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Interface excitons in staggered-line-up quantum wells: The A1AsicaAs case

R. Zimmermann
Max Pla-nck Arb-eitsgruppe "Halbleitertheorie, " Hausvogteiplatz 6-7, 0-1086 Berlin, Federal Republic of Germany

D. Bimberg
Center for Quantized Electronic Studies, University of California, Santa Barbara, Santa Barbara, California 98106

and Institut fur Festkorperphysik, Technische Universitat Berlin, Hardenbergstrafle 86,
W- j000 Berlin 18, Federal Republic of Germany

(Received 16 February 1993)

For spatially indirect excitons in staggered-line-up single quantum wells, binding energies, Bohr
radii, and oscillator strengths are calculated, taking into account finite barrier heights and image-
charge effects. Numerical results are presented for a model case of particular fundamental impor-
tance. For A1As/GaAs quantum wells, which are indirect in k space, we find binding energies up to
11 meV for the X, exciton and 5 meV for the X „exciton. However, no-phonon oscillator strengths
fall below the direct exciton by five orders of magnitude. A comparison to experiment suggests that
the X „exciton is lowest in energy.

I. INTRODUCTION

The vast majority of work on fundamental properties
of heterostructures and quantum wells (QW's) in the past
20 years has concentrated on nested alignment (type-
I) structures. i Most details of their electronic and op-
tical properties are well understood. At room tempera-
ture, excitons dominate many linear and nonlinear opti-
cal propertiesi of such QW's due to their strongly en-
hanced binding energy as compared to three-dimensional
materials. Only recently, however, have realistic calcula-
tions of binding energies, radii, and oscillator strengths
been presented, in which the assumption of infinite bar-
riers was dropped and which took into account properly
the effect of image charges and valence-band mixing.

Staggered line-up (type-II) heterostructures are as
common as type-I structures. The InAs/GaSb structure
was among the first whose electronic properties were dis-
cussed in great detail. Nevertheless only recently was
broader attention given to such structures, s probably fol-
lowing the observation of their vast potential for devices
such as electrically tunable light sources, for example.

The minima of potential energy for electrons and holes
do not occur in the same layer for staggered structures,
and externally excited charge carriers segregate in ad-
jacent layers. The overlap of the wave functions and
the magnitude of the Coulomb interaction are believed
to be concomitantly reduced. Following earlier work by
Bastard on GaSb/InAs QW's, exciton effects were thus
thought to be unimportant in type-II quantum wells. In
superlattices with narrow enough barriers the overlap is
reestablished and values close to those in type-I systems
are predicted. For both uncoupled quantum wells and
superlattices, no calculations of binding energies or Bohr
radii exist, however, which parallels the work done on
excitons in type-I QW's.

It is the purpose of this contribution to present
a more accurate theory of type-II excitons in QW's

than hitherto available, together with numerical re-
sults for the particularly important and experimentally
easily accessibles s model case A1As/GaAs. The
A1As/GaAs system is also particularly interesting since
the excitons there are additionally indirect in A; space,
similar to GaP/A1Sb or AlSb/A1P.

The X minimum in the A1As barriers of A1As/GaAs
QW's is below that of GaAs. For well widths below 3.5
nm (Ref. 8) not only the X but also the I' minimum
of GaAs is at higher energy than the A1As X' minimum.
Electrons near the X minimum in AlAs exhibit a camel s-
hack-like dispersion. The related large density of states
leads to an appreciable increase of the exciton binding
energy. The oscillator strength, on the other hand, will
be low in single quantum wells due to the indirect charac-
ter of the transition. Recently results of luminescence
experiments for such single QW's were presented and will
be discussed here in detail.

II. CALCULATION
OF EXCITON BINDING ENERGY

We start with the derivation of exciton properties for
the more complex situation of the A: indirect case. The
effective-mass equation for the exciton at one X mini-
mum is given by

h' h' h'
0, — 0,„— AP + V, (z, ) + Vh(zh)2m,

/i

" 2m/,
//

'" 2p/

+V (p, z, —zh) C (r„rh) = 8 4(r„rh), (1)

where p = p, —pg is the relative motion within the
quantum-well plane (z is directed along the growth axis).
The masses (~~ for the growth direction, J for the QW
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plane) have to be chosen according to the band-structure
minimum under consideration (see below).

As long as we neglect the difference in the dielectric
constants (DC) for well and barrier, the Coulomb poten-
tial forming the exciton is

(2)

The total electron-hole wave function 4 is separated
into the motion of electron and hole along z and the in-
plane motion of the exciton P(p),

@(r., rh) = u. (z.) uh(zh) 4(j p. —ph I)

The hole is properly localized in the GaAs well, and
we can use for uh(zh) the confinement function of the
first heavy-hole sublevel. In contrast, the X electron
is found in the A1As material and bound by Coulom-
bic forces only. The proper determination of its wave
function u, (z, ) is the main issue of the present section.
Bastard used a variational calculation in the type-II
system In Gar As/GaSb. The A1As/GaAs system has
been recently treated variationally by Duggan. rr Addi-
tionally, a deformation of the hole wave function by the
Coulomb attraction of the electron has been included,
but the penetration of both wave functions into the ad-
jacent material was neglected. A problem with some
similarities to the staggered excitons deals with type-I
QW's having a valence-band onset near to zero, as for
Cd Mnr Te/CdTe. The variational approach was im-
proved by a full numerical solution of the hole confine-
ment by Wu. s We follow this method by averaging with
the yet unknown exciton wave function and solve the re-
sulting Schrodinger equation for u, (z, ) numerically,

26 qk
V (p, z) = — )(ew+ ~a)

& o r gP~+ (z+ kI)2

with the dielectric misfit

~W ~B

eW+ ~H

For A1As/GaAs, Q = 0.11 which gives roughly the rela-
tive correction expected for the exciton binding energy.
The prefactor in (7) resembles the arithmetic mean of
well and barrier DC. However, for the small well widths
of interest here, the total expression is closer to the bar-
rier value.

To simplify the calculation we have used for the in-
plane motion of the exciton the ansatz

2
4(p) = —e '~ *

Q~

and minimized the resulting eigenvalue 8 from (4) with
respect to the two-dimensional exciton radius a . A close
inspection of the potential W~(z, ) shows that it behaves
as —e /(err z, ) at large distances but reaches a finite value
at zero distance. Together with the repulsive term U, (z, )
it forms a double well outside both interfaces where the
electron can be bound. The resulting exciton binding
energy is given by EB = Eh —F . The band-edge ener-
gies for both materials are taken from Ref. 17. Using a
70%%uo conduction-band onset the confining potentials can
be derived as 6& ——1068 rneV, L~ ———197 meV, and 6&
= 457 meV. For the indirect I'-X transition, an incorn-
plete confinement of the electron in AlAs and the hole
in GaAs results. Therefore, the assumption of infinite
barrier height is not justified here.

h
0, +V(z, )2me III. RESULTS AND DISCUSSION

+ W (z, ) + K. + Eh —Z. u, (z, ) = 0 . (4)

Here,

K
2@~

dc p [&&4(p)]

W~(z, ) = dzhuh(«) dc p4'(p) V*(p, z. —«),

is superimposed to the repulsive step potential V, (z, ) =
A~~O(~z,

~

—L/2). The diff'erence in the dielectric
constants between GaAs (ew = 12.53) and A1As
(err = 10.06) is large enough to make image potentials
important, ' thus extending the theory of Ref. 16. The
dominant interaction is of cross character (electron in
A1As, hole in GaAs), for which the modified Coulomb
potential reads

is the kinetic energy of the exciton, and the efFective elec-
tron potential W~,

In the numerical calculations, we have used a well
width of L = 2 nm in accordance with the available exper-
imental data. ~2 The electron and hole wave functions are
shown in Fig. 1. Apart from the electron wave function
with even parity shown in Fig. 1, there is an odd state
only 0.2 meV above with —apart from a sign —nearly the
same wave function. Thus, thinking of the electron as lo-
calized either at the left or at the right interface is fairly
correct.

Another lifted degeneracy is related to the inequiva-
lent role of the X minima. The question of which of the
A1As A states are lowest in energy has been discussed in
the literature controversially for quite a while. Recent
optically detected magnetic resonance experiments on
superlattices seem to indicate that for an AlAs barrier
thickness larger than 5.5 nm the in-plane oriented min-
ima (X'

& states) become lowest due to strain, whereas
for smaller barrier widths the X, states are at lower en-
ergy. Our experimental results discussed below indeed
show that for our barrier width of 18 nm the X „exci-
ton is at lowest energy.

The conduction-band minimum in A1As is slightly dis-
placed from the X point, and the dispersion exhibits a



47 INTERFACE EXCITONS IN STAGGERED-LINE-UP QUANTUM. . . 15 791

0 25 I ' I ' I I I ' I

20
type II type I

I

—20-

/
/

/
/

/
/

I
I

I

/

10

—P5—20
I

—10
I I

0
z (nm)

I

10 20
X„ I

I

I IG. 1. Indirect type II exciton in an L = 2 nm
AIAs/GaAs quantum well marked by vertical lines. Dashed
curve, effective potential of the X electron due to the Coulomb
attraction by the hole, u, and uh, , wave function of the X
electron and the I' hole, respectively.

very flat shape there (energy difference only 0.2 meV be-
tween X point and minimum~~). To account for this
camel' s-back structure at least approximately, we have
calculated the (anisotropic) X exciton in A1As bulk rnate-
rial using an effective longitudinal electron mass. In order
to get the binding energy of E~,b„~g = 25.9 meV, we
have to adopt the large value of m, ~ ) = 4.1mp. For the
type-II quantum well, the electron in an X, valley then
comes close to the interface and gains much Coulomb en-
ergy. The four X» valleys exhibit a much smaller mass
along z, m, ~ q„——0.19mp, and less confinement is possi-
ble. The in-plane mass relevant for the kinetic energy of
the exciton scales in the other direction but cannot out-
weigh the z effect, and we found the X, exciton binding
energy to be always the larger one. For L = 2 nm we ob-
tained an X, binding energy of 9.9 rneV and an exciton
radius of 9.7 nm. The corresponding X» exciton values
are E~ = 4.1 meV and a = 15.0 nm, respectively.

To have a general impression of the dependence on
well width we display in Fig. 2 calculated binding ener-
gies for both indirect excitons and compare these with
the direct exciton at the E' point, again calculated with
image charge effects. 4 As expected, the direct exciton has
a much larger binding energy since hole and electron are
both confined in the wel1. But note that due to the strong
confinement of the I' electron, the direct exciton is higher
in absolute energy for well widths below 3.5 nm (direct-
indirect crossover). At L = 2 nm, the direct exciton is
168 meV above the X» exciton.

For the direct exciton, the variational determination of
the exciton radius has been checked against a full solu-
tion of the in-plane Schrodinger equation, shown as dots
in Fig. 2. The difference is small enough to trust the
variational procedure. The corresponding exciton radii
are shown in Fig. 3.

A short remark concerns the inHuence of interface-
roughness-induced well-width Huctuations on the exciton
line shape. The difference in radii between direct and
indirect exciton is not the decisive factor. Much more

I i I I I s I s

2 3 4 5
L (nrn)

FIG. 2. Exciton binding energies Es in AIAs jGaAs quan-
tum wells in dependence on well thickness L. I', direct exciton
at the I' point (dots are the numerical solution of the in-plane
exciton equation); X, and X „, indirect excitons at the X
point.

important is the well-width dependence of the absolute
exciton energy. Let us compare the exciton energies in
islands with seven and eight monolayers thickness (L =
1.98 nm and 2.26 nm, respectively). The energy differ-
ence amounts to 64.1 meV for the direct exciton and 16.3
meV at the indirect one since for the latter only the hole
confinement contributes. As a result, the indirect exciton
is expected to have the smaller linewidth.

The optical transition matrix element without phonons
is given by (photon wave vector negligible)

Mx = P (0)— dr u, (z) uq(z) e' I "

where Q is the momentum diff'erence between the I' point
and one of the X points in reciprocal space. The un-
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I IG. 3. Variational in-plane exciton radii a correspond-
ing to Fig. 2.
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The lifetime of X, excitons is thus expected to be in
the 30-p,s range, scaling the known lifetime of the di-
rect exciton [0.3 ns in Alo 4Gao sAs/GaAs quantum wells
with L, = 2 nm (Ref. 20)j. This rather long lifetime is
in agreement with experimental values by Wilson and
Finkman.

To be more precise, M~, gets a finite value since the
confinement potential in the z direction mixes the I'- and
X-like wave functions, thus breaking the bulk selection
rule. The magnitude of M~, and thus the intensity of
the NP line is expected to decrease with increasing dif-
ference between the I' and X conduction-band states in
agreement with experimental observations on structures
where the X, exciton has the lowest energy. '

Turning to the X „exciton, the NP transition has zero
probability since the center-of-mass momentum of the
exciton in the layer plane persists as a. good quantum
number. This can be seen from Eq. (10), where the phase
factor exp(iQ 2:) integrates to zero.

Figure 4 compares the low-temperature luminescence
spectrai2 of a 2-nm A1As/GaAs QW in two different sam-
ples. Both samples were grown under identical conditions
with the exception that in one sample the growth was in-
terrupted for 100 s at both interfaces, whereas the other
one was grown without interruption. First, it is abso-
lutely striking how weak the no-phonon transition is. In
samples with only slightly coupled wells ' ' ' 8 where
the X, exciton is lowest in energy, the intensity of the
NP line is typically an order of magnitude larger than

3000-
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FIG. 4. Low-temperature photoluminescence spectra of
AlAs/GaAs quantum wells without (full curve) and with a
100-s growth interruption (dashed curve). Well width 2 nm,
excitation level 50 W/cm .

derlying conduction-band Bloch functions have been ap-
proximated by the phase factor containing Q (see the
discussion below). The integration in (10) extends over
the normalization area A in the quantum-well plane and
all z values.

If Q is directed along the growth direction (X, val-
ley), a finite result is obtained in agreement with the cal-
culation by Pulsford. Thus, a nonvanishing no-phonon
(NP) line is expected both for superlattices and single
QW's. However, the numerical value of the NP matrix
element is extremely small. For I = 2 nm, which is only
four times the lattice constant, we obtained 1.2 x 10 5 of
the direct I'-exciton value being given as

2

Mr = Pr(0) — dru", (z)u„(z)

the intensity of the momentum-conserving (MC) phonon
replica. Second, the NP line completely vanishes in the
growth-interrupted sample which has interfaces of much
higher perfection. Here, the intensity of the NP line
depends solely on the mixing of the X „states with the
I' states which can be induced by potential fluctuations
associated with interface roughness. Both observations
exclude the assignment of the luminescence in Fig. 4 to
the X, exciton.

We add a preliminary consideration concerning the
phonon-assisted transitions. They can be calculated
using first-order perturbation theory with respect to
the electron —LO-phonon coupling (Frohlich interaction).
Physically, the indirect X exciton (initial state) emits a
phonon using the direct exciton as an intermediate state,
and decays finally into a photon. One might expect that
the electron-phonon coupling is enhanced by the charge
separation in real space since the phonon emission is
driven by the charge distribution of the X exciton. For
the X, exciton, we have apart from an energy denomi-
nator

Mphonon = (&oo &S ) (a) 0 "(o)

dz ~A(z)
~

(12)

where the charge distribution integrated along z enters

A(z) = dz' u", (z') u, (z') e'~' —(u„(z')) W

IV. CONCLUSION

An improved theory of excitons in staggered line-up
(type-II) quantum wells is presented and realistic bind-
ing energies and oscillator strengths for Xz and X» ex-
citons are calculated for AlAs/GaAs QW's, which serves
as a model system for two-dimensional excitons being in-
direct in real as well as momentum space. Surprisingly
large binding energies result. The low oscillator strengths
observed here are caused by the indirect transition in k
space. We expect for k space direct type-II transition os-
cillator strengths which are not much less than those in
type-I systems explaining the strong interface lumines-
cence recently reported for the type-II In Ali As/InP
structure.
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with W = f+ dz'u", (z') u, (z') exp(iQz'). Contrary to
the expectation, the matrix element remains rather small
due to the doubly indirect nature of the integrand-
small overlap between electron and hole wave function
and rapidly oscillating factors. A closer inspection of the
phonon-assisted transition probabilities in quantum wells
is deferred to a forthcoming publication.
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