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Exciton spin dynamics in quantum wells
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A theory of exciton spin dynamics is given in terms of the exchange spin-flip mechanism taking
full account of the confinement of the quantum well. Exciton spin relaxation belongs to the motional
narrowing class, with a characteristic inverse proportionality to the momentum scattering time of
the exciton center of mass. Analysis of the time dependence of optical intensities of both circular
polarizations, including competing relaxation mechanisms from exciton exchange and from single-
particle spin flip into optically inactive states, leads to characteristic shapes reflecting their relative
importance. The calculated well-width dependence from our theory of the exciton spin relaxation
leads to polarization intensities in good agreement with measurement. Theoretical electric and
magnetic field dependences have yet to be tested against experiment.

I. INTRODUCTION

Investigations of optical transitions in quantum wells
have given us a good understanding of the exciton forma-
tion processes in these semiconductor heterostructures.
Recent advances in ultrafast laser spectroscopy have
deduced from the time evolution of luminescence how
excitons form and how their energy and momentum re-
lax. Though this still is a subject of intense studies, the
current picture is that after the creation of a highly en-
ergetic electron-hole pair in an undoped quantum well by
optical excitation, the relaxation process basically occurs
in two steps. First, it takes a short period of time (of the
order of tens of picoseconds) for this electron-hole pair to
relax and form an exciton with a high center-of-mass mo-
rnentum (K). Then, a slow relaxation within the exciton
branch (lasting hundreds of picoseconds) brings the exci-
ton to rest (i.e. , to the K = 0 state), where it is possible
for the exciton to recombine emitting a photon.

When luminescence or pump-and-probe experiments
are carried out with polarized light, further insights into
the relaxation processes may be obtained. One can in-
vestigate the spin-relaxation processes accompanying the
energy-momentum relaxation. For doped quantum wells
it has been established7 that the minority carrier spin
population at the band edge determines the luminescence
polarization when the exciting light intensity is weak. In
undoped wells, the photoexcited populations of electrons
and holes have the same density, and the observed lu-
minescence polarization is inHuenced by relaxation pro-
cesses occurring on both populations. There have been
several theoretical explanations of the experimental
data for intrinsic samples. Emphasis is placed on the
independent spin relaxation of the two distinct carrier
populations although the spin relaxation of the exciton
through exchange has been mentioned. The observed
decay in time of the luminescence polarization after re8-
onant excitation of heavy-hole excitons in intrinsic quan-
tum wells indicates clearly the importance of spin re-

laxation of the exciton and the necessity of a theory of
exciton spin dynamics including exchange. The creation
of heavy-hole excitons leaves little phase space for indi-
vidual spin relaxation of the constituent carriers.

A number of basic mechanisms for spin relaxation have
been studied in connection with the optical orientation
in bulk semiconductors. However, the confinement intro-
duced by the quantum well barriers affects these rnecha-
nisrns in quite a pronounced way. The distinction of the
spin dynamics in quantum wells from the bulk arises from
three factors due to the well structure: the subband elec-
tronic structures, the enhancement of the excitonic inter-
action, and the high mobility of the carriers. An example
of the effect of the valence subband structure is the slow-
down of the valence hole spin relaxation in the quantum
well compared with the bulk, leading to a different and
more satisfactory explanation of the cw luminescence po-
larization in quantum wells. " The enforced close prox-
irnity of the electron-hole pair leading to a strong exciton
binding in a quantum well is also expected to lead to a
strong spin relaxation due to exciton exchange. Mech-
anisms which depend on motional narrowing, such as
the D'yakonov-Perel (DP) mechanism, ~4 are sensitive to
carrier momentum relaxation and should, therefore, have
different effects for the high-mobility quantum well than
for the dirty bulk semiconductor. Further experimental
and theoretical studies are needed to assess the relative
quantitative importance of these different spin-relaxation
processes in confined systems.

A specific theory of spin relaxation including the exci-
tonic effect is needed. This would be germane not only
to the spin relaxation for resonantly created excitons in
intrinsic quantum wells, but also to the highly excited
electrons and holes in the same structures because, as de-
scribed earlier, an electron-hole pair rapidly relaxes into
an exciton with a large in-plane wave vector K, where-
upon the spin-relaxation processes are determined by the
dynamics occurring within the exciton branch.

In this paper, we present a theory of spin relaxation of
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an exciton in a quantum well. The exchange interaction
between electron and hole is considered in conjunction
with the center-of-mass motion to explain a spin-Hip pro-
cess for excitons. The exchange interaction consists of
two parts: a long-range part of the Coulomb interac-
tion and a short-range part of the Coulomb interaction
plus umklapp terms. We analyze both contributions to
spin relaxation. For the heavy-hole exciton, the long-
range part is dominant, because the short-range exchange
does not directly Hip the heavy-hole spin and requires a
second-order process involving spin Hip from a heavy-hole
spin state to a light-hole spin state and mixing in the va-
lence band to go from the light-hole state to a heavy-hole
state.

The relevance of the exchange interaction in lumines-
cence polarization in quantum wells can be tested by the
effect of a magnetic Beld or an electric field applied along
the growth axis of the quantum well. The magnetic field
changes the spin splitting and thus affects the spin fiip.
The electric field changes the distance between the elec-
tron and hole in the exciton along the growth axis and,
hence, the exchange interaction. A theory is given of the
effect of low magnetic fields. A calculation is given here
of electric field dependence of the spin-relaxation time of
the exciton. This is of particular interest because Shah
and collaborators have independently thought of using
the electric field to change the spin-relaxation time and
are carrying out luminescence experiments on quantum
wells to test this idea.

The rest of this paper is organized as follows. In Sec. II,
we survey the mechanisms for the electron, hole, and ex-
citon spin relaxations and investigate their roles in deter-
mining the time dependence of the total intensity and po-
larization in emission or absorption. Characteristic time
dependence of the total and polarization intensities leads
us to infer the importance of the exciton exchange spin
Hip. In Sec. III, we set down the exchange interaction,
including the long-range and short-range parts, appropri-
ate for a quantum well. We also give the physical aspects
of a theory of spin relaxation of an exciton driven by the
long-range exchange and the short-range exchange. We
relegate the details of the theory of the exciton spin dy-
namics in terms of the density-matrix representation to
the Appendix, which also includes the spin effect of the
magnetic field. As a specific example, we consider the
heavy-hole exciton. The method is similar for the light-
hole exciton. The results for the spin-relaxation times
for the heavy-hole excitons in an infinite-barrier quan-
tum well are presented in Sec. IV, including the electric
field dependence. Section V contains a summary of the
physical picture of the exciton spin relaxation and of the
relevance of the theory to experimental observation.

II. TIME DEPENDENCE OF EXCITON SPIN
POPULATIONS

The study of the exciton spin relaxation requires a
clear representation of the spin states of the exciton. The
spin state of an exciton is a direct product of the conduc-
tion electron and valence hole spin states. In a bulk III-V

&iK R~~,
&&4 ~(~)(p)

The Bloch wave parts are from the conduction electron
u, (re) with spin s and from the valence hole um„(rh)
with spin mh. The subband envelope functions along the
growth axis are denoted by (,(z, ) and (~~h(zh) for an
electron in the vth and a hole in the p,th subband, wherej = h(heavy) or t(light), depending on whether the hole
spin mh, is +2 or +2, respectively. The two-dimensionalj (heavy- or light-hole) exciton's bound state with princi-
pal quantum number n and azimuthal quantum number
E is p„~~~l(p), with p = p, —ph being the relative co-
ordinate in the quantum-well plane (the xy plane). The
last factor represents the two-dimensional motion of the
center-of-mass position R~~~, with wave vector K in the
xy plane.

When a photon is absorbed to resonantly excite an
exciton with electron and hole spins denoted by (s, mh),
the polarization of light is governed by the selection rule
for the transition matrix element which takes the form of
angular momentum conservation along the z axis,

s+mh, = mp, (2.2)

where m„ takes the value +1 for the o.+ polarizations,
i.e. , light propagating along the z axis with circular polar-
ization, and m„ takes on the value zero for the vr polariza-
tion, i.e. , light propagating normal to the z axis with the
electric vector along the z direction. The (s+ mh) = +2
excitonic states are said to be optically inactive since they
cannot be created by single-photon absorption although
they can be excited by two-photon processes.

Consider, for example, the lowest energy heavy-hole
exciton. The mh, = +z components dominate the con-
stituent valence hole of the exciton, so that the total
exciton spin, from Eq. (2.2), is +1 or +2. From the se-
lection rule described above, the spin +1 excitons are

direct-gap semiconductor, the conduction-band edge has
I's symmetry and the z component of the electron's an-
gular momentum is represented by s with s = +2. The
valence-band edge has symmetry I'8 and the index m„
which describes the valence electron spin states is iso-
morphous to the z component of the angular momentum
of spin 2. We shall represent the valence-hole spin states
by the time-reversed states of the electronic Bloch states
and associate the index mh with the hole spins so that
mh = —m„. A basis function for the exciton will be
represented by the exciton wave function composed of
an electron from a single conduction subband v and a
single valence-hole band p, from the diagonal part of the
Luttinger Hamiltonian. Subband mi~ing in the exciton
state through the Coulomb attraction will be neglected
in this paper. Hole subband mixing from the off-diagonal
part of the Luttinger Hamitonian will be treated by per-
turbation theory because it is found to be small for the
exciton states.

The exciton basis state, thus, assumes the form

0s,mq (re & rh) —us(re)umph (rh)(vc(Ze) (pj h(Zh)
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optically active and the spin +2 ones are inactive. The
exciton spin can be changed by flipping the spin of either
the electron or the hole or by simultaneously flipping the
spin of both constituents. The electron can relax its spin
by the D'yakonov-Perel or Elliot- Yafet mechanism.
Both mechanisms require substantial phase space for mo-
mentum scatterings to be effective in changing the spin.
The valence hole can relax its spin through energy re-
laxation which changes the heavy- and light-hole mixing
of the valence state. 7 Since the ground-state heavy-hole
exciton is made up of a linear combination of electron
and hole states at an energy range from the band edges
of the same order of rr~agnitude as the exciton binding
energy, there is unlikely to be sufhcient phase space for

the electron or hole for these mechanisms to be effective.
In addition, the electron spin relaxation can be ruled out
because its relaxation time is at least an order of magni-
tude longer than the exciton relaxation time.

Consider an optical experiment with circularly polar-
ized light incident or emitted along the growth axis of the
quantum well. For an optically active heavy-hole exciton
(with total spin +1), spin Hip of either constituent would
transform the exciton to spin +2, an optically inactive
state. In that case, the decay of the absorption or emis-
sion of one polarization, say o.+, would not increase the
other polarization o.—.We have investigated the results
of the rate equations for N, , the population of excitons
of total spin m„,

N+2 l

dg Ng

( —(W,++ W„+)
W+

W,

+W, +Wh )
Wex

Wex

—(—'+ W.„
+W;+ W„-)

W,

N g

-(W++W+) j kN-~)

(2.3)

where the transition rates are, for exchange,

W,„=1/(2~,„),
and for the electron spin flip,

(2.4)

(2.5)

and a similar expression for the hole spin flip, Lh being
the energy of the optically active states above the dark
states [see Eq. (3.10)]. The various relaxation times are
a recombination time ~R and three spin relaxation times,
~, for electron spin s flipping, ~h, for hole spin mh flipping,
and w,„for exciton spin flipping between m„= +1. Since
the exciton spin flip is driven by the exchange interaction
it will only affect the optically active states [see Eqs. (3.4)
and (3.10) below].

We illustrate the results for three cases, all with T =
2K, Lj, = 0.1 meV, and wR = 400 ps: case I,

case II,

w,„=50 ps, 7h = oo) 7, = oo)

case III,

v;„= 50 ps, 7.h = 100 ps) 7, =200 ps;

= oo, ~h =100 ps, ~, =200 ps.

The second case represents a typical case with the times
of the same order as measured except that we have
taken a somewhat longer hole spin-relaxation time on
the ground that the phase space of the hole in an exciton
is reduced compared with that of free holes. Cases I and
III represent respectively the limiting cases of no single-
particle spin relaxation and of no exciton spin relaxation.

Figure 1(a) shows the calculated time dependence of
the spin populations of the optically active excitons, N~q,
which are proportional to intensities of absorbed or emit-
ted light of polarization o+, given an initial spin popu-
lation entirely polarized in the +1 spin state. In the top
panel which corresponds to case I of only exciton spin
flip, the growth of N z and the decay of N+~ towards
the average population allowing for the depletion due
to recombination are symmetrical. The bottom panel
shows the other extreme of having only single-particle
relaxations, dominated by the hole spin component. The
initial +1 spin state is rapidly converted by the hole spin
relaxation into dark states —2. The —1 spin population
has a slow concave growth, in contrast to the fast initial
convex growth in the top panel. The middle panel shows
the results of the reasonably realistic model of coexist-
ing exciton spin and individual-particle spin relaxations.
The fast initial decay of N+z is dominated by the hole
spin relaxation. The fast initial rise of N j is character-
istic of the exchange interaction but the maximum value
it can achieve before recombination sets in is lower than
that in the top panel.

The plot of polarization versus time involves the con-
volution of all four times, making its behavior diKcult to
interpret from the graph. Instead, we plot in Fig. 1(b)
the logarithms of total intensity I = N+& + N ~ and
the spin (or difference) intensity S = N+q —N q. The
top panel shows a single-time exponential decay for both
quantities, given by the recombination time and the ex-
citon spin-flip time. In the other two cases, each inten-
sity shows two decay times. Analytical proof of this fol-
lows easily from Eq. (2.3), which yields two simultane-
ous equations for the total intensities N+~ + N ~ and
N+2 + N 2 states decoupled from the two equations for
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FIG. 3. Feynman diagrams for electron-hole interaction:
(a) direct second-order process; (b) lowest-order exchange;
(c) second-order exchange.

contains umklapp terms of the Coulomb line, i.e. , the
center-of-mass momentum plus a reciprocal-lattice vec-
tor times 6, which contribute to the short-range part of
the exchange. Figure 3(c) gives an example of the higher
order processes which contribute only to the short-range
part of the exchange. Details of the long-range part and
the short-range part of the exchange and their role in the
exciton spin relaxation are given in two following subsec-
tions.

FIG. 2. (a) Theoretical fit of time dependence of the total
and difference intensities (in arb. units) to the experiment
of Ref. 9. See text for the parameters used. (b) Comparison
of the theoretical and experimental time dependence of the
exciton individual spin populations.

narrowing through the scattering of the center of mass
of the exciton. In addition to the direct Coulomb at-
traction between the electron-hole pairs, as illustrated
by the Feynman diagram in Fig. 3(a), which binds them
into an exciton, there are corrections to the effective-mass
equation which are the exchange counterpart of the di-
rect processes, as illustrated in the lowest two orders
of perturbation theory by the diagrams in Figs. 3(b) and
3(c). Figure 3(b) contains the long-range Coulomb in-
teraction, and for excitons con6ned in a two-dimensional
quantum well is the dipolar interaction dependent on the
momentum transfer of the Coulomb line and, therefore,
the center-of-mass momentum of the exciton in the inter-
face plane of the quantum well. The same diagram also

A. The long-range part

We express the long-range part of the exciton exchange
in terms of the basis of unmixed exciton ground states
for the quantum well, Eq. (2.1). By using the long-range
part (also known as the nonanalytical part) of the ex-
change for the bulk semiconductor already obtained,
we take the matrix elements between two exciton ground
states with fixed subband indices and in-plane center-of-
mass wave vectors (v, p, , K) and (v', p, ', K') for various
spin states (s, mh, ) and (s', mh), which may be written in
matrix form, with (s, mh) and (s', mI, ) in the order,

0 0

0 Fh~K
0Fth K2

~3

I AD(o) I' o

Fhh K+
0 0

0
0

+s
3

2Ftt K+
2F«K+

K3 +
Fht K2

0

+
0

0
2F~t K~3

2Ftt K3
4F,',

3
4Ft t

3
2F,', K3 +
2F~t1—~ K+

0

0
2Fh, t

2F,', K3
4F,',

3
4Ft t

3
2F„K+

~ K+
0

0
0

Fh. t K2
gs

~K2
3

2Ftt K3
2F,', K3
~K2
3
F„,K2

0

~3
0

0 0

I'~h K 0

thK 0
0

Fth, K2 0~3
Fhh K 0

0 0

(3.1)
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We have defined GELT to be the longitudinal-transverse
splitting in bulk semiconductor and used the three-
dimensional hydrogenic exciton wave function at zero rel-
ative distance, s

PsD (0). We also have defined the center-
of-mass momentum K = (K, K„) and K~ = (K~ +i,K„)
The form factors are written as, for integer p,

HLR p
3 ldia(h) (0) I ~~ f(K)(hhc), 16 p (0) 1

g

0 0 0 0
0 K2 K2 0
0 K+ K 0
0 0 0 0

(3.4)

F,"',, (K) = 41 (j )(o) 4i.(j)(0) The form factor f(K) in the above equation is given by

with

dQ, Q",'
K, 'Q, f' (Q.), (3 2) f(K) = dz dz' (ic(z)(ihh(z) e

X(ic(Z')(ihh(Z') . (3.5)

fj'j(Q ) = dz dz ( ' (z ) (',~'j'h(z )

The confinement splits the valence-band edge into
heavy- and light-hole subbands with energy differences of
the order of 10 meU, for a typical quantum well around
100 A. wide. Since AEz,T is considerably smaller than
this, 3 we do not expected a strong heavy-hole —light-hole
coupling to take place via the long-range exchange inter-
action (3.1). Thus, we may restrict our attention to the
heavy-hole exciton (hhe) subspace where we can write
down the matrix elements of the long-range interaction
acting only on the spins of the ground state hhe (i.e. ,

v, p, v', p' = 1 and j,j' = h) in the matrix form in the

The long-range interaction for hhe's in a quantum well
vanishes linearly with K when K goes to zero. 24 There-
fore, due to momentum conservation, no longitudinal-
transverse splitting is expected for excitations with light
propagating along the growth axis of the well.

B. The short-range part

The other exchange term which should be included in
the exciton's efFective-mass equation is due to the short-
range part [also called analytical part; see Fig. 3(c)] of
the Coulomb interaction between the electron and hole
in the same site. is Using the exciton basis function (2.1)
for two-dimensional excitons with different K s, the spin
Hamiltonian for the short-range interaction25 has the
form

HsR 3
~

+EsR
le. (0)l'

0 0

0
0 0
0 0
0 0
0 0
0 0

0

0
0
0

0
2II, I,

PIt, t,
—

3
0

0
—2It, t

27((
3
0

0
0

~I

3—IA. I

~3
0

0 0
0 0

~3

0 0

0 0
0 0

0 0 0

(3.6)

with

Ij'j = 4'is(j')(0) 4'is(j)(0) dz 1(ic(z) 1 ( ' ij( h)(zj i( h)z

(3.7)

if we only consider the excitons associated with the two
topmost hole subbands, one heavy and one light. This
interaction splits the eightfold degenerate exciton in bulk
into two levels, with total angular momentum J = I lying
above J = 2 in energy by LEsR in the bulk.

It is important to note that the short-range exchange,
which takes the form cr, jh, conserves total spin and only
couples a hhe state to a the state. Thus, on the one hand,
the confinement may enhance the short-range interaction
between electrons and holes and, on the other hand, it
also lifts the degeneracy between hhe's and the's which

weakens the effect of the exchange in the spin relaxation
process. In particular, the conservation of the total spin
forbids the direct transitions between the optically active
hhe spin states (—2, + 2) and (+2, —z). An additional
spin nonconserving mechanism is necessary to accomplish
that.

Various mechanisms could be used to complete the
channel between the two optically active hhe states, for
instance, scattering-related processes which fiip the spin
of one particle (or even of both particles). As already
argued in the previous section, this is rather unlikely to
happen when excitons are being considered. We have
chosen to investigate here the spin-orbit coupling in the
valence band. This is a very strong effect in the bulk
and has been commonly used to support the assump-
tion of a rapidly depolarized spin population of holes. 6



15 782 M. Z. MAIALLE, E. A. de ANDRADA e SILVA, AND L. J. SHAM 47

In quantum wells, the hole relaxation is slowed down by
the subband formation as well as by the phase space
limitation in an exciton as explained above.

The spin-orbit coupling in the valence band is intro-
duced via the k p terms in the Luttinger Hamiltonian,
HI,„,which has o6'-diagonal terms like

W(K) = —Hh, «h —ah{ H;„,SR 1 SR
Ep Ep

(3.11)

the R terms in the Luttinger Hamiltonian, Eq. (3.8), and
the exchange matrix elements between heavy- and light-
hole states:

S = —" ~3psk, k, R = —" ~2 (—pk2 + p,k+),

where

(3.s)
where Fo = (Eth, —Ehh, ) is the energy splitting between
the two exciton ground states associated with the two
topmost valence subbands and the spin states in the ma-
trix elements of Hsn and of B are abbreviated to h and
t'. The matrix elements are given by

with k being the momentum operator acting only on the
hole coordinates and p's the Luttinger parameters for
the host semiconductor. We treat the o8'-diagonal part
of Hk„by perturbation theory to take into account the
heavy- and light-hole mixing. Thus, a hhe ground state
is given by

(4., „IHh~14.. .)

hhe lhe
mh —+

Is,m&

(3.9)

where g, are all possible light-hole exciton states with
energies 8th, of the diagonal part of the Luttinger Hamil-
tonian. The g, „are similarly the unperturbed [i.e. ,

unmixed, cf. Eq. (2.1)] hhe ground states with spins
(s, mh = 62) and energy Ehh, .

For practical computations, we shall consider only the
ground states for the hhe and lhe associated with the
topmost heavy- and light-hole subbands. This can be
justified if we recall that the well confinement introduces
energy splittings between subbands of order of 10 meV
for a typical quantum well with width around 100 A. ,

whereas the correction due to mixing is small, about
1 meV. Therefore, the topmost light-hole subband gives
the major contribution to Eq. (3.9).

Instead of calculating the matrix elements of the short-
range exchange interaction with the simple hhe ground
states in Eq. (2.1), as done before in Eq. (3.4) for the
long-range case, we now use the hhe ground states which
include mixing, i.e. , Eq. (3.9). We obtain the result

B(P) i K'
«h = 4 p 1{h Qth m'+

aohaot K2
& 1 + p2 3&2

(3.12)

+ESR Ihl
4 I{t'3D(0)l' v3

' (3.13)

p„(,) (p) = 8/era e( (3.14)

and the quantities in Eq. (3.12) defined by

v3 (p, +ps)h'p=
2 2mp

(3.15)

~l, h = d~ Clhh(~) Cllh(~) (3.16)

2 4 &Ph &Oi
Qth = d P 41.(h)(P) 41.{t)(P) = (3.17)

(aoh+ ao{)' '

mhJ/ mg
jJ

+ hll) ™hll( ™tll) (3.1s)

in which we have used the two-dimensional exciton wave
function in the form

SR
H(hhe) ~K,K'

Eh 0 0 0
0 Eh+ Ah W(K) 0
0 Wt(K) Eh + Ah 0
0 0 0 E

(3 10) and

(3.19)

m (mhll ™tll) 1p= ——
2 (m, + mhll)(m, + mtll) (1/aoh + 1/aot)

'

where the diagonal part is the eigenvalue solution ne-
glecting the hole spin mixing, Eh being the hhe energy
and Lh an exchange induced splitting between the dark
and optically active states given by

with Ihh from Eq. (3.7). The off-diagonal terms arise
from contributions of both the valence-band mixing via

2 1
B(P)=, (4P'+1 —11' (3.20)

We have used the axial approximation to obtain
Eq. (3.12), neglecting the anisotropy of the hole energy
in the k space, i.e. , we have set p = 2(p3 f2) —0.

Similar to the spin Hip of a hhe by a combination of
band-mixing and short-range exchange via the light-hole
states, the same can be accomplished by the long-range
exchange. Replacing HsR by H"R in Eq. (3.11) leads to
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with

LR LR
~LR-mix Hhl E ~~l h +hl E Hlh

0 0
(3.21)

HLR = — LT hl

(0)I' v&
(3.22)

where Fho~ was defined in Eq. (3.2).

C. Exciton spin relaxation

(3.23)

Thus, the faster the momentum changes, the longer the
spin relaxation is. More details on the treatment by the
density-matrix formalism of the dynamics of the spin re-
laxation given in the Appendix, including the effect of
an applied magnetic field which splits the two optically
active heavy-hole exciton states.

IV. EXCITON SPIN RELAXATION TIME
IN AN INFINITE-BARRIER C}UANTUM WELL

A. Results in zero electric Beld

Calculated exciton spin relaxation times driven by ex-
change for resonantly excited excitons are presented here

Equations (3.4), (3.10), and (3.21) yield the exchange-
driven spin flip among the heavy-hole exciton states, ei-
ther directly, or through a combination of an exchange
process to a light-hole exciton and then back to a heavy-
hole exciton state by means of the valence-band mixing.
As an example, consider the case of resonant excitation
of heavy-hole excitons with spins (s, mi, ) = (—2, +2)
by a positive-circularly polarized light normally inci-
dent on a quantum well. Spin-relaxation produces spin
states (+2, —2) which, on recombination, emit negative-
circularly polarized light. The off-diagonal terms of
Eqs. (3.4), (3.10), and (3.21) (all added together to in-
clude interference effects) are responsible for the cou-
pling between these two exciton spin states with finite
center-of-mass momentum. Neglecting the dark states,
the dynamics is that of a pseudo-spin-z system. The off-
diagonal terms of the effective spin Hamiltonian represent
an effective magnetic field in the 2;y plane. If such a field
is fixed (due to fixed center-of-mass wave vector, K) the
pseudospin (i.e. , the polarization) will precess about this
field. Now, if this is a random-oscillating field (i.e. , K
is being changed by scattering) which changes its direc-
tion faster than the pseudospin precession, then a spin-
relaxation process ensues. The spin dynamics which we
have just described is, of course, analogous to the one
observed in the motional narrowing effect in nuclear spin
relaxation in metal and also in the DP mechanism for
conduction electron spin relaxation in semiconductors.
In such motional narrowing, the inverse spin-relaxation
time is proportional to the square of the precession fre-
quency about the effective field A~~ times the momentum
relaxation time w* [see Eq. (A12)],

for an infinite-barrier quantum well of width L. The wave
functions along the z direction are given by sines and
cosines within the well, vanishing in the barriers. The
wave functions are the same for electrons, heavy or light
holes. The parameters describing the particles in the
well are given by those from the GaAs: p&

——6.85, p2 ——

2.1, ps = 2.9, ~o ——12.5, m, = 0.067mo, GELT = 0.08
meV, LESR ——0.02 meV. The simple form of the wave
functions makes it easier to evaluate the form factors ap-
pearing in Eqs. (3.4), (3.10), and (3.21), as well as facili-
tating the variational solution for the bound state of the
exciton in the plane of the well necessary to calculate the
exciton radii ao~ in Eq. (3.14). We also notice that in
this case the inclusion of only two subbands in treating
the valence-band mixing is exact because terms like Llh
in Eq. (3.16) will all vanish for difFerent subbands.

In order to estimate the off-diagonal terms of the spin
Hamiltonians for the short-range and long-range interac-
tions (i.e. , the magnitude of the effective magnetic field),
we need to know the value of K. Since we are only consid-
ering elastic scatterings (see the Appendix), the knowl-
edge of the center-of-mass kinetic energy E~ for the ex-
citon suKces. When light propagating along the growth
axis is used to resonantly excite excitons, the hhe's cre-
ated have negligible K's. At low temperatures and car-
rier densities, the interactions of excitons with acoustic
phonons, impurities, and well interfaces are responsible
for a finite homogeneous linewidth I'h around the K = 0
states. ' All these finite-K states are able to radiate
and since K g 0 they can have their spins relaxed via
the exchange interaction. Thus, one may estimate K
by setting E~ = I'h. A better approximation would be
obtained by averaging over the momentum distribution
around K = 0, especially if thermalization to large K
states is present. However, if the temperature is kept
low enough for the thermalization effects to be negligi-
ble, we expect the simple approach to give a reasonable
value for the average K from I'h defined as "full width
at half maximum. "

Also necessary for the calculation of the spin-relaxation
time T,j is the value of the center-of-mass scattering time
w*

[ see Eqs. (All) and (A12) in the Appendix]. Since
there is at present no direct measurement of w* or the
related transport time for the same samples on which
the time-resolved optical experiments are carried out, we
extract it from the study of exciton dephasing mecha-
nisms for which the linewidth is related to the dephas-
ing time T2 as I' = 2h/T2 for homogeneous broadening
and I = 45/T2 for inhomogeneous broadening, and by
setting30 7-* = T2.

In Fig. 4 we show the dependence of the off-diagonal
terms of the short-range [Fig. 4(a)] and long-range
[Fig. 4(b)] interactions on the well width L for various
values of the longitudinal electric field F. The depen-
dence on F will be discussed in the next subsection, and
we focus our attention here on the F = 0 curves. Notice
that the short-range contribution is considerably weaker
than that from the long-range interaction. In addition,
they show different dependence on L: the long-range
term increases with decreasing L and the short-range
term does the opposite. Such behavior can be argued as
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exchange spin-flip energy on quantum well width and on lon-

gitudinal electric field strength.

a consequence of the enhancement of the exchange inter-
action (both the short-range and long-range parts) due
to confinement, but the reduction of the valence-band
mixing due to subband formation has the net effect of
reducing the short-range contribution to the spin fIip. In
these figures we have used a value for K corresponding
to a kinetic energy E~ = 0.3 meV, which is a reason-
able value from the measured I'h in the actual samples.
From Fig. 4 we conclude that the long-range interaction
is the dominant factor in relaxing exciton spins in quan-
turn wells and, in what follows, it is used to explain the
major features observed.

We estimate the momentum scattering time by v.* =
Tq, the exciton dephasing time which, from the homoge-
neous broadening relation with 1"h = 0.3 meV, is approx-
imately 4.4 ps. For samples in which the observed j.-meV
linewidth is associated with inhomogeneous broadening,
we estimate T2 = 2.6 ps. In Fig. 5, the full lines are the
spin-relaxation times obtained for a hhe with E~ = 0.3
meV and momentum scattering time ~* = 2, 4, and 8
ps as a function of the well width I. Also in this figure
are the few experimental results (triangles and square )
available in the literature for resonantly excited hhe's.
We note that our results are very close to the experi-
rnental data for ~* = 4 ps obtained from homogeneous
broadening. While these results indicate that the theory
is on the right track, further experiments and theoretical

analysis are necessary to make the results quantitative.
Although diferent samples may have diferent values of

~* and E~, we see in Fig. 5 that the experimental points
for various values of I fall quite close to a calculated curve
for a constant ~*. It may be due to a combination of
circumstances: (1) the connection between the linewidth
and the dephasing time, i.e. , I'h oc fi/Tq, (&) T2 = 7';
and (3) I'h, = E~. The sample dependence through the
variation of E~ and of ~* is thus roughly constant in our
calculation because 1/T, i is approximately proportional
to EK7. . This is illustrated by the proximity between
the ~* = 4 ps curve and the dashed curve in Fig. 5 in
which we have doubled E~ to 0.6 meV and reduced ~* to
2 ps. For narrow wells, the change in the spin-relaxation
time is slight.

B. Effects of magnetic and longitudinal electric fields

A way to test our theory of the spin-relaxation time is
to make controlled changes by external means, such as
stress, magnetic, or electric Beld along the growth axis.
The eff'ect of weak magnetic fields (i.e. , without the well
separated Landau levels) is formulated in the Appendix.
Except for a brief comment below, further study of the
magnetic field effect will be given in the future. In this
subsection, we concentrate mostly on the efFects of the
electric field on the hhe spin relaxation.

An electric field applied along the z axis (the growth
direction) will polarize the exciton (increasing the sep-
aration between the electron and hole). This strongly
afI'ects the long-range part of the exchange since it de-
pend strongly on the overlap between the electron and
hole wave functions. Other possible eKects caused by the
introduction of the electric field, such as the increase in
the impurity- and interface-related scattering processes,
will not be considered here.

The quantum well problem with electric field applied
along its growth direction is solved using the variational
approach. Due to the asymmetry of the ground states in
the well the terms 8 and St in the Luttinger Hamiltonian
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FIG. 6. Electric field dependence of exciton spin-relaxation
time for various well widths.

will contribute. These terms give off-diagonal elements
in the hhe spin Hamiltonian that connect the optically
active states with the dark states (s + mh) = +2. We
have done a detailed investigation of this contribution,
but we found it to be very insignificant in relaxing the
exciton spin to dark spin states and we do not intent to
consider it here.

As expected, we see in Fig. 4 that the electric field
strongly reduces the strength of the exchange interac-
tion. This effect is more noticeable for the wider wells

(L + 60 A.) since those are the ones in which the exci-
tons are more readily polarized by the field. If we neglect
the change in momentum scattering processes due to the
change in the field and in the well width I, i.e. , fixing
E~ ——0.3 meV and v* = 4 ps, Fig. 6 shows how the
spin-relaxation time T,i varies with well width and with
Beld strength. The spin relaxation process is strongly
suppressed by the field for the wider wells. We expect
this effect to be even more evident in finite-barrier quan-
tum wells which shouM show a more accentuated field
polarization.

Future spin-relaxation measurements in electric fields
may not directly yield theses results. Analysis of the
measured spin-relaxation time along the lines in Sec. II
has to include the single-particle spin-flip processes. In
the high-electric-Geld regime, where the exchange inter-
action is weakened, the single-particle spin-flip processes
will dominate over exchange in spin relaxation. There-
fore, a characteristic transition from case II to case III
in Figs. 1(a) and 1(b) should be observed The e.xciton
spin relaxation in finite electric fields, extracted by the
process described in Sec. II, can then be tested against
the calculated Beld dependence given here.

Moderate magnetic field normal to the quantum well
plane also inhibits the spin-relaxation process. For field
strength for which the orbital effects are negligible, the
Zeeman splitting of the two optically active degenerate
hhe spin states is given by hAO. [See the Appendix:
the correct dependence of T,i on the field Ao is given
in Eq. (A12).] This dependence is in qualitative agree-
ment with the experimental results obtained by Ref. 9 in
the moderate field regime.

The Appendix shows that the exciton spin-flip term
can be represented by an effective depolarizing magnetic
field in the well plane normal to the applied magnetic field
hA0. A distinction between longitudinal and transverse
spin-relaxation times (T,& and T,2, respectively) can be
made, following the relation T,2 ——2T, i, provided that
0

~~

r (( 1; otherwise, the full expression, Eq. (A 14),
with interesting magnetic field dependence must be used.
The formal derivation is given in the Appendix, but this
factor of 2 is easily understood by using the fact that the
in-plane polarization, say S, is only affected by the y
component of the depolarizing field, whereas the longi-
tudinal polarization S~ is relaxed by both x and y com-
ponents. Therefore, the theory shows that luminescence
experiments with linearly polarized light should exhibit a
longer spin-relaxation rate driven by exchange than those
performed with circularly polarized light.

The experiment done by Tackeushi et al. showed in-
stantaneous spin relaxation for linear excitations, prob-
ably because it was performed at room temperature
where nonelastic dephasing mechanisms, such as optical-
phonon scattering, may strongly enhance the spin relax-
ation process. On the other hand, Stolz et at. reported
a spin-relaxation time of approximately 25 ps for linear
polarization, but, unfortunately, no circularly polarized
light was studied at the same time to provide a test of
our theoretical prediction. A very large broadening of
the excitonic lines (= 10 meV) was observed in this ex-
periment, indicating that extrinsic effects were certainly
present and making it diKcult for further comparison
with our results.

V. SUMMARY

We have proposed a theory of spin relaxation of heavy-
hole excitons in a quantum well. The spin-Hip process
occurs via the exchange Coulomb interaction between the
electron and hole. The process may be viewed as due to
an effective magnetic Geld in the well interface plane.
The magnitude and direction of this field depends on
the center-of-mass momentum K, vanishing for K = 0
states. The scattering of the center-of-mass momentum
creates a random effective magnetic Beld, responsible for
the exciton spin relaxation, in the same manner as any
other motional narrowing spin-flip processes, with the
characteristic dependence of the spin-relaxation time on
the inverse momentum scattering time.

The quantum-well confinement enhances the exchange
interaction over its value in bulk. The long-range ex-
change interaction is found to be the dominant contri-
bution to the spin-relaxation process, whereas the short-
range contribution is rendered less important by the need
of the assistance of the heavy- and light-hole coupling in
the valence band that is reduced by the subband forma-
tion in the lower-dimensional system.

Exciton spin relaxation leads to an observable effect
as luminescence depolarization. The theory is directly
applicable to resonantly excited heavy-hole excitons in
undoped quantum wells. For highly excited electron-hole
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pairs and doped samples, the exciton spin dynamics is im-
portant in the final stages before recombination. In the
time dependence of the optical intensities of two oppos-
ing circular polarizations after resonant excitation, the
exciton spin relaxation through exchange competes with
other time-dependent processes, namely the individual-
particle spin relaxation and the electron-hole recombi-
nation. The sum and difference of the two polarization
intensities have each two relaxation times. Because the
two shorter times are the exciton exchange spin relax-
ation and the hole relaxation, qualitatively they deter-
mine the characteristic shape of initial time dependence.
Analysis of data from time-resolved polarized lumines-
cence measurements leads to exciton spin-relaxation time
and electron and hole spin-relaxation times in order-of-
magnitude agreement with theoretical estimates.

Crucial tests of the theory revolve around its ability
to predict changes in behavior due to changes in system
and in external parameters. The exciton spin-relaxation
time is inversely proportional to both the strength of the
exchange interaction and the momentum scattering time.
The strength of the exchange interaction depends on the
well width and on the electric field applied along the
growth direction of the quantum well. The theoretical
and observed well-width dependence are in good accord.
For finite electric fields, our calculations show that the
exchange interactions are strongly inhibited in relatively
wide quantum wells, lengthening their spin-relaxation
times. There is yet no experiment with electric field.
The dependence on momentum scatterings means that
exciton spin relaxation is sample dependent and char-
acterization by exciton linewidth measurements and by
transport measurements will be helpful. In the moder-
ate magnetic field regime, theory shows increase in the
exciton spin-relaxation time but there is yet no experi-
ment. In the high magnetic field regime, where Landau
levels are important, there are experiments 3 but yet
no theory.

From the list of topics yet to be investigated either in
theory or in experiment, we see that the field of time-
dependent optical polarization studies in confined sys-
tems is young. We hope that our theory provides some-
what of a framework for the direction of further studies as
well as a degree of understanding of current observations.
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—z). In the following, as an illustra-

tion of how a spin-fIip mechanism leads to spin relaxation,
we reduce the spin Hamiltonian including connection to
all other spin states to that of a pseudo-1 j2-spin system.
The reduced spin Hamiltonian has the form

E+ W(K)H„,d = HP + Hy(K) =
Wi(K)

where Ho is the diagonal matrix including an applied
static magnetic field along the z axis causing an energy
splitting hAO = (E+ —E ). The off-diagonal matrix
Hq(K) is due to a K-dependent exchange-driven spin-
fIip which leads to an effective magnetic field A~~ in the
2:y plane. From Eqs. (3.4), (3.10), and (3.21), Hq has the
following form:

n nii(Z) 0
Hg(K) = (A2)

dp(K) i= —[p(K), Hp + Hy(K)]

+ ) .WKK (p(K') —p(K)) ——p(K) + G'

K/

where WKK represents the momentum scattering rate, G
represents the generating rate of optically active excitons,
and —represents symbollically the recombination rate of
those excitons which are able to recombine, that is, those
with kinetic energy within the homogeneous linewidth I'h,

of K = 0. By writing the density matrix in terms of its
trace N and spin trace S,

where A~~(K) is a function of the magnitude of K only
and P is the angle between K and the z axis. The P de-
pendence comes from the factor K+2 [cf. Eqs. (3.4), (3.10),
and (3.21)]. The two pseudo-1/2-spin states have angu-
lar momentum components along the z axis differing by
2h and the total momentum conservation is maintained
by the orbital angular momentum in the 2P term in Eq.
(A2).

We now introduce the density matrix p(K) to describe
the optically active excitonic spin states (therefore, a 2 x 2
matrix) and the exciton center-of-mass momentum. Its
equation of motion is given by

This research was supported by NSF Grant No. DMR
91-17298. M.Z.M. and E.A.S. acknowledge support from
CNPq, Brasil. L.J.S. thanks Jag Shah and Ted Damen
for helpful discussions.

N
p(K) = —+S o,

2
(A4)

in terms of the Pauli spin matrices cr, and the generat-
ing matrix G in a similar expression, we can express the
equation of motion in the physically revealing form

APPENDIX: SPIN DYNAMICS
BY THE DENSITY-MATRIX METHOD

The density-matrix formalism is used here to describe
the exciton spin dynamics in quantum wells. The most
important spin states are the optically active states

ds(K) = A(K) x S(K) + ) WKKI (S(K') —S(K))

——S(K) + G,1

where A =
[A~~ cos(2$), A~~ sin(2$), Ao] are the precession
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(K) ) Sn in/ (A6)

and

frequencies due to the combined applied magnetic field
along the z axis and the eifective magnetic field due to
the exchange spin fIip in the interface plane.

We shall consider here the elastic-scattering problem
in which the scattering rate W at a given momentum
magnitude K depends only the angle between the ini-
tial and final momentum. The final answer has to be
suitably averaged over K within the values given by the
homogeneous linewidth. This simplifies considerably the
solution of Eq. (A5) and still retains the essential phys-
ical picture. Then, the spin fIip is due to an effective
magnetic field with fixed amplitude but with a randomly
varying direction in the 2:y plane.

Equation (A5) can then be solved exactly at each con-
stant K by using the expansions

tudinat spin-relaxation time T,y.

1 2 ~2

Tai II 1+ (Aor2)2
(A12)

ds' S'dS+ 0 —2 S+ 0 (A13)

The equation is coupled to the one for S, , which is
in turn coupled to one for S . These three equations
formed a closed set. Solution for a single-frequency driv-
ing term leads to the transverse spin-relaxation time 2",q
given by

Since the depolarizing field A~~ is in the xy plane we
are able to make a distintion between longitudinal and
transverse spin-relaxation processes even at 00 ——0. To
obtain the transverse spin-relaxation time T,q we have to
solve Eq. (A5) for S+0.

W(p pr) ) W in(P P')—
(A7)

ds' S'dS, II S,
dt 2

— + + (A8)

where S~ ——S~ + iS„. In turn,

dS+ S+'
dt

=+ i00 S+ ~iA S
2

(A9)

where we have defined

7m

1 1+-
7m

(A10)

with the introduction of the momentum scattering times

=(Wp —W )= d
W(P) [I —cos(mP)] . (All)

27r

Equations (A8) and (A9) form a closed set of coupled
equations which can be easily solved to yield the tongi-

This yields an infinite set of first-order differential equa-
tions which couple S to S~+ .

The total longitudinal spin, S, , at momentum K is
governed by the equation

1 = Re
$2

A2 j2
n~~/2

1/~4 +iAp

(A14)

where Re stands for the real part of the right-hand ex-
pression. The imaginary part gives the shift in precession
frequency.

ln the limiting case where AII « (r2&4), which is

the case of interest for motional narrowing effects, the
expression simplifies to

1 1 2 (A15)

This is the usual relation T$2 ——2T,i, when A0 ——0,
already mentioned in Sec. IVB.

We finally note that results similar to Eqs. (A12)
and (A15) could also be obtained via an explicit time-
dependent perturbation theory, 3 in which w* is inter-
preted as the correlation time associated to the random
field AII(t). The approach in this appendix (that is sim-
ilar to the one in Ref. 34) gives a very precise definition
of the momentum scattering time r2, Eq. (All), which
differs from the usual definition of momentum scattering
time ~ for transport which has cos(P) term instead of
the cos(2$) term in r2 .
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