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Submicrometer control of two-dimensional —two-dimensional magnetotunneling
in double-well heterostructures
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Interwell two-dimensional —two-dimensional (2D-2D) tunneling in a density-imbalanced double-well

heterostructure is studied in an in-plane magnetic field using a gated-bridge technique which does not re-

quire independent contacts to the two 2D electron layers. Two sharp peaks in the tunneling conduc-
tance at B ~ 1.3 T and B =5—6 T are explained using a linear-response theory which incorporates finite

scattering and is based on a field-induced momentum shift of the two quantum wells' Fermi circles. A
second gate is used to locally enhance tunneling on a submicrometer length scale.

The past several years have seen tremendous interest in
double-barrier resonant-tunneling devices in which the
tunneling is from three-dimensional (3D) to two-
dimensional (2D). ' In the presence of an in-plane mag-
netic field B, the resonant-tunneling I ( V) peak undergoes
a voltage shift and considerable broadening. Zaslav-
sky et al. proposed a geometrical construction, in which
the dispersion curves for the 3D emitter and 2D quantum
well (QW) are plotted in (k, k,E) space, with their ori-
gins offset by a B-induced shift in transverse momentum
Ak. Requiring conservation of energy and transverse
momentum, the tunneling is possible only when the
dispersion curves overlap.

More recently, 2D —2D tunneling has become of in-
terest. Smoliner et al. examined nonequilibrium (i.e., at
bias voltages »kT) magnetotunneling between an accu-
mulation and an inversion layer. Eisenstein et al. exam-
ined equilibrium magnetotunneling in a double-QW sys-
tem with initially balanced electron densities, as a func-
tion of both B and the QW's density ratio. A similar
geometrical model, modified to the equilibrium 2D-2D
case, was used to explain their results. In these works,
the two 2D electron layers were contacted independently,
either using diffused contacts, or by thinning the sample
and patterning both sides with gates. '

In this work, we report on our studies of equilibrium
2D-2D magnetotunneling in a double-QW GaAs hetero-
structure with a built-in density imbalance. We avoid the
difIicult task of contacting the two electron layers in-
dependently by using a gate to deplete the top QW across
a small region of a resistance bridge, and then measuring
the four-terminal source-drain resistance RsD(B). We es-
tablish a formal relationship between R sD (B) and the
tunneling conductance G,„„(B) in terms of a
transmission-line model. G,„„(B)is then obtained from
the measured RsD(B). Two sharp peaks are observed in

G,„„(B)and explained in terms of the two QW's B-
displaced Fermi circles intersecting one another tangen-
tially. We present a linear-response theory, incorporat-
ing finite scattering times, which shows good agreement
with the data. Finally, we use a second 0.3-pm-wide gate
to locally control tunneling on a submicrometer length
scale.

Our sample is a molecular-beam-epitaxy (MBE) -grown
heterostructure consisting of two 150-A GaAs wells
separated by a 65-A Alo 3Gag 7As barrier. A 7X 10"
cm Si 5-doped layer lies 800 A beneath the bottom well
(QW1), while a 250-A-wide 10' cm Si-doped region is
450 A above the top well (QW2). When cooled to 0.3 K
in the dark, QW1 typically has density n, = 1.8 X 10"
cm and mobility 6 X 10 cm /V s, while QW2 typically
has density n2=1.0X10" cm and mobility 6X10
cm /V s, as determined by Shubnikov —de Haas measure-
ments. (These density values can vary by —10% on
thermal cycling, and the mobility values by as much as
50%.) Using electron-beam lithography, the sample is
patterned into a bridge geometry of 15-pm length and 2-

pm width. Two 0.3-pm-wide Cr/Au gates are placed
across the bridge, somewhat off center, and separated
from each other by 2 pm center to center (see Fig. 1).
RsD is measured using a standard 17-Hz lock-in tech-
nique at 0.3 K for B ~ 14 T applied parallel to the growth
plane. Excitation voltages are ~100 pV, much smaller
than the electrons' Fermi energies of -5 meV.

Shown in Fig. 2 is R sD as a function of the voltage Vz
on gate A, for B =0, and gate B at voltage V~ =0. At
V~ =0, both wells carry current, and RsD is largely
determined by QW2, which has much higher conductivi-
ty. As V~ is biased, Rso increases from —1.3 kA until a
plateau at —10 kQ is reached at V~ = Vd, &= —0.42 V,
when QW2 is depleted. RsD thus increases by a factor of
-7, even though the effective gate width is ~ 1/10th of
the length of the channel. This is because at B =0 the
tunneling resistance is very high, and once the QW2
current channel is broken, the current must largely Aow

in QW1. Increasing V„ further also depletes QW1, even-

tually pinching it off at V~ = —0.6 V.
The suppressed tunneling at B =0 can be understood '

by assuming the electrons to be localized in QW1 or
QW2. The dispersion curve of the system then has two
branches, one for each QW, identical except for an ener-

gy offset. Only those pairs of states with identical
momentum, one in each QW, and both at the Fermi sur-
face, can participate in tunneling. Since the densities of
the two wells are substantially different, their Fermi cir-
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FIG. 2. RsD as a function of V&, at V&=0. The plateau at

upper-left inset depicts an idealized side view of the sample at
&
—Vd,», with arrows illustrating the current distribution.

ost tunneling events occur to the right of the gate. The
lower-left inset shows the transmission-line model used for the
region of the sample to the right of gate 2, with the diff'erential

resistance elements indicated. The right inset shows R»(B) for
several values of V&, with V& =0.

cles are located concentrically in momentum space with
no overlap, and no interwell pairs of states having the
same momentum and energy exist.

Before examining the model at 6nite B, we discuss the

rom the measured Rso. In the upper™left inset to Fig. 2
is pictured schematically the situation when V = V
and V =0. ~B( ecause QW2 has much higher conductivit

dept

than &W1 th e tunneling current increases toward th
uc ivi y

dges of gate 3; other current paths o6'er higher resis-
e

tance. ) In the lower-left inset, a transmission-line model
equivalent circuit for the region of the sam 1 t th

'
h

of ate 3 iss
mpe o erig t

the to
o gate 3 is s own. Using the boundary conditio th t

e op and bottom well voltages are equal to one another
at the source and drain, and that the top well current is

zero under the ateg te, we obtain, for the resistance of the
right region,

R BR tanhp~ RsRRTR
right +

RBR+RrR p~ RBR+RTR

where P~ =(R +RTa)/R«„z. Here RB~ and RTR are
si es o e ottom andthe resistances of the right-hand sides f th b

top QW's, and R,„„R is the net tunneling resistance be-
tween the wells on the right side of the gate. Thus R„h,

+ I /R na ) ', when R The left-side resistance
umerica simula-R &,« is o tained in a similar manner. N

tions reveal that, because the left side is less than half as
ong as the right, and because of the wa s 1 hway ~ scaes with

the ma n
engt, an the general nonlinear natur f the o e circuit,

e magnetoresistance (MR) appears mostly through
R„„,.] Thus Rng sD right +R left +R z&, where R zz is
the resistance of that portion of the bott 1

RsD(B) then becomes a good measure of the magnetotun-
ne ing. That this is the case is shown in the u er-ri h
inset to Fi . 2o ig. , where RsD(8) is shown for Vs=0 and
several values of V~ . When V =0,

1 R= [ /(R rL +R TR +R ro ) + 1/(R BL +R BR +R BG ) ]

V = —0.42 V
MR is nearly completely absent. As V a r

dep] 0 42 V owever, a cusp in R a pear t
—1.3 T. As Vz is biased beyond V thdep] p e size of the
cusp remains relatively unchanged, while the entire RsD

beneath gate A. The B position of the cusp remains un-
c anged, as expected: the MR is nearly entirely due to

We now turn in more detail to the magnetotunneling
behavior. In Fig. 3(a) is shown R sD(B), after thermally

e t Vd p] unchanged, while R sD (8 ) and QW 1 and QW2
resistivities decreased by about a factor f 2.] RsD(8) ex-

ibits two sharp minima or cusps at B—= 1 d 5 6 T.an . . For
T, RsD(8) saturates at a value of -4.9 kQ. We

dual-Ferm'
can understand the MR cusps b 1

'
sps y app ying t' e same

ua -Fermi circle picture as before, modified for the 8%0
case by requiring the conservation of canonical momen-

p aced by the canonical momentum p+e A, where A is

lane an
the magnetic-vector potential. W th th W'

p ane and 8 in the y direction, we choose the Landau
gauge so that 3 =zB 3 = 3 =0 Ch

W1 th
oosing z=0 at

Q thus causes the x-momentum term A'k„ for QW2 to
be replaced by A'(k +edB/fi), where d is the center-to-
center distance between the QW's, or 215 A f

le. Thus W '
, or or our sam-

p e. us QW2's Fermi circle is displaced rel t' t
AW1's b Ak =

a ive o
s y =edB/A. When the perimeters of the two

Fermi circles overlap [see Fig. 3(a), insets], states of iden-
e ermi energy intica canonical momentum exist at th F

ot wells, and tunneling can occur. Tunneling is
greatest at the tangential intersection points Ak = k& —k
and k +k where k1 2~ ] and k2 are the Fermi wave num-

in s

hers of QW1 and QW2. At high 8, the Fermi circles
comp ete y separate, and tunneling is suppressed. This
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FICx. 3. (a) RsD(B) over the range 0—10 T. Insets depict top-
and bottom-well Fermi circle positions for various regions of
R»(8). (b) 6,„„& obtained from the data of (a) using Eq. (1).
(c) Theoretical G,„„& from Eq. (2), for three values of I &, at
T=0.3 K. The inset shows a basic bubble diagram for the
velocity-velocity correlation function in the tunneling conduc-
tivity.

provides a means of determining the R~'s and Rz-'s:
R 8„+RB~+R~~ is given simply by the high-B satura-
tion value of RsD, when current travels only through
QW1, with the three RB's assumed to scale as their asso-
ciated lengths. Similarly, given the Rz's, one can now
find the Rr's (also assumed to scale as their lengths) from

RsD( V„=O)= [1/(RrL+Riit+Rra)
+ /( BL+RBR+ BG)l

independent of B. Applying this method to the data of
Fig. 3(a), for which RsD( V„=O)=0.66 kQ, and assum-
ing an effective gate width of 1 pm, from Eq. (1) we ob-
tain G„„„ii(8)= I/R, „„ii(8), which is plotted in Fig. 3(b).

It is desirable to include the effects of scattering here.
In our structure, the tunneling integral is very small
( -0.03 meV), and electrons suffer many scattering events
before tunneling into the other well. The tunneling rate
depends sensitively on the scattering rates in both the
QW's, and even diverges at resonance for infinitely long
scattering times within the Fermi golden rule approxima-
tion at T =0. Since it is not obvious how to correctly in-
corporate energy-level damping in a simple Fermi golden
rule approach, we employ the more rigorous full field-
theoretic Green's-function method and use Kubo's for-
malism. ' The main contribution to the tunneling con-
ductivity o,„„arises from the basic "bubble" diagram de-

In Eq. (2), Q=Sd, where S is the tunneling area, Ji is
the tunneling integral, and f '(g) the first derivative of the
Fermi function. In Eq. (3), I „k represents the damping
for state k in the nth QW and is related to the transport
relaxation time by I'„'k =A'~„k/2 for isotropic scattering.
For anisotropic scattering, I „& is larger than I'„'k. The
wave vector k is independent of 8 in QW1, while in QW2
its x component is modified to k„(8)=k (0)+b,k. The
main effect of the finite well widths on the energy disper-
sion for c„k in an in-plane B is to modify the effective
mass and introduce a nonparabolic term. " However, this
effect is small for the B fields used here, and so is not in-
cluded. Though Eq. (2) contains contributions from all
sublevels, only the ground sublevels yield significant con-
tributions at 0.3 K. Details will be published elsewhere. '

In the limit I 2« I"&, which is well satisfied in our
structure, o,„„becomes independent of I z. In Fig. 3(c),
we show G,„„ii(8)obtained from a numerical evaluation
of Eq. (2) for 1,=0.0, 0.3, and 1.0 meV, which corre-
spond to mobilities of ~, 2. 8 X 10, and 0.9 X 10
cm /V s for isotropic scattering. The other parameters
used are n& =1.74X10" cm, n2=0. 95X10" cm
T=0.3 K, d =215 A, and a tunneling area of 20 pm for
the region to the right of gate B. The only adjustable pa-
rameter is the tunneling integral, for which we use 0.04
meV, larger than our actual estimate of 0.03 meV. The
theory exhibits good qualitative agreement with the data
in both magnitude and the half-widths of the tunneling
peaks.

In order to further test our interpretation of the data,
after again thermally cycling the sample we biased gate B
positively while holding V~ at V~, , = —0.45 V (see Fig.
4). As VB is increased, the top well density n2 (and thus
ki) beneath gate 8 is increased, locally bringing the two
wells closer to density balance. Thus for the regions un-
der gate 8, this (i) produces a shift in the peaks in ir,„„at
the Fermi circle tangential intersection points
(k, —k2)A'/ed and (ki+kz )i)i/ed; (ii) increases the size of
the peaks in o.,„„by up to a factor of 2 since, as the cur-
vatures of the Fermi circles approach one another, more
states become available for tunneling; and (iii) changes
the spatial distribution of the tunneling current, in part
due to the shifted and enhanced peaks in o.,„„under gate
8, and in part due to the increasing conductivity of QW2
under gate B. Thus the first MR cusp moves to lower B
and the second MR cusp moves to higher B. The overall
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FIG. 4. RsD(8) for V~ = Vd pl
—0.45 V, and several posi-

tive values of V&.

decrease in RsD is believed to be due at least in part to
the increasing conductivity of QW2 (and, at high biases,
QWl) under gate B. The data thus demonstrate control
of 2D-2D tunneling on a scale of & 1 pm, opening the
possibility of producing quantum interference e6'ects in
similar structures.

At first glance one might expect the two MR cusps to
sp/it as V~ is increased, rather than just shift, since the
sample regions far from gate B retain their original top
well densities nz. However, the tunneling current in
these regions is too small to produce MR cusps. We con-
sider the three regions separately. (i) For the region be-
tween gates A and B, the distance between the gate edges
is —1.6 pm. Since at comparable densities depletion

widths of up to —1 pm have been observed, ' and since a
similar enhancement width" is expected at the edge of
gate B, this region is unlikely to contain a homogeneous
domain of density n2 of any consequential width, and
thus will not produce sharp MR cusps. (ii) The region to
the right of gate B, as borne out by extensive circuit
simulations, carries negligible tunneling current, because
the current path through QWl has much higher resis-
tance than that through QW2, especially when the peaks
in O.,„„areenhanced under gate B. (iii) The region to the
left of gate 3 is much shorter than that to the right. Be-
cause R&L and R~L scale directly with length, while

R,„„L scales inversely, and because of the nonlinear
behavior of the equivalent circuit, the tunneling current
Bowing in this region is nearly an order of magnitude
lower than on the other side of gate A. When the peaks
in o,„„are enhanced under gate B, the ratio is even fur-
ther decreased. Together, these factors reduce the
strength of the original MR cusps to the point where they
are unobservable.

In summary, we have examined interwell magnetotun-
neling in a double-QW heterostructure, utilizing a gated
bridge technique which does not require independent
contacts to the two 2D electron layers. The data agree
with a linear-response theory based on a B-induced shift
b k of the wells' Fermi circles, and incorporating finite
scattering times. A second gate is used to enhance tun-
neling locally on a length scale of ~ 1 pm.
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