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This paper contains a theoretical study of the sample-to-sample Buctuations in transport proper-
ties of phase-coherent, difFusive, quasi-one-dimensional systems. The main result is a formula for the
variance of the fluctuations of an arbitrary linear statistic on the transmission eigenvalues [i.e. , an
observable of the form A = P f(T„)]. The formula is the analog of the Dyson-Mehta theorem
in the statistical theory of energy levels. The analysis is based on an existing random-matrix theory
for the joint probability distribution of the transmission eigenvalues T„(n = 1, 2, . . . , N), and holds
in the large-N limit. The variance of the Buctuations is shown to be independent of the sample size
or degree of disorder and to have a universal 1/P dependence on the symmetry parameter P of the
matri~ ensemb]e. It follows that the universality which was established in the theory of "universal
conductance fluctuations" is generic for a whole class of transport properties in mesoscopic conduc-
tors and superconductors. A further implication of the analysis is that the correlations between the
transmission eigenvalues are not precisely described by a logarithmic interaction.

I. INTRODUCTION

Universal conductance fluctuations (UCF) is the phe-
nomenon where sample-to-sample fluctuations in the con-
ductance are of order e /h at zero temperature, inde@en
dent of the size of the sample or the degree of disorder-
as long as the conductor remains in the diffusive trans-
port regime. (A difFusive conductor is long compared to
the mean free path, but short compared to the localiza-
tion length. ) This universality stands out as one of the
most remarkable results in mesoscopic physics.

The theory of UCF was originally formulated as a
diagrammatic perturbation theory by Al'tshuler2 and
by I ee and Stone. Subsequently, an alternative non-
perturbative approach was developed, based on gen-
eral properties of the statistics of eigenvalues of random
matrices (random Hamiltonians, 4 or random scattering
matricess s). The universality of the conductance fluc-
tuations was shown to originate from the universal eigen-
value repulsion in random-matrix ensembles, discovered
long ago in nuclear physics. i 2 The symmetry class of
the ensemble manifests itself in the universal dependence
of the variance of the conductance on the presence of a
magnetic field or spin-orbit scattering. Random-matrix
theory offers an understanding of UCF which is both fun-
damental and intuitive.

The relationship between the statistics of energy lev-
els measured in nuclear reactions, on the one hand, and
the statistics of conductance fIuctuations measured in
transport experiments, on the other hand, is described
in the review article of Stone et al. 7 In the former prob-
lem it is known that fluctuations in the density of eigen-
values of random Hamiltonians are governed by level re-
pulsion, which depends on the symmetry of the Hamil-
tonian ensemble —but is independent of the mean level

density i3—i6 The same holds for the eigenvalues of ran-
dorn scattering matrices (in the so-called circular ensem-
ble of unitary matricesi ). However, this established uni-
versality is not directly applicable to the latter problem
of the statistics of conductance fIuctuations, because of
two essential complications.

The first is that the transmission coefficients (the quan-
tities which determine the conductance) are not the
eigenvalues of the scattering matrix. Instead, the trans-
mission coefficients T„(n = 1, 2, . . . , N) are the eigen-
values of the matrix product t8~, where the transmission
matrix t is an N x N submatrix of the 2N x 2N scatter-
ing matrix of the conductor. This first complication was
resolved by Muttalib, Pichard, and Stone, and by Mello,
Pereyra, and Kumar, s who (in two different approaches)
determined the 3acobian of the transformation from the
space of scattering matrices to the space of transmission
eigenvalues. It turns out that the repulsion of the vari-
ables A„= (1 —T„)/T„(being the ratio of reflection and
transmission coefficients) takes the same form as the re-
pulsion of energy levels E„.

The second complication is that the correlation func-
tion of the A„'s is not translationa1ly invariant, due to
the positivity constraint on A. This constraint A & 0 fol-
lows directly from unitarity of the scattering matrix. In
contrast, the correlation function in the random-matrix
theory of energy levels is translationally invariant over
the energy range of interest. i7 This second complication
was clearly identified by Stone et aL, 7 but remained un-
resolved.

Because of this technical complication, the random-
matrix theory of quantum transport could not be as well
developed as its counterpart in nuclear physics. In that
field there exists a formula, due to Dyson and Mehta,
which allows one to compute the variance of any linear
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statistic on the energy levels [i.e. , an observable A =
P„a(E„),with a an arbitrary function of energyj. The
Dyson-Mehta formula reads

11
VarA = ——

p vr2
dk ~a(k)

~
k,

where a(k) = j dE e'" a(E) is the Fourier transform
of a(E). The symmetry parameter P equals 1, 2, or
4, depending on whether the Hamiltonian ensemble be-
longs to the orthogonal, unitary, or symplectic symme-
try class. r Equation (1.1) shows that (1) the variance is
independent of microscopic parameters and (2) the vari-
ance has a universal 1/P dependence on the symmetry
parameter of the ensemble. No such general result ex-
ists for the variance of transport properties. The lack of
a formula with the same generality as Eq. (1.1) is be-
ing felt especially now that mesoscopic fluctuations in
transport properties other than the conductance (both
in conductors and in superconductors) have become of
interest. Examples are the critical-current fluctuations
in 3osephson junctions, conductance fluctuations at
normal-superconductor interfaces, 20 and fiuctuations in
the shot-noise power of metals.

Here we show one can overcome this obstacle towards
the establishment of universality in the random-matrix
theory of quantum transport. Our main result is the
analog of the Dyson-Mehta formula for the variance of a
linear statistic A = P„f(T„) on the transmission eigen-
values:

1 1
VarA = ——

p ~2 dk ~E(k)
~

k tanh(ark). (1.2)

The function E(k) is defined in terms of the function
f(T) by the transform

F(k) = k f i 1+ e*)
The formula (1.2) demonstrates that the universality
which was the hallmark of UCF is generic for a whole
class of transport properties, viz. , those which are linear
statistics on the transmission eigenvalues. This general-
ity was anticipated by Imry, 5 but could not previously
be established.

The outline of this paper is as follows. In Sec. II we
formulate the problem and summarize the results of the
random-matrix theory of Muttalib, Pichard, and Stone, s

on which our analysis is based. We mention the limita-
tions inherent in this approach, to which we will return
later on in the paper (Sec. VIII). We do not discuss the al-
ternative approaches of Al'tshuler and Shklovskii, 4 and of
Mello, Pereyra, and Kumar, to which our method is not
applicable. Our method of calculation employs a func-
tional derivative technique, which we introduce in Sec. II.
In Sec. III we present an integral equ. ation for the mean
density of transmission eigenvalues, in the limit that the
dimension K of the transmission matrix goes to infln-
ity. The derivation of this equation, along the lines of an
analogous derivation by Dyson, is given in Appendix
A. The solution of the integral equation by Mellin trans-
formation is described in Sec. IV. The solving kernel,

combined with the functional derivative relation of Sec.
II, directly yields the density-density correlation function
of the transmission eigenvalues in the large-N limit. In
Sec. V we combine the results of the previous sections
to obtain the analog of the Dyson-Mehta formula for the
quantum transport problem (see also Appendix B). This
formula is applied to a variety of transport properties, in
conductors and superconductors, in Sec. VI. In Sec. VII
we show that our results agree with the (numerically cal-
culated) large-N limit of a special exactly solvable model
(the Laguerre ensemble722). A comparison with other
theories of mesoscopic fluctuations is given in Sec. VIII
and Appendix C. We conclude in Sec. IX. A brief account
of our results has been given in Ref. 23.

II. FORMULATION OF THE PROBLEM

We consider a disordered conductor of length I and
width W at zero temperature. The elastic scattering of
noninteracting electrons at the Fermi level is described
by the unitary scattering matrix (s matrix)

t21 r22 (2.1)

The reflection and transmission matrices r and t are
N x N matrices, N being the number of propagat-
ing modes at the Fermi energy. The matrix product
t&2t&2 is Hermitian, and hence has real eigenvalues T„
(n = 1,2, . . . , N). Since tr2tr2 = T] tgrtgrTrrr(as follows
from unitarity of s), the matrices tr2tir2 and t2rti2r have
the same set of eigenvalues. We refer to the T„'s as the
transmission eigenvalues. Unitarity of s also implies that
0 & T„& 1 for all n. We will study transport properties
A of the form

A = ) f(T„). (2 2)

1T~—: , 0 & A ( oo,1+A„'

and work with a linear statistic on the A' s,

N

A = ) a(A„).

(2 3)

(2 4)

Since there is a simple one-to-one relationship between
A and T, we will still refer to the A's as "transmission
eigenvalues. " The distribution of the A's is given by6 7

A quantity of the form (2.2) is called a linear statis
tie on the transmission eigenvalues. The word "linear"
indicates that A does not contain products of diferent
eigenvalues, but the function f(T) may well depend non-
linearly on T.

Starting point of our analysis is the joint probability
distribution of transmission eigenvalues obtained in the
random-matrix theory of quantum transport. s 7 To make
contact with that theory we adopt the parametrization
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P((A )) = & ' e p[—&&((A ))j

R((A„)) = -) ln ~A, - A,
~
+ ) V(A, ),

(2.5)

where Z is such that P is normalized to unity,

dAiv exp[ —P'H((A„))]. (2.6)

The parameter P depends on the symmetry properties
of the ensemble of scattering matrices. If time-reversal
symmetry is broken (by a magnetic field), P = 2. In the
presence of time-reversal symmetry, P = 1 if the scatter-
ing is spin independent, while P = 4 for strong spin-orbit
scattering. ' 5 These three universality classes are re-
ferred to as the orthogonal (P = 1), unitary (P = 2), and
symplectic (P = 4) ensembles. i~

The probability distribution (2.5) has the form of a
Gibbs distribution, with the symmetry parameter P play-
ing the role of inverse temperature, and the "Hamilto-
nian" 'R containing a logarithmic repulsive interaction
plus a confining potential V. The function V(A) is chosen
such that P yields the required average eigenvalue den-
sity (which depends on the sample size and the degree of
disorder). Note that V may also be a function of P. The
logarithmic interaction has a fundamental geometric ori-
gin: The factor exp(P P,.

&
. ln ~A, —

Az ) = Q,.& .
~

A, —
Az ~i

is the Jacobian associated with the transformation from
the space of scattering matrices s to the smaller space
of transmission eigenvalues T„.s s 2s The form (2.5) for
the probability distribution is based on (a) an isotropy
assumption, which implies that Aux incident in one scat-
tering channel is, on average, equally distributed among
all outgoing channels; and (b) a maximum entropy hy-
pothesis, which yields (2.5) as the least restrictive dis-
tribution consistent with a given average eigenvalue den-
sity. Assumption (a) requires a conductor much longer
than wide, i.e. , the quasi-one-dimensional limit L )) W.
Furthermore, the conductor should be long compared
to the mean free path l for elastic impurity scatter-
ing, in order to exclude ballistic transmission. Assump-
tion (b) has been justified by comparison with numeri-
cal simulations, " 7 but there exists no rigorous proof.
Indeed, it is conceivable that the true eigenvalue distri-
bution P((A„)) cannot be fully described by a one-body
potential V(A) plus Jacobian, as in Eq. (2.5), but that it

I

p(A) = ) h(A —A„),
n=1

(2.7)

(p(A)) =
dA i d A~ p(A) exp( —P'8)

dAi dAiv exp( —PR)
(2.8)

We define the "two-point correlation function" Kq(A, A')

by

~~(A»') = (p(A))(p(A')) —(p(A)p(A')) (2 9)

It is related to the "two-level cluster function" Tq(A, A')

of Ref. 12 by

Z, (A, A') = T, (A, A') —(p(A))b'(A —A'). (2.10)

We include the singular self-correlation in the correlation
function because it contributes to the variance of a linear
statistic (see below).

To obtain the required relationship, we take the func-
tional derivative of (p(A)) with respect to V(A'). Since
6'8/6V(A) = p(A), differentiation of Eq. (2.8) yields

contains additional many-body potentials. These would
modify the logarithmic interaction of the A' s. We empha-
size this because one of the implications of our analysis
will be that Eq. (2.5) is not rigorously valid —although
the error is quite small.

The goal of our analysis is to obtain the variance of
the linear statistic (2.4) from the eigenvalue distribution
function (2.5). To this end we need to know how pairs of
transmission eigenvalues are correlated. Our approach is
to relate the correlation function to a functional deriva-
tive of the eigenvalue density with respect to V, and
then to evaluate this functional derivative in the limit
N —+ oo. This limit, taken at constant L and l, ensures
that the conductor is short compared to the localization
length Nl —so that it is in the diffusive transport regime,
as required for UCF. In this section we deal with the
first step of our program, which is an exercise in statis-
tical mechanics. A similar line af reasoning was used by
Politzer, 29 for a different purpose (viz. , to show that A
has a Gaussian distribution).

The mean density of transmission eigenvalues (p(A)) is
defined as the ensemble average of the microscopic den-
sity p(A):

~(p(A))
bV(A')

dA] dAiv p(A) p(A') exp( —P/)

dAi dAiv exp( —P'8)

dAi dAivp(A) exp( —P'R) l t dAi dAivp(A') exp( —P'H) ~

dAi dA~ exp( —PPt') dAi dAiv exp( —P'R)

= —&(p(A) p(A')) + &(p(A))(p(A')) (2.11)
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Hence we obtain the key relation

1 b(p(A))
K2(A, A') =— (2.12)

work with the linear integral equation

dA' (p(A')) ln ~A
—A'~ = V(A) + const. (3.3)

The linear statistic (2.4) can be written in terms of the
microscopic eigenvalue density (2.7),

dA a(A) p(A). (2.13)

The ensemble average (A) is

(A) = dAa(A)(p(A)),
0

so that the variance Var A—:(A ) —(A)2 becomes

(2.14)

VarA=— dA dA'a(A)a(A')Kg(A, A')

b(p(A))dA' a(A) a(A') (2.15)

This relationship between the variance of a linear statistic
and the functional derivative of the density of transmis-
sion eigenvalues is an exact consequence of the probabil-
ity distribution (2.5).

An immediate implication of Eq. (2.15) is that Var A oc

1/P, provided the functional derivative b(p)/bV is inde-
pendent of the symmetry parameter P. As we will see in
the next section, this is indeed the case for N —+ oo-
regardless of any P dependence of V. Furthermore, since
all microscopic details of the system enter via the "po-
tential" V(A), universality of the fiuctuations is obtained
if (p) is a linear functional of V. Again, this holds for
N —+ oo, as we will see next.

dA'Q(A') ln ~A
—A'~ = P(A) + const, (3 4)

where the additive constant has to be chosen such that
Q has zero mean,

dAQ(A) = 0, (3.5)

since the variations in (p) have to occur at constant N.
Because of Eq. (2.12), the integral solution

dA' pK2 (A, A') p(A') (3.6)

Equation (3.3) has the intuitive "mean-field" interpreta-
tion (originally due to Wignerso) that the "charge den-
sity" (p) adjusts itself to the "external potential" V in
such a way that the total force on any charge A vanishes.
The more accurate equation (3.1) shows that, in fact, Eq.
(3.3) is the leading term in a 1/N expansion.

In Dyson's derivation of Eq. (3.1), essential use is made
of the fact that all integrals run from —oo to +oo.3 In
our case, the integration range is from 0 to oo. In Ap-
pendix A we show how Dyson's analysis can be modified
to incorporate the positivity constraint on A. The final
result is still Eq. (3.1), i.e. , the positivity constraint in-
troduces no extra terms to the order considered.

To obtain the two-point correlation function K2(A, A')
in the limit N —+ oo we thus need to study the integral
equation (3.3). The functional derivative b(p)/b'V equals
the solving kernel of

III. INTEGRAL EQUATION
FOR THE EIGENVALUE DENSITY

To evaluate the functional derivative (2.12) we must
know how the density of transmission eigenvalues (p) de-
pends on the potential V in the Hamiltonian (2.5). This
problem has been addressed before in the random-matrix
theory of energy levels, which is also based on the dis-
tribution function (2.5), but without the positivity con-
straint on A. For that case, Dyson has derived the
following equation:

dA' (p(A')) ln ~A
—A'~ + in(p(A)) = V(A) + const,

—2

2

(3.1)

where the additive constant is to be determined from the
normalization condition

dA(p(A)) = N. (3.2)

The second term on the left-hand side of Eq. (3.1) is of
order N lnN relative to the first, and terms of still
higher order in 1/N are neglected. To calculate the two-
point correlation function (2.12) in leading order it is
sufIicient to retain only the first term, so that we can

IV. SOLUTION OF THE INTEGRAL EQUATION

The integral equation (3.4) can be solved analytically
by a Mellin-transform technique. We define

x=lnA, —oo ( x ( oo,

@(x)= *4(e*)

4(x) = &(e*)

K2 (x, x') = e*+*K2(e, e* ).

(4.1)
(4.2)

(4 3)

(4.4)

In the new variable x Eqs. (3.4) and (3.5) become

dx' g(x') C(x, x') = P(x) + const, (4.5)

of Eq. (3.4) directly determines the two-point correlation
function, and hence the variance (2.15) of a linear statis-
tic. Since the integral equation (3.4) does not contain
any microscopic parameters and is independent of the
symmetry parameter P, the two statements of universal-

ity made at the end of Sec. II are now validated: Var A
is inversely proportional to P and is independent of mi-

croscopic parameters. To calculate the value of Var A we
have to determine the solving kernel of Eq. (3.4). This is
the subject of the next section.
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dx Q(x) = 0, (4.6)

0(x) = dx' PKg (x, x') &P(x'), (4 7)

in accordance with Eq. (3.6). To proceed, we note that
the integral equation (4.5) is invariant under the trans-
formation

with kernel C(x, x') = ln ~e* —e ~. The inverse of C
equals PK2,

In contrast, the two-point correlation function K2(A, A')
in the original variable A is not translationally invariant.
Using the relation (4.4) between K2 and K2, we find from
Eq. (4.15) the expression

1 o] 0 ~A —~A'
~2P OA c)A'

(4.16)

The kernel K2(A, A') has an integrable singularity for A =
A'. The nonsingular part is obtained by carrying out the
difFerentiation in Eq. (4.16), with the result

C(x, x') ~ C(x, x') + f(x) + g(x'), (4.8) K2(A, A') =, (AA') '~'(A+ A')(A —A') '

since the integral fdx'Q(x') f(x) vanishes by virtue of
condition (4.6), while the integral fd x'Q( x)g( x) con-
tributes an x-independent constant which can be ab-
sorbed in the constant at the right-hand side of Eq. (4.5).
We now choose f(x) = —2x and g(x') = —&x'. The
transformed kernel becomes translationally invariant,

in]s* —s*] —s(z+ z') = in 2sinh (*s* ) . (49)

In this way we succeeded in reducing the integral equa-
tion (3.4) to a convolution,

dz'Q]z') in 2sinh (' s' ) = d(z) + cones

(4.10)

if A g A'. (4.17)

It is of interest to compare our asymptotic result for
the two-point correlation function with the exact result of
Slevin, Pichard, and Mello for the Laguerre ensemble,
defined by Eq. (2.5) with P = 2 and V(A) = 2A —zo, in A.
The parameter n ) —1 is arbitrary (the case o; = 0
has also been considered in Ref. 7). For this ensemble
the correlation function can be calculated exactly, using
the method of orthogonal polynomials. Slevin, Pichard,
and Mello find for the two-level cluster function T2(A, A')
the formula

T, (A, A') = (AA'). .-"-"'

f(k) = dx e'"*f(x). (4.11)

which can be solved easily by Fourier transformation.
We define the Fourier transform of an arbitrary func-

tion f(x) by For N / (( A, A' (( N / an asymptotic expansion of
the Laguerre polynomials L~ yields

Fourier transformation of the kernel yields

dx e'" ln 2 sinh — = ——cotanh(ak).
2 A:

Hence Eq. (4.10) has the k-space solution

(4.12)

cos]2A'&s(WA+ VA') —so]

I~A+ ~A

Q(k) = ——tanh(ark) P(k). (4.13)

Equation (4.6) is automatically satisfied, provided
limA, 0 k2$(k) = 0.

We conclude from Eqs. (4.7) and (4.10) that the two-
point correlation function in the variable x is transla-
tionally invariant, K2(x, x')—:K2(x —x'), with Fourier
transform

If A P A' the two-level cluster function Tq(A, A') and the
two-point correlation function K2(A, A') are identical [cf.
Eq. (2.10)], so that we can compare with Eq. (4.17). The
sine and cosine in Eq. (4.19) oscillate rapidly for N h oo,
and hence may be smoothed out by averaging A and A'

over a range tiA much larger than 1/N, but much smaller
than 1. The sin and cos terms average to 2, while the
cross term sin x cos averages to zero, independently of n.
Equation (4.19) then reduces to

K2(k)—: dx e'"*K2(x) = — tanh(ark). (4.14)

Inversion of the Fourier transform yields
T2(A, A') = (AA')

1
K2(x) —=

27t.
dke '" K(k)

1 G x
ln tanh— (4.15)

1/2

(vh+ VA')s I
(4.20)
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which is the same as our Eq. (4.17) for P = 2.
For N ~ oo the peak in Tq(A, A') at A = A' can

be approximated by the delta function {p(A))b(A —A').
[Note that f dA'Tz(A, A') = (p(A)), by definition. ] It is
not obvious analytically that the remaining singularity in
K2(A, A') —= Tq(A, A') —(p(A) )6 (A —A') has the asymptotic
form (4.16). A numerical demonstration of the equiva-
lence will be given in Sec. VII.

ticular, Var A diverges logarithmically for a step function,
a(A) = g(A, —A). For such artificial linear statistics the
variance does not have a universal N ~ oo limit, but
increases as lnN for large N. All physical properties
considered in the next section, however, are smooth (dif-
ferentiable) functions of A.

VI. APPLICATIONS

V. FORM%LA FOR THE VARIANCE
OF A LINEAR STATISTIC

We list various applications of the variance formula
(5.5) without discussion, which we defer to Sec. VIII.

We are now ready to evaluate the variance of the linear
statistic A = P„a(A„). We define

ax =ae

A. Conductance

The conductance G is related to the transmission
eigenvalues by the Landauer formula

VarA =— dx' a(x)a(x')K2(x, x'). (5.2)

Using also the definition (4.4), Eq. (2.15) takes the form N N

G/G. =) T„=)
n- n=1

(6.1)

In the preceding section we have found that the two-point
correlation function K2(x, x ) is translationally invariant,
with Fourier transform K2(k) given by Eq. (4.14). We de-
fine the Fourier transform of a(x) according to Eq. (4.11),

Here Gp = 2e /h is the conductance quantum. The
conductance is a linear statistic of the form (2.4), with
a(A) = (1+A) . The Mellin transform of a(A), i.e. , the
Fourier transform of (1+ e*) i, is

a(k) = dx e'"*a(x) = dA A'" ' a(A). (5.3)
a(k) = 1ikx

1+6
271

sinh(~k)
' (6 2)

The Fourier transform with respect to x is a Metlin trans-
form with respect to A. Equation (5.2) becomes in k
space Var(G/Gp) = P

k 1

Substitution into Eq. (5.5) yields the variance

OO

VarA =—
2 —OO

dk la(k) I'K~(k). (5.4) B. Shot noise

Substituting Eq. (4.14) we obtain the formula
The shot-noise power P is given by3

1 1
VarA =— dk la(k)l ktanh(hark) (5 5)

N N

P/Pp = ) T„(1—T„) = )
n=l n=1

(6.4)

1 1
VarA = ———

p ir2
, (da(A) i da(A') l

dA ) dA' )
x ln . (5.6)

A+ A'

for the variance of a linear statistic on the transmission
eigenvalues. Equation (5.5) is equivalent to Eq. (1.2) in
the Introduction.

The formula (5.5) is for the quantum transport prob-
lem what the Dyson-Mehta formula was for the problem
of the statistics of energy levels. A derivation of the lat-
ter formula along the lines set out in the present paper
(which is more general than previous derivations) is given
in Appendix B.

Before proceeding to the application of Eq. (5.5) to a
variety of linear statistics, we give for completeness the
A representation of this formula. Substituting Eq. (4.16)
into Eq. (2.15), and carrying out two partial integrations,
one finds

with Pp = 2elUlGp (U is the applied voltage). The Mellin
transform of a(A) = A(1 + A) is

a(k) =
(1+ e*)2 sinh(~k)

' (6.5)

Hence the variance becomes

Var (P/Pp) = P dk. = —P
sinh(2+k) 64 (6 6)

C. Norxnal-superconductor interface

T l' 2G./G. =2):, ",l =).„„,,n=1 n=1
(6.7)

The conductance GNS of a disordered microbridge be-
tween a normal and a superconducting reservoir is related
to the transmission eigenvalues in the normal state by33

Equation (5.6) requires that a(A) is differentiable. In par- This expression holds only in zero magnetic field (P = 1).
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The Mellin transform of a(A) = 2(l + 2A) 2 is

a(k) = dx 8
2

(1+2e*)2
2vrk + 2~isinh(hark)

(6.8)

which leads to the variance

Var (GNs/Go) = 4
k'+ k 9

dk
sinh(2vrk) 16 ' (6.9)

where we have set P equal to 1.

D. Josephson junction

The supercurrent-phase relationship I(P) of a point-
contact Josephson junction can be expressed in terms of
the normal-state transmission eigenvalues, 9

&T~ sin P

[1 —T„sin (P/2)]i/2
' (6.10)

(I(g)) = (G) cos(P /2) arctanh [sin(P/2)] . (6.11)

where again P = 1 is required. Here Io ——eA/Fi is the
supercurrent quantum (4 being the energy gap in the
superconductor). In this case it is easiest to start from
the variance formula (5.6) in the A representation, which
can be integrated numerically. The resulting root-mean-
square value rmsI = (Var I) / is plotted in Fig. 1, for
phase differences in the interval (O, ir) (since the vari-
ance is ir periodic). The limiting behavior at the edges
of the interval can be computed analytically from Eqs.
(5.5) and (6.10). for small P, rmsI(P) increases linearly
from zero with slope 2 s/ eE/h; for P —& ir, rmsI(P)
approaches the value ir ieA/h, . The increase is almost,
but not quite, monotonic (there is a slight maximum at
P = 2.7).

For comparison, we have also plotted in Fig. 1 the en-
semble average (I(P)) of the supercurrent, given bys4 ss

Here (G) = (2e /h)Nt/L is the ensemble-averaged con-
ductance of the same junction (with length L and mean
free path t) in the normal state. For P —+ 7r, (I(P)) goes
to zero while rmsI(P) remains finite. These two limits
can be reconciled by noting that our result for the vari-
ance holds in the limit N —+ oo at constant P. Taking
the limit N ~ oo before taking the limit P ~ x ensures
that the fluctuations in the supercurrent remain smaller
than the average. A calculation to higher order in 1/N
is needed to show that rms I(P) goes to zero at P = vr.

The maximum value of the supercurrent is known as
the critical current of the 3osephson junction. The criti-
cal current I, —:maxI(P)—:I(P,) is not by definition a
linear statistic, since the phase difference P, at which the
maximum supercurrent is reached depends itself on all
the transmission eigenvalues. It is therefore not possible
in general to write I, in the form P„f(T„), as required
for a linear statistic. However, I, does become a linear
statistic in the limit N —+ oo.35 To see this, we write

I(&) = (I(4))[1 + eX(&)] ~ —= L/Nt (6.12)

where the function X(P) accounts for the sample-to-
sample fiuctuations of I(P) around the ensemble average
(I(P)). One has (X) = 0, rmsX = O(1). We now ex-

pand I, to lowest order in e. We define P, —:P, + eP,(0) (~)

where max (I(P)) —= (I(P, )). The phase difference
P( ) = 1.97 is the phase difference at which the ensemble-
averaged supercurrent (6.11) reaches its maximum. One
has

I.—= (I(4")) [1+ X(4")]
= (I(&c"+ ~&a"))[1+~X(4'~c" + e&c")]
= (I(4'.")) [1 + X(4'.")+ &( ')1 = I(&'")

(6.13)

up to terms of order e2. In the third equality we have

used that, by definition, d(I)/dP = 0 at P = P(, ). Since

I(P, )) is a linear statistic on T„, we conclude that the
critical current I, is a linear statistic on the transmission
eigenvalues in the limit e = L/Nt —+ 0, with rmsI, =
rmsI(P, ). From the data in Fig. 1 we find

rmsI, = 0.29 ed/h. (6.14)

Oo
phase difference

FIG. 1. Supercurrent I (in units of eA/h), as a function
of the phase difFerence P across the Josephson junction. The
solid curve is the square root of the variance of I, computed
from Eqs. (5.6) and (6.10). The dotted curve is the ensem-
ble average of I (scaled by Nl/L), computed from Eq. (6.11).
The root-mean-square fluctuation rmsI, in the critical cur-
rent equals rms I at P = 1.97.

VarA = dAa(A) kiv, (A, A)

dA' a(A)a(A') [kiv (A, A')]', (7 1)

VII. COMPARISON WITH NUMERICAL
CALCULATIONS

As an independent check of the validity of our asymp-
totic analysis, we have compared Eq. (5.5) with an ex-
actly solvable model. We consider the I aguerre ensem-
ble (cf. Sec. IV), defined by Eq. (2.5) with P = 2 and
V(A) = 2A —zo. ln A. The parameter n ) —1 plays
the role of a microscopic parameter. In this ensemble,
the variance of the linear statistic (2.4) is given exactly
by7)22
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FIG. 2. Variance of the conductance G (in units of Gp =
2e /h), as a function of the number of channels N. The data
points are obtained by integration of the exact correlation
function in the Laguerre ensemble (Refs. 7 and 22), for var-
ious values of the microscopic parameter o [Eqs. (7.1) and
(7.2)]. The estimated error in the numerical integration is
+0.001. (For n = —0.5 we could only integrate with the re-
quired accuracy for N up to 25.) The horizontal line at 0.0625
is the o.-independent value predicted in the limit N —+ oo by
Eq. (5.5), for P = 2.

VIII. COMPARISON WITH OTHER THEORIES

k .(A, A') = (AA') ~"-("+"'l~'
lV —1

n=O

We evaluated the integrals over the I aguerre polynomials
1~ numerically. In Fig. 2 we show the comparison for the
variance of the conductance [Eq. (6.1)]. For the Laguerre
ensemble (which has P = 2) we would expect from Eq.
(6.3) that Var (G/Go) = 0.0625 for N )) 1, independent
of N and a. As one can see in Fig. 2, this is indeed what
we find (within numerical accuracy) from integration of
the exact correlation function. Note that the convergence
is not uniform in a.. For a. = 0 the large-N limit is
reached already at N = 10, while for o, = 2 we need to
go up to N —100.

We have checked for all the transport properties men-
tioned in Sec. VI that the variances predicted by Eq.
(5.5) agree with the numerical results from the Laguerre
ensemble for large ¹ We consider this strong evidence
for the validity of the asymptotic analysis leading to Eq.
(5.5).

why it was not noticed previously. In particular, the dif-
ference is too small to resolve by numerical simulations
of a microscopic model. Prom a practical point of view,
the discrepancy is not really significant, but conceptually
it has the important implication that the random-matrix
theory based on the probability distribution (2.5) is not
rigorously equivalent to the diagrammatic perturbation
theory of UCF, which we hold to be exact, The conclu-
sion is that the interaction between the A's is not precisely
logarithmic.

A second implication of s g is is that the random-
matrix theory based on the probability distribution (2.5)
(the so-called "global approach" of Muttalib, Pichard,
and Stones) is not precisely equivalent to the "local ap-
proach" of Mello, Pereyra, and Kumar. s The local ap-
proach is based on an evolution equation for the prob-
ability distribution as a function of the length of the
sample, and yields Var G = isP in agreement with
the diagrammatic perturbation theory. 9 Previous work
by Mello and Pichard argues for the equivalence of the
local and global approaches. As we discuss in Appendix
C, their argument is insuKcient: It starts from a one-
body potential V(A), i.e. , it assumes that the interaction
between the A's is precisely logarithmic. We now know
that this is an approximation (albeit an excellent one). It
would be worthwhile to try to derive the interaction po-
tential from the asymptotic solution of Mello's evolution
equation and see how it differs from a two-body logarith-
mic interaction. We have not made any progress in this
direction.

The above discussion of a small deviation from
purely logarithmic interaction refers to the quasi-one-
dimensional transport regime. In higher dimensions the
situation is different. We know from the diagrammatic
perturbation theory23 that Var G depends on the ge-
ometry of the conductor. The isotropy assumption re-
stricts the random-matrix theory (both global and lo-
cal approaches) to the quasi-one-dimensional limit of a
long and narrow conductor. It has been conjectured2
that the geometry dependence of Var G can still be de-
scribed by the probability distribution (2.5), through a
dimensionality-dependent confining potential V(A). The
variance formula (5.5) demonstrates that this is not the
case, since Var G is independent of V in the large-N limit.
The implication is that in higher dimensions the logarith-
mic interaction in Eq. (2.5) is no longer a suitable ap-
proximation. This conclusion was reached independently,
through numerical simulations, by Slevin, Pichard, and
Muttalib 2"

We return to the applications of the variance formula
given in Sec. VI, and compare these with previous theo-
retical work on mesoscopic fIuctuations.

A. Conductance

The diagrammatic perturbation theory of UCF
yields Var (G/Go) = isP for a quasi-one-dimensional
conductor (i.e. , a conductor much longer than it is wide).
The coefficient s in Eq. (6.3) is close to, but not precisely
identical to, &&. The smallness of the difference explains

B. Shot noise

A previous calculation of the variance of the shot-noise
power based on Mello's evolution equation (the local ap-
proach mentioned above) has been carried out by De Jong
and the present author. The calculation applies a mo-
ment expansion technique, which works for linear statis-
tics 4 = P f(T„) for which f(T) is a low-order polyno-
mial in T. [For the shot-noise f(T) oc T(l T); cf. Eq. —
(6.4).] The result of Ref. 21 is Var (P/Po) = 2sssP
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The coeflicient s4
—0.0156 in Eq. (6.6) is again close

to, but not precisely identical to 2835 0.0162. This is
a similar discrepancy to that for the conductance, and
similar comments apply.

C. Normal-superconductor interface

A calculation of the variance of the conductance of a
normal-superconductor (NS) junction was carried out by
means of diagrammatic perturbation theory by Takane
and Ebisawa. o Only one of the contributing diagrams
was evaluated explicitly, from which they estimated
Var G~s = 6VarG (where G is the conductance of
the junction in the normal state). Numerical simu-
lations by these same authors 7 yielded the estimate
Var G~s = 4VarG. From Eqs. (6.3) and (6.9) we find
Var G~s =

z Var G. The difference with the numerical
simulations is within the numerical accuracy of the latter.

In the presence of a magnetic field the conductance
G~s of the NS junction is no longer a linear statistic.
Numerical simulations show that the breaking of time-
reversal symmetry (P = 1 ~ P = 2) leaves Var G~s es-
sentially unchanged —while the variance Var G of the
normal-state conductance is reduced by a factor of 2
(as expected from the 1/P dependence of the variance
of a linear statistic). An analytical theory of the non-
universal P dependence of Var G~s is still lacking.

of universal conductance fluctuations is generic for a
whole class of transport properties in conductors and su-
perconductors. Such universality was anticipated from
the random-matrix theory of energy levels, but could not
previously be established because of the absence of trans-
lational invariance of the correlation function of trans-
mission coefficients (originating from the unitarity of the
scattering matrix). 7 The functional-derivative method
presented here requires no translational invariance, and
thus allows one to solve this problem. The solution has
revealed a small numerical discrepancy with the diagram-
matic perturbation theory, which implies that the eigen-
value repulsion is not precisely logarithmic in the ratio
of reffection to transmission coefficients (the A variables)—as assumed thus far.

It is likely that the functional-derivative method de-
scribed in this paper can be of use for other problems
in random-matrix theory. One such application is the
recent work by Jalabert, Pichard, and the present au-
thor on the problem of long-range energy-level interac-
tion in metallic particles. 4~ In this inverse problem the
functional-derivative method was used to calculate the
deviations from logarithmic energy-level repulsion im-
plied by the known two-point correlation function of the
energy levels. We expect other applications to follow.
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D. Josephson junction

The order of magnitude rmsI, eA/h of the Huc-
tuations in the critical current was reported previously
by the present author. This result, holds for a point-
contact Josephson junction, which is short compared to
the superconducting coherence length g = (Avail/irE) i~z

(where vF is the Fermi velocity and l the mean free
path). If the junction is long compared to (, the super-
current is no longer a linear statistic on the transmission
eigenvalues. is The long-junction limit L )) g was studied
by Al'tshuler and Spivak. 39 They find the nonuniversal
result rmsI, = evil/L, which depends on sample size
and degree of disorder.

IX. CONCLUSION

We have presented a method to treat the eigenvalue
correlations in random-matrix ensembles. The method is
based on (1) a functional derivative relation between the
mean eigenvalue density and the density-density correla-
tion function and (2) an integral equation 4 for the eigen-
value density, valid asymptotically in the high-density
(large-%) limit. When applied to the random-matrix the-
ory of energy-level statistics, our method provides a more
general derivation of the Dyson-Mehta formula for the
variance of a linear statistic on the energy levels. When
applied to the random-matrix theory of quantum trans-
port, the functional-derivative method yields the corre-
sponding formula for the variance of a linear statistic on
the transmission eigenvalues. This formula demonstrates
that the universality which was established in the theory
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APPENDIX A: DERIVATION OF EQ. (3.1)

Dyson's derivationi4 of the integral equation (3.1) for
(p(A)) makes essential use of the fact that the variables
A„are free to vary from —oo to +oo. In the quantum
transport problem, however, the A„'s are strictly positive.
Here we show how Dyson's derivation can be modified to
account for the positivity constraint.

The first step is to transform from the variables A„
to the variables x = In% . Since A„c (O, oo), x„c
(—oo, oo). The probability distribution (2.5) becomes, in
the new variables,

P((x„})= Z ' expI —PR((x„})],
(A1)

&((x„})= —) In ~e** —e*'~ + ) V(e**)

—P x, .

The factor exp(g, x, ) = Q,. A, is the Jacobian for the
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&(x) = &(e*) —[-,'(~ —1)+p ']z.
(A2)

transformation from A to x. By using the identity (4.9),
the "Hamiltonian" 'R(fx~)) for the x variables can be
rewritten in terms of a translationally invariant interac-
tion plus a one-body potential,

2d(( z)) = —) ln 2sinh (*' *
) + ) V(z;),

The function y{z,x') = y(x', x) is symmetric, and satis-
fies

dx'y(x, z')(P(x')) = 1, {A10)

in view of the normalization (AS). Substitution of the
definition (A9) into Eq. (A6) leads to

d—(p(x)) + p(p(x)) —[U(x) + U(x)]

After these preliminaries we proceed as follows. The
distribution function P((x )) satisfies the differential
equations (one for each i = 1, 2, . . . , N)

with the definitions

+-,'P(P(x))I(x) = 0, (All)

OP —O'R+ P
Oxt Ozt

(A3) I( ) P dz'{p{z'))p(z, z')cotanh (',' ),
~e ~~ltiply Eq. (A3) by b(z —x,), integrate over
xq, x2, . . . , x~, and sum over i. The result is dz'(p(z')) ln 2sinh ( s* ) (A13)

P(( ))

x ) 6(x —x, )
BQ

t,=l

where (P(x)) is the mean density of the x„'s,

(A4) y(x, x') = Y[2 (x + x'), x' —x]—:Y'(t, s). (A14)

The function Y'(t, s) = Y(t, —s) is even in s. The nor-
malization (A10) becomes

Equation (All) is still exact. To introduce the ap-
proximation we need one further piece of notation. We
reexpress the function y(x, x') in terms of the sum and
difference variables t =

2 (x + x') and s = x' —x:

(p(*)) = ) ~(z —*')
i=1

ds Y(x+ 2s, s)(P(x+ s)) = l. (A15)

Q j s ~ ~ dx~P((x„))) b(x —x, ). Similarly, the integral (A12) takes the form

(A5) I(z) = —P ds Y(x+ 2s, s)(p(x+ s))cotanh(2s).

1 pp2 dz'(ps(z, z'))cotanh (*s* ) = 0, (Ah)

where PJ indicates the principal value of the integral.
The pair density (P2(x, z')) is defined by

Substitution of the expression (A2) for 'R into Eq. (A4)
leads to

d

d
(p(x)) + p(p(z)) „&(x)— By substituting the Taylor expansions

(A16)

Y(x+ 2s, s) = Y'(x, s) + 2s Y(x, s) +
Ox

d
(p (x+ s)) = (p(x)) + s—(p(x)) + .",

dx
coth(2s) = 2s '+ sis+

(A17)

(A19)

into Eq. (A16), we obtain an expansion of I(x) in higher
and higher moments Y&(x) of Y(x, s) with respect to s,

(ps(x x')) = ).~(z- z')~(x' —x&) Y„(x) = ds Y (x, s)s". (A20)

The pair density is symmetric in its arguments,
(pq(x, x')) = (pq(x', x)), and satisfies the normalization

d '(p ( ')) = (Ii' —1)(p( )) (AS)

(P2(x, *')) = (P(*))(P(x'))[1—u(x x')]. (A9)

Following Ref. 14 we decompose the pair density into
a correlated and an uncorrelated part,

Because of the symmetry Y'(t, s) = Y(t, —s) only even
moments contribute [Y„'(x) = 0 for p odd]. Following
Dyson, i we neglect the second ond higher moments. An
order of magnitude estimate suggests that the error in-
volved in neglecting Y„ for p & 2 is of order N 2. Dyson
argues that the error is actually of order N 2 in%, by
comparison with exact results for the distribution of the
spacing of eigenvalues.

Since Y i(x) and Yi(x) are identically zero, only Y{)(x)
contributes to I(x) to second order. Substitution of the
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I(x) = -(P(x)) d. ~o(x) —»0(x) „.(P(x)) (A21)

Taylor expansions (A17)—(A19) into Eq. (A16) yields Using Eq. (2.12) we find that the (translationally invari-
ant) two-point correlation function Kq(A, A') = Kz(A-
A') is given by

Similarly, substitution of the Taylor expansions into Eq.
(A15) yields

1
Kq(A) = — In iAi. (B3)

(P(x)}&o(x)= 1.

Combining Eqs. (A21) and (A22) we find

I( ) = (P(*)) d (P(x)}.

Hence Eq. (All) takes the form

(A22)

(A23)

I
VarA =— dk ia(k) i ik . (B4)

The Fourier-transformed correlation function Kq(k)
—~k~/vrP is simply 1/P times the inverse of the Fourier-
transformed interaction kernel. Substitution of the two-
point correlation function into Eq. (2.15) yields the vari-
ance of the linear statistic (2.4),

(1 ——,P)Z (P(x))+P(P(x))d [V(x)—+ U(x)] = o,

(A24)

or equivalently [using definitions (A2) and (A13)]

2
dx'(p(x')) ln 2sinh

2
1n(P(x))

N P —2= V(e*) ——x + x + const.
2 2P

(A25)

(p(*)) = A(p(A)) (A26)

Using also the identity (4.9), plus the normalization

f (p)dA = N, we find from Eq. (A25) the result
OO

dA' (p(A')) ln ~A
—A'~+

—2

2 ln(p(A)) = V(A)+const.

(A27)

This is the integral equation (3.1).

APPENDIX B: DYSON-MEHTA
FORMULA REVISITED

The functional-derivative method developed in this pa-
per for the quantum transport problem can be equally
well applied to the statistics of energy levels. In that
problem, we recall, the variable A is free to vary from
—oo to +oo, and hence we can de6ne a Fourier trans-
form with respect to A:

a(k) = dA e'""a(A). (Bl)

The integral equation (3.3) is now a convolution (since
the integral ranges over the whole real axis). Fourier
transformation of the kernel f dA e'"" ln]A~ = —vr/~k~
yields the functional derivative

~(p(A))
6 V(A')

1

2VC QQ

dk exp [ik(A —A')] (—vr/~ k ~)

1 d
~& d(A —A)&'"~ (B2)

The final step of our derivation is to transform back
from x to A = e*. The densities are related by (p(x))dx =
(p(A))dA, hence

This is the Dyson-Mehta formula quoted in the Introduc-
tion.

The difFerence between Eqs. (5.5) and (B4) originates
from the positivity constraint on A in the quantum trans-
port problem. Dyson and Mehta s derived their formula
by approximating an exact expression for the two-point
correlation function in the Gaussian unitary ensemble of
random Hamiltonians [defined by Eq. (2.5) with P = 2
and V(A) Kx A ). A recent treatment by Mehta40 deals
with the Gaussian orthogonal and Gaussian symplectic
ensembles (P = 1 and P = 4), still requiring a quadratic
V(A). The present derivation is more general, showing
that Eq. (B4) holds for any P and V.

P((A k) =t9 2

PN~2 —P

)" a(
~

A, (1+A, )~(&A„~)

P((A ))~
OA; J((A„)))

' (Cl)

which governs the sample-length dependence of the prob-
ability distribution in the quasi-one-dimensional limit.
Here J((A„)) denotes the Jacobian,

(C2)

associated with the transformation from matrix to eigen-
value space. It was believed until now that the global and
local approaches were equivalent, i.e. , that they would
give the same large-N results for the mesoscopic Huc-
tuations if the potential V(A) in Eq. (2.5) was suit-
ably chosen. 3 The present theory has shown that
this is not correct: The variance of the conductance is

APPENDIX C: GLOBAL VERSUS
LOCAL APPROACH

The present paper is based on the probability distri-
bution function (2.5) for the transmission eigenvalues.
This is the so-called global approach to random-matrix
theory. The so-called local approach starts from the evo-
lution equation
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Var (G/Go) = sP in the global approach, independent
of V(A), whereas the local approach is knowns to yield
Var (G/Go) = isP . In Sec. VIII we have discussed the
implications of this difference for the interaction of the
eigenvalues. In this appendix we reconsider the argument
of Mello and Pichard for the equivalence of the two the-
ories, and indicate why their argument is insufBcient.

Consider the probability distribution function

P((A„j) = Z exp[ —P'R($A„j)],
(C3)

&($A„j) = —) ln [A, —
A~ [+ V((A„j),

2&j

which is more general than Eq. (2.5) because V is now
allowed to be a many-body potential. By construction,
the function P((A„j) satisfies

+PP =0,OP 0'8
(C4)

2

By integrating Eq. (C4) one readily shows that the mean
density of eigenvalues

N

(p(A)) = ) 6(A —A, )

i =1,2, . . . , ¹

2=1

dAi dAivP((A„j) ) 6(A —A, ) (C5)
2=1

(p2(A, A')) = ) 6(A —A, )b(A' —A, ) (C7)

and (f(A)) is the mean force density due to the potential
V,

satis6. es the relation

P i
(p(A)) —P dA' ' = (f(A)),

dA A —A'

where P indicates the principal value. The function

(p2(A, A')) is the pair density of eigenvalues,

(f(A)) = — ) 6(A —A, ) V((A„j) . (C8)

Following Ref. 36, let us now assume that the prob-
ability distribution P defined in Eq. (C4) evolves with
sample length according to the evolution equation (Cl)
of the local approach. By substituting Eq. (C4) into Eq.
(Cl), and integrating, one obtains for the eigenvalue den-
sity the evolution equation

l
(p(A)) =

~
A(l+ A)(f(A)) I. (C9)%+2 — OA (

On the other hand, direct integration of the evolution
equation (Cl) yields

8 2P 0
P~+ 2 —P BA

x A(1+ A) P (p(A))
, o

o A —A' )
(C10)

The two equations (C9) and (C10) are consistent because
of the relation (C6).

In the global approach the potential V is assumed to
be a one body potent-ial, i.e. , V({A„j)= Q, V(A, ). The
force density (f(A)) is then equal to —(p(A))dV(A)/dA.
Equation (C6) becomes for large N the integral equation
(3.1) (cf. Appendix A), which ensures that Eqs. (C9) and
(C10) are consistent. In this way Mello and Pichard
were able to demonstrate the consistency of the global
and local approach, assuming that V is a one-body po-
tential. However, as demonstrated above, the consistency
holds for any many-body potential V((A„j) —so that
this argument by itself is insufBcient to decide whether
V is a one-body potential or not. We now know that it
is not.
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