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Effective potential for adsorption
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A solution is proposed to the standing problem of the derivation of a wall-interface potential V(I ) as
a function of the adsorption I . A stringent upper bound to V(I ) is obtained in the course of minimiz-
ing the surface free-energy functional y[m], keeping I constant, within the space of continuous and
di6'erentiable profiles m (z). Comparison of V(l ) with available alternative potentials V(l), l being the
wall-interface separation, indicates potentially important implications for critical wetting theory in three
dimensions. The availability of V( I ), furthermore, leads to improved interface displacement models of
three-phase contact lines.

A standing problem in the statistical mechanics of ad-
sorption and wetting is the derivation of an efFective
wall-interface potential V as a function of the surface or-
der parameter, i.e., the coverage or adsorption j.". Al-
though I is the natural (and experimentally measured)
quantity to consider, practical considerations and the
difficulties involved in deriving V(I ) have led wetting
theorists to study V(l), 1 being the distance of the inter-
face from the wall, i.e., the wetting-layer thickness. ' Un-
like 1, I is not well defined in general, and loses meaning
when the adsorption is small. Usually one is interested
in the limit of large adsorption, and at bulk two-phase
coexistence l is then well defined via

~I ~=2mol for 1

where mo is the absolute value of the bulk order parame-
ter. Thus, in the limit of large 1, V(I ) can be compared
unambiguously with existing forms of V(l).

It has been argued that the precise form of V(l) at
large l is essential to the critical wetting behavior in a
three-dimensional system with short-range forces. '

Renormalization-group theory based on V(1) predicts
nonuniversalEty for critical wetting in d=3, but Monte
Carlo simulations disagree. (See Ref. I for a list of per-
tinent references. ) A careful derivation of V(I ) is there-
fore of crucial importance for critical wetting theory.

The derivation we give is interesting also from a
mathematical standpoint. The reason why previous at-
tempts to derive V(I ) have been discontinued is that the
usual approach of functional minimization with an in-
tegral constraint fails if one assumes regular trial func-
tions. We show that this approach becomes successful if
one slightly extends the space of trial functions, and al-
lows the order-parameter profile m(z), zE [0, oe ) being
the distance from the wall, to exhibit a discontinuous
second derivative at one point z. Such singularity is
weaker than that which has been allowed in alternative
derivations of V( 1).'

The variational problem to be solved consists of the
minimization of the mean fteld surface fre-e-energy func-
tional

y[m]= f dz.
2

m 1+f(m) —h, m, —g

(2)

subject to the integral constraint

I [m]—:— = f dz[m(z) rnb]=—I
Bh 0

and the boundary condition

m(z)~mb for z —+ co,

(3)

(4)

where mb is the bulk order parameter. At bulk coex-
istence, ~mb ~

=mo. The Landau bulk free-energy density
1s

c dm df
2 dz

(6)

where A, is the Lagrange multiplier. The useful first in-
tegral of this equation features an integration constant o,',
which, like A, , can be chosen piecetuise constant so that (4)
is satisfied, with m (z) and dm/dz continuous on [0, co ),
and d m/dz discontinuous in at most one point z. The
need for allowing the latter discontinuity follows from
the impossibility to satisfy (4) and (6) simultaneously for
A, WO. Furthermore, the restriction to a single singularity
implies that for z )z, we must take A, =O in Eq. (6), to al-
low for (4), and the choice of a is then trivial for that z in-
terval. For the interval [O, z ), however, the choice of a is
not unique, and further minimization with respect to n
may be required. Presently, we limit ourselves to the par-
ticular choice that minimizes

~
m (z ) —mb ~, and thus ob-

tain an upper bound to V(l ). For A, )0 this procedure
amounts to requiring

f(m )=(m —m&)(m +m& —2mo) h(m —mb)—,

where h is the bulk field (h =0 at bulk coexistence). The
couplings h

&
and g are, respectively, the surface field that

induces wetting and the surface coupling enhancement,
and m, =—m (z =0).

Minimization of Eq. (2) under constraint (3) leads to
the Euler-Lagrange equation
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dm
m =mb and =0 at z =z,

dz
(7)

and, consequently, m (z ) = mb for z )z. An advantage of
this simple condition is that analytical calculation of the
free energy is tractable. For k &0 a diA'erent requirement
applies, which will be discussed elsewhere.

Finally, subsequent minimization of the surface free
energy with respect to m, leads to the boundary condi-
tion at the wall

h, +gm, =c[f (m, )+A(m, —m„)]'

0.2—

0.0

0 r„/c I2/c ~

This condition is to be satisfied in general. Exceptions
may be found when boundary minima occur, in mean-
field theories with a bounded order parameter ( ~

m
~

& I ).
In the following we restrict attention to first-order and

cr1t1cal wetting transltlons occurring at h =0. We fix the
bulk phase so that mb = —mo. The potential V(l ) is
given by y[m], with m(z) the profile that minimizes
y[m] subject to the constraint I [m]=I . A simple but
useful upper bound V*(I ) is obtained for the regular tri-
al profile m *(z) which satisfies (3), (4), and

2
2c dm f( «)

4 dz

It follows that m
&

is uniquely determined and satisfies
—mp ~ m i

~ mp for I ~ 0 and m
&

~ —mp for I ~ 0.
Note that m

&
is not determined by a boundary condition

at the wall. Although V*(I ) is a reasonable approxima-
tion and has been used, in the alternative form V*(l ), for
studying critical wetting, it is qualitatively deficient at
first-order wetting. It fails to reproduce the global
minimum at I = ~, associated with the macroscopically
thick wetting layer, which coexists with the thin film, for
which I =I,. The V(I ) we seek must, of course, satisfy
V( I ) ) = V( ae ).

The numerically computed upper bound to V(1 ) at a
first-order wetting transition is shown in Fig. l. Analytic
calculation of the asymptotic part for large I gives

[ V( I ) —V( ~ ) ] /yo =6(x —I )exp( —21 /c )

—6(x —I) (2I /c)exp( —4I /c)

+6[exp( —41 /c)] .

The quantity y~ (=4cmo/3) is the liquid-vapor surface
tension, and x =—m

& /mp, where m, is the value of m,(p) (p) .

that solves Eq. (8) with A, =O, in the domain m
&
)mo.

The computed approximation to V(1 ) is exact at
I =I, (first minimum), I 2 (local maximum), and ao

(second minimum), where it reproduces the extrema of
y[m] toithout constraint on the adsorption. In the inter-
vals 0& I & I

&
and I 2&1 & ac, V(1 ) has been computed

with A, )0 and using (7). For the remaining intervals
computation with A, & 0 applies, but has been postponed,
because in those intervals the simple upper bound V*(I )

is a very reasonable approximation.
In the following we turn to the important case of criti-

cal wetting. Presently we restrict attention to the deriva-
tion of V(I ) ot the transition, and postpone a discussion

FICx. l. Effective potential [V(I ) —V(~ )]/yo vs I /c at a
first-order wetting transition, computed at the following system
parameters: mo=0. 2 h]/c=0. 681mo, and g=0. Singularities
occur at 1 =0, I &, and I 2, where the simple upper bound
V*(I ), shown for I ~0 and I &~I ~I 2, coincides with the
stringent upper bound, shown for 0 ~ I ~ I

&
and I ~ I 2.

of the partial wetting regime preceding the transition.
The numerically computed upper bound to V(I ) at a
critical wetting transition is shown in Fig. 2. For I )0
the result is presented of the computation with k) 0 and
using (7). For I &0 the simple upper bound V*(l ) is
shown. Analytic calculation of the important asymptotic
part for large I gives

g +2mpg
[V(I ) —V(oe )]/ye=6 exp( —41 /c)

g —2mpc

8
8)

I

L

0.5 1

f/c

FICr. 2. Effective potential [V(1 )
—V(~)]/yo vs I /c at a

critical wetting transition, computed at the following system pa-
rameters: mo=0. 2 hi/c =4mo, and g/c = —4mo. A singulari-
ty occurs at I =0, where the simple upper bound V*(I ), shown
for I ~ 0, coincides with the stringent upper bound, shown for
I ~0.

+o [exp( —41 /c )],
where o(y) means smaller than of order y. We remark
that this leading term vanishes, as it should, at tricritical
wetting. The potential we have derived constitutes, as ex-
pected, a significant improvement over the simple upper
bound V*(l ). Much more interesting is the comparison
with the alternative potential V(l) obtained by Fisher and
Jin. ' Our provisional comparative computation indicates
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that the difference between Fisher and Jin's result and
ours is small compared to the amount that both results
gain over the simple upper bound. To be specific, at a
fixed value of the adsorption I, our approach gives a
slightly lower value for the surface free energy than that
which we obtain following Fisher and Jin. Conversely,
at a fixed value for the zero-crossing point I, for which
m(l)=0 (providing such a point exists), our result is
slightly higher. This is quite satisfactory, since Fisher
and Jin's procedure was to minimize at fixed I, whereas
ours is to minimize at fixed I . Clearly, we have obtained
a stringent upper bound to the optimal effective potential.

The potential we have derived is likely to play an im-
portant role also in the context of interface displacement
models for three-phase equilibria. Near a solid-liquid-
vapor contact line, for example, the adsorption is small
and the concept of a wetting layer thickness l breaks
down, because the density or composition of the layer
varies strongly on the length scale of its microscopic
thickness. The adsorption I, however, remains well-
defined and the adsorption profile I (x), where x is a
coordinate along the solid substrate surface, perpendicu-
lar to the three-phase contact line, is the appropriate
function to be used instead of the displacement profile
l(x). In particular, the expression for the line tension of

~0 dr~[r]=f + V(r(x))
2 dx

(12)

where era is a function of yo and mo. The use of V(I )

should thus permit a better comparison between interface
displacement models ' and more microscopic mean-field
approaches"' for calculating, e.g. , the line tension near
wetting phase transitions.

Details and further developments will be reported else-
where.

Note added in proof. For derivations of V(l) and V(l )
within density-functional theory for inhomogeneous
fluids with van der Waals forces, see S. Dietrich and M.
Napiorkowsky, Phys. Rev. A 43, 1861 (1991).
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