *@~ (z)C (y —y —p/),

where y = hk—~,/ur = k~—/q . In what follows we
will incorporate E in E . and thus drop the spin index
0 ~

Equations (1)—(3) pertain to a free electron. We now
assume that the electrons interact with each other, with
an external potential, e.g. , impurities, phonons, etc. , and

I

with an external electric 6eld; the matrix element of the
total potential is denoted by yAB. Due to the iden-
tity of the wires the diagonal part of the density ma-
trix fAA = fA is independent of p, i.e. , fA ~ fA The
quantum kinetic equation for fA is obtained from the
corresponding many-body Halniltonian and the equation
of motion for the density matrix pAB. It has the same
form as that for one wire [cf. Ref. 7, Eq. (5)] with its
collision integral St fA given by

StfA = —
~ Im) (kd dw e ' + ([bPAB(cu), 6IPBA(u) )]+),27t. 5

~PUB(~) ~P AB(~) + cMAB(~) ~V AB(~)

~v AB(~) = (1/2~) dq* 4. ~, ,q. ~v AB(~, q*),

with

~v AB(~ q*) = ~v,AB(~ q*)0

I

+ & - ".' —" ' ~ - AB"A'B'(
/A/ B/

/

x6+, , (~).

(6)

where [, ]+ denotes half the anticommutator. Here the
Huctuations bg and bp" depend on the wire index p,
but the collision integral does not. The fluctuating parts
appearing in ([, ]) are given by

"y ~ '"" C' „(y —y ) Ob„(y —yp)

gal/b~e
—[Idol'+'a~~(~ +~al4 ']/~

(lq I')

where p, = cu, /a, qo = [iq„—p(k —kp)]/~2q, q =
gmw/h, and Ib(x) is a I aguerre polynomial. Further,
the source potentials bp and by and the matrix MAB
are given in B.ef. 7 and e' is the dielectric function. The
latter is given by

, , (~, qg)a b, a 6

, C.* (z)@b, (z)C;, (z )@ (z )
8Z 8Z

E (4), qi, z, z )
q .b. (q ) Qb', ' ( q)-

(qi/m) dq,

Here, o, stands for the two indices k and a,
if the dielectric function is uniform in the z direction,
with

I

ABA B
q..b. (q. ) = dz e"'4'* (z)@b,(z).

and

I

(8)
qg e', , (~, qg)

The system of Eqs. (5)—(7) is solved in the manner of p.ef.
7 and the collision integral has two terms: the first term
describes collisions between the electrons themselves and
the second one collisions of the electrons with an external
system. The latter is denoted by St„fA and has the form

St„fA = Q2

BA'B'A B
6 b 6 6k, k ~ Ic,k /I kP, Ic / kP, k II

OO I I/

dqy& p (qv)&p- -( qy)&~. (& «w—)&t, K'«v)

/ II

B—

2 fA(1 —fB) + fB(1 —fA)—cere h
, „Cq„'+ (k —kp)'

1
e' „,(c, qy)
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Here ( stands for the arguments wAB and k —kp, and
K = (a; b) =—(a, b; a„b,); further, K, = a,b„a,b, and
R is the inverse of the matrix T with respect to the upper
indices given by the following expressions:

TI, (D) = 6~~ —L ) M~ (k, (u, qs;)Dp(D),

2'(76
ABAB( ) )

&x+ &yn
2 2

A p(qy„)Ap (—q„„)
X )

, , ((u, q, qy„)

6IMAB(~) = 6/M~(k, cu, q~),

biDABA'a'(D) = b&D&(D) ~

(14)

with the abbreviations D —= w, q, lqy, E:—k~ —kI—:k~ —kp, q~, and q„„=q„—2~n/l.
The correlator of the scattering potentials () in Eq.

(12) is evaluated as in Refs. 2 and 7 using the fiuctuation-
dissipation theorem and assuming that the scattering sys-
tem remains at equilibrium with temperature T, . The
result for the collision integral is then given by

&' ) -(~-2 Aa, Aa „[fA(1—fa)+ fa(1 —fA)]
coth(h~Aai2kaT, )

(17)

The correlator () in Eq. (17) is that of the scattering potentials screened both by the external system and by the
particles of the @1DEG. It is given by

(b -2) AB,AB ).
ABA B

~k, k / ~k, k // ~kp, k /~kp, k //

OO
//

dqyA p (q„)Ap- «( qy)RI, (C; t—q„)Rq (C; tqy), (18)

where
//

~ = (bV,',o)c,,„
i~e2n (

coth
I

qi (2kaTs )
1

~"',- (&) ~*"', (c')

(19)

I

and from them the relaxation frequencies. The second
part of the collision integral describing electron-electron
collisions does not contribute to these frequencies. If
we assume that the drift velocity u is the same for all
energy levels, the expressions (33)—(35) of Ref. 7 can be
taken over and the only change, reflecting the periodicity
of the present system, will be through the function B that
enters the expression for the correlators.

The contribution to screening by the Q1DEG is embod-
ied in the functions R. The periodicity aspects of the
system are expressed in R as well: electrons from difFer-
ent wires participate in the screening of the scattering
potentials that electrons "see" in any wire that is within
the screening length.

In the presence of an electric field E directed along
the axis of the wires the quantum kinetic equation has
the standard form with the collision integral as described
above. The momentum and energy balance equations
are derived from it in the manner described earlieri 7

III. ONE-LEVEL RESULTS
A. Perpendicular magnetic field

All expressions given above simplify considerably if the
electrons occupy only the lowest level as is expected to be
the case for most of the experimentally accessible densi-
ties. Then we can take a = a~ = 0. Ef we further consider
only the lowest spin sublevel the diagonal density matrix
is labeled only by the continuous wave vector k = k~ and
the collision integral takes the form

2

St-f/ =,)2vrh k'
dq~ 6k dqy & " k' — k

(20)

27rh+ ffl (' —fj, ) +f~ (i —f~)I»A(~~en~)I,
&I~(~A,~ q* q )I '.
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Here, for a uniform external system we have B. Parallel magnetic Beld

A(u), qg) =

the screening factor S() is given by

S(cu, q„lq„) = 1+ EE((d, q~)

s (d) qxj tqy

and the dielectric function by

1 27r ) ~ A((d, q2;', qy~)

e, (~, q, ; lqy) l

(22)

For a magnetic field along the y axis, B = By, the
vector potential is A = (Bz, 0, 0). Now the wave func-
tions in the z direction and the corresponding eigenvalues
of the one-electron Hamiltonian depend not only on the
discrete quantum number a, but also on the continuous
wave vector along the 2: direction.

The following consideration shows that there is no
principal difference between this case and that of the
preceding subsection. If the confining potentials V„and
V, are both parabolic and have the same curvature we
ean take over all one-level results with q replaced by
qq = gm*Aq jh, . If, however, the curvature is difer-
ent, we must take into account the curvature of V, in the
expression for m.

Ae() is given by the standard expression. ~ 7 As for the
correlator () of the scattering potentials it can be eval-
uated along the lines of Refs. 2 and 7 and will be given
below for particular cases.

Equation (20) has the same structure as Eq. (28) of
Ref. 7 valid for an isolated wire. The only difference is in
the screening factor S( ), which embodies the periodicity
aspects of the array. In the limit l -+ oo the dielectric
function given above coincides with Eq. (38) of Ref. 7
and so does the collision integral. As for St«ft„which
describes electron-electron collisions, it has a form of the
same structure as Eq. (29) of Ref. 7. For the assumed
one-level dispersion law, uy = hk /2m+const, it vanishes
identically.

IV. ONE-LEVEL RELAXATION FREQUENCIES

We take the magnetic field normal to the plane of the
array and consider a parabolic form for V„ i.e. , V, =
h q2z /2m'. Using the lowest-level wave function and
Eq. (21) we obtain

A(cd) qg) = cl erfc(q~/v 2q2)e~&~ q',

where we have assumed that the dielectric function
e, (cu, q) = el, is approximately constant.

The momentum v™and energy v relaxation frequen-
cies are obtained in the manner described earlier from
the balance equations. The result is

~q)~ (k~r, q.'/m~'& (&~/2kaTB)'

) sinh(her/k~T, )

x(«, o) ~ ImAe'~(~, q, )IS(~,q;lqy)I (25)

Here S() is given by Eqs. (22) and (23) and Ae~&(u, q )
by Eq. (44) of Ref. 2. We now evaluate the relaxation fre-
quencies for some specific cases of the external scattering
system as characterized by the potential correlator ().

A. Scattering by volume impurities

8~'e'n,"'
(«.0)-, = . . G(q~/~~q~) ~(~)

61 qg

where

(26)

G(x) = 2jv x+ (1 —2t ) erfc(x) e* .

The result for the momentum relaxation frequency is

8en mm = I
2 3 2eLh nq2 o ( G(QA~ + x~)

xe *"S~ (A, p, x), (28)

The electrons are assumed to be scattered by randomly
distributed charged impurities of three-dimensional den-

sity nr . Using Eq. (Al) of Ref. 7 we obtain

I

where

S~(A, p, x) = 1+ ln
e24 8EF

46L,EF t 0AT&

) . erfc[QA2 + (x —pp)2]

gA'+ (x —py)'
A'+(1- n'}(x-p~}' (29)

Here E~ = (harn) /2m is the Fermi energy, n is the elec-
tron density, A = ~27m/qq, p = v 2~/lq2, and q = q2/q.
As before7 we can construct an interpolation formula for
S~() which is exact in the limits ql —+ 0 and ql ~ oo; it
reads

e'm (4vr'h n'5
Spy(A, p, *) = 1+ 1

el.vr2hn( mka, T8 p

/ ~2ql ~ erfc[QAs + x~]
x ln !+

q
em ) ~2q21 QA2+ x~

~'+(&-~'}~'
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Notice that the quantities n, A, m, and rl depend on the
magnetic field B; for the B dependence of n = n(B), Eq.
(47) of Ref. 7, rewritten here for convenience, reads

n(B) = [(n ) + (m/ir h, )(A, —~+ 2V, B/h)]'~,

(»)
where p~ = geh/2me is the magnetic moment of the
electron and n the one-dimensional electron density at
zero magnetic field. For A &( 1 and g & 1 the frequency
v is given approximately by

Momentum
relaxation
frequency
10v /v3

25.0

20.0—

15.0—

10.0—

4e mn4 - (3)

3 2 ~ Berh 7r n

where the screening factor M is

(32)

5.0—

0.0
I

10 20 30
I

40 50

e'm 4~'n'n' 1 f ~~qll
MB =1+ 2 ln + ln«fi'~2n mkaT, ~8nl

(33)

In Figs. 2 and 3 we plot, respectively, the relaxation fre-
quency as a function of the magnetic field v (B) and of
the array period v (I) using for its evaluation Eq. (25).
The B and l dependences are expressed by the dimen-
sionless variables B = w, /Ai = m*w, /hqi and Z=qil,
respectively. Further, we take qi ——q2 ——2 x 10 /m,
considering parabolic confinement in both the y and z
directions, 2p B/w, = 1/3, er, = 13eo, T, = 4 K, and
define c = 7m /qi. In Fig. 2 the curves 1, 2, and 3 corre-
spond to 8 =3, 10, and 30, respectively, and c = 0.2. In
Fig. 3 the curves 1, 2, and 3 correspond to B = 0.0, 0.7,
and 1.4, respectively, and c = 1. For low B the decrease,
in Fig. 2, of v with B is related to the motion of the
lower spin level as expressed by the term v, B/fi in Eq.—
(31). The increase for high B is related to the decrease of

Period of superlattice L

FIG. 3. Momentum relaxation frequency as a function
of the superlattice period (C,=qil) for scattering by three-
dimensional impurities. The curves labeled 1, 2, and 3 corre-
spond to B = 0.0, 0.7, and 1.4, respectively, and c = 1.0.

the kinetic energy in the x direction and the tendency of
the level for depopulation. When the level is depopulated
(n ~ 0) the relaxation frequency tends to infinity. The
increase, in Fig. 3, of v~ with / reHects the weakening of
screening and is similar to that reported earlier 4 in the
absence of magnetic field. As l ~ oo the mobility of each
wire is determined by the scattering potential screened
by electrons only of this wire.

B. Scattering by sheet impurities

In this case denoting the impurity density by nI and(2)

using Eq. (A1) of Ref. 4 and Eq. (24) we obtain

Momentum
relaxation
frequency
10v' /v3
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8.0—
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20.0— 4.0—

10.0—
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0.0
2.0 4.0

I

6.0 8.0 10.0 0.0
2.0 4.0

I

6.0
I

8.0 10.0
Magnetic field 10B

FIG. 2. Momentum relaxation frequency as a function
of the magnetic field (B = u, /Ai) for scattering by three-
dimensional impurities. The curves labeled 1, 2, and 3 corre-
spond to 8 =3, 10, and 30, respectively, and c = 0.2.

Magnetic field 108

FIG. 4. Momentum relaxation frequency as a function of
the magnetic field for scattering by two-dimensional impuri-
ties. The curves are labeled as in Fig. 1; c = 0.2.
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I

40 5050

Period of superlattice 21 ('I'lod of supcI'Ia111('('

FIG. 6. Momentum relaxation frequency as a function of
the superlattice period for scattering by acoustical phonons.
The curves are labeled as in Figs. 3 and 5.

8~3e2n")
(6p, 0)~ ~ =

2 2 [erfc(q~/2q2) j e~~
CLgg

16E,k~sTsm

~2ps4nn'

(6/~2 + 2+X/~) -I

(30/~'+ 4+X'/~)-'
(34)

Inserting this in Eq. (25) we obtain

~ 4- (2)2v 2e rrlrlI dX (I i
( ( /~))22 h3nq2 0 A2+ x2

(38)

where X = (k~T, /hs)2(qz + q 2) and

em 4~5, n1+ 2 ln (1 + '(/X)
vr2h neL mkBT,

(~2q)
/8nl

xS~ (A, p, z). (35)

For A « 1, which corresponds to the one-level occupa-
tion, and g & 1 we have approximately

4e nI m4 (2)-
BnL

16.0In Fig. 4 we plot the frequency v as a function of
the magnetic field and in Fig. 5 the same quantity as a
function of the array period v (t). The values of c and

2, in Fig. 4, and of c and B, in Fig. 5, are the same
as the corresponding ones in Figs. 2 and 3, respectively.
As can be seen the dependences of v on magnetic field
and on array period are similar to those in Figs. 2 and
3, respectively.

12.0—

Momentum
relaxation
frequency
10s v /v„

8.0—

C. Scattering by acoustical phonons

In this case the potential correlator is obtained along
the lines of Ref. 2. The result is

Q2 2Q ~ ) e(Y/sl72l /2g(y2)
( &80)"&~ =,22pss

"
2k~T, I y S

0.00

50.0
I

75.0 100.0 125.0 150.025.0

Magnetic field 102B
(37)

FIG. 7. Momentum relaxation frequency as a function of
the magnetic field for scattering by acoustical phonons. The
curves are labeled as in Figs. 2 and 4.

where Y' = gu) —s q2. For k~T, ) 7rhns the relax-
ation frequencies are given approximately by

FIG. 5. Momentum relaxation frequency as a function of
the superlattice period. The curves are labeled as in Fig. 3;
c = 1.0.
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300.0
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200.0—
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frequency
].03vT/v. ,

150.0—

100.0—

50.0—

0.00

25.0 50.0
I

75.0
I

100.0
I

125.0 150.0

Magnetic field 10 8

FIG. 8. Energy relaxation frequency as a function of the
magnetic Geld for scattering by acoustical phonons. The
curves are labeled as in Figs. 2 and 4.

Here 8 is the speed of sound, p the density of the mate-
rial, and Eq the deformation-potential constant. As in
Ref. 7, both relaxation frequencies depend strongly on
the temperature; this is typical for inelastic scattering of
the highly degenerate electron gas since the phase-space
volume available for transitions is limited in a narrow
region, of width k@T, around the Fermi surface. The nu-
merical results for v~(l), v~(B), and v, evaluated from
Eq. (38) are shown, correspondingly, in Figs. 6, 7, and
8. The parameters used are k~T, /hq2s = 4, p = 5 x 10
kg/ms, and Ei = 10 eV.

presence of a magnetic field B treating screening in the
random-phase approximation. Moreover, we have eval-
uated the momentum and energy relaxation frequencies
when only the lowest spin level is occupied for scattering
by impurities or acoustical phonons. This is an exten-
sion of the work pertinent for one QIDEG presented in
Ref. 7 for B g 0 as well as of that for an array when B
is absent. The results are valid for relatively large ar-
ray periods since we have neglected tunneling between
the wires. In this respect the results constitute only a
partial extension of the work presented in Ref. 4, which
takes into account both screening and tunneling but in
the absence B A.full extension of the latter work, valid
for B g 0, will be reported elsewhere.

Our numerical results for the relaxation frequencies
show a nontrivial dependence on the magnetic field B.
Ke have regions of positive and negative magnetoresis-
tance, as is easily seen using cr = e n/mv, and at cer-
tain values of B the electron density [cf. Eq. (31)j and
the conductivity vanish; when this happens the level is
depopulated. Similar depopulation eÃects, for a & 0,
have been observeds for one @1DEG; we are not aware
of any experimental results pertinent to arrays that we
have treated.

The results for the frequencies also show a nontrivial
dependence on the array period l. Their increase with
increasing l, or correspondingly the decrease of the mo-
bility, reOects the corresponding weakening of screening.
The latter is very important for Q1DEG's due to the sin-
gularity of the dielectric function for w —+ 0 and T ~ 0 at
q = 2qF, the wave vector at the Fermi level. For elastic
scattering the value q = q~ gives the major contribution
to the frequencies. It is understood that the neglect of
screening overestimates the mobility considerably.

V. SUMMARY AND CONCLUDING REMARKS

In this paper we have evaluated the collision integral
and the dielectric function for an array of @1DEG's in the
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