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The absorption spectrum in a p-type Si/Sij ¢Geg 4/Si structure with a §-doped quantum well grown on
the Si(001) substrate is calculated. For the bound-to-bound intersubband transitions, the depolarization
effect due to the complicated couplings among valence bands is included and the inclusion of this effect
is found to be essential in understanding the absorption spectrum. The effects of subband multiplicity,
nonparabolicity, and valence-band anisotropy are also incorporated into an implicit formula for an
effective plasma frequency in order to facilitate the calculation. For the bound-to-continuum intersub-
band transition, the large-box model is adopted to circumvent the difficulty in normalizing the traveling
wave function of the continuum state. The depolarization effect is not significant for the latter bound-
to-contiuum transition because of the small overlap of the initial- and final-state wave functions. In this
case, the absorption for the normal-incidence light becomes larger than that for the parallel-incidence
light. The total absorption including the bound-to-bound and bound-to-continuum intersubband transi-
tions shows a good agreement with the experimental data. The results provide a better understanding of
intersubband transition in the valence band and further show that normal-incidence transitions can be

significant.

I. INTRODUCTION

Intersubband transitions in quantum wells have at-
tracted a great deal of interest due to the potential appli-
cations in modulators and infrared (IR) detectors. > The
intersubband transition energy in the quantum well is
easily tunable by varying the quantum-well width and
barrier height. Moreover, there is a potential for the fa-
brication of uniform IR detector arrays with large area.
West and Eglash' reported the intersubband transitions
using an n-type GaAs/Al, Ga;_, As quantum-well struc-
ture, and thereafter much progress has been made in
making IR detectors and arrays.>”> For the n-type
GaAs/Al,Ga,_, As quantum-well structure, only the op-
tical field parallel to the quantum-well growth direction
(designated the z polarization) causes the intersubband
transition. »> This is due to the fact that electron motion
in the quantum-well direction (the z direction) is neces-
sary for the intersubband transition of a spherically sym-
metric valley. Such motion can only be induced by the
optical field along the quantum-well direction. For an n-
type SiGe/SiGe quantum-well structure, however, the
polarization selection rule stated above can be changed
due to the anisotropic mass tensor of the ellipsoidal val-
leys. The optical field polarized normal to the quantum-
well growth direction (the x polarization) can induce in-
tersubband transitions depending on the growth direc-
tion.®” Also, the oscillator strength for the intersubband
has been shown to depend on the growth direction and
the strain condition. 3

Recently, p-type quantum wells have also been demon-
strated to have possible applications for IR detectors. A
detailed calculation of the transitions among the valence
bands for p-type GaAs/Al,Ga,_,As quantum wells indi-
cates that both x- and z-polarized fields can induce the
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absorption due to the couplings between the s-type con-
duction band and p-type valence bands (s-p coupling).’
This result suggests a normal incidence application for
the IR detector, the modulator, and other optical devices.

More recently, the intersubband transitions in p-type
SiGe/Si heterostructures with a 8-doped quantum well
have been experimentally demonstrated by Park,
Karunasiri, and Wang.!° In that paper, the observed
transition peak in the 6-um range was explained to be the
confined-to-confined transition between two heavy-hole
subbands. Another peak in the 3-um range was attribut-
ed to the bound-to-continuum transition. The experi-
mental data for the bound-to-bound transition cannot be
understood from the model of Chang and James,’ who
used a two-band model to treat the p-type
Al ,Ga,_,As/GaAs quantum well for the bound-to-
bound transition. First of all, with the framework of
Chang and James,’ one cannot explain the unusually
large width of the peak observed by Park, Karunasiri,
and Wang. Moreover, there is only one peak, and transi-
tions among various different valence bands appear ab-
sent.

For the bound-to-continuum intersubband transition
observed in the work of Park, Karunasiri, and Wang, the
absorption for the x-polarized field is the strongest. The
Bloch function of the ground heavy-hole band is only a
function of the plane directions, and thus the largest ab-
sorption occurs for the polarized field along the plane’®
(normal incidence). This fact is true for the first-order
approximation. However, since the valence bands are
strongly coupled among them as well as with the conduc-
tion band, the depolarization dependence becomes more
complicated. Previously, Allen, Tsui, and Vinter!' and
Ando'? formulated the effect of depolarization in inter-
subband absorption for the n-type inversion layer. In
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those cases, only the conduction band was involved and
band multiplicity, nonparabolicity, and anisotropy were
not considered. Furthermore, in the case of heavy dop-
ing, high Fermi level (occupying the high plane-wave vec-
tor) increases the couplings, and thus complicates the
selection rule. Thus a refined framework for the calcula-
tion of the intersubband transition is needed.

The purpose of this work is to provide a framework to
help understand the polarization dependence of intersub-
band transitions in the heavily doped Si;_,Ge,/Si
quantum-well structure. In this framework, we have gen-
eralized the treatise of the depolarization effect used in
the n-type Si inversion layer!! (for multiple subbands of
the conduction band) and expanded to include the p-type
case including nonparabolicity, anisotropy, and
multiple-band coupling. The bound-to-continuum inter-
subband transition is then calculated using a large-box
model and, in this case, the depolarization effect is not in-
cluded due to the small overlap of the wave functions for
the bound and the continuum states. Because of the cou-
pling, the subbands are no longer the pure heavy-hole
(HH), light-hole (LH), or spin-orbit (SO) states away from
the zone center. Thus the transitions among subbands
occur in a mixed way, involving both the same type and
different types of Bloch states, and the definition “inter-
subband transition” is used here loosely to describe the
J
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transition among subbands, pure or mixed. The calculat-
ed results cover a wide range of the absorption spectrum
involving bound-to-bound and bound-to-continuum inter-
subband transitions. The calculated results are compared
with the published experimental results and show a good
agreement.

II. INTERSUBBAND TRANSITION

A. Quantum-well structure

In the calculation, the band structure is described us-
ing a six-band k-p method formulated by six basis func-
tions, represented by the |J,m J) notation in the frame-
work of single-particle theory. The s-type conduction
band is taken into account perturbatively (all other bands
have been included in an approximate way with the use
of the empirical mass value). We choose the quantum-
well direction (the z axis) as the quantization axis of the
angular momentum. ‘

The total 6X6 Hamiltonian includes both the k-p
Hamiltonian'>!'* and the strain Hamiltonian.!> The
strain and spin-orbit coupling terms do not lift the spin
degeneracy, and thus the total 6 X6 Hamiltonian matrix
can be factorized into two 3 X3 matrices using a unitary
transformation as follows:!®

Z, (X+j2Y)/2V73 —(Y +jX)/V'6
H= z, —[3Y cos(y—2m)+jZ,1/3V2 |, (1
Z,

where the elements in the lower triangle are the complex
conjugates of those in the upper triangle, and the ele-
ments of the Hamiltonian matrix are

Z,=(A+1B)k2+k})+(A4 —Bki+e,,
Z,=(A—1B)kI+k})+(A+Bk2—¢,,
Zy=A(k}+k}+kH—A,
Z,=3B(k}+k2—2k2)+6¢, (2)
Xe/X=3B (k}—k})+j2Nk k

X"y
Y=Y'k,,Y'e/"=N(k,—jk,) ,
GOZ%Du(ezz—exx) .

The coefficients 4, B, and N are the inverse mass band
parameters (IMBP), and A is the spin-orbit splitting ener-
gy. D, is the valence-band uniaxial deformation poten-
tial for (001),!” and e; is the conventional strain com-
ponent. The IMBP’s of SiGe alloys are obtained by
Lawaetz’s method, !® and D, of the SiGe alloy is linearly
interpolated assuming strain independence.'>?° The pa-
rameters used in our calculation are listed in Table I.
First we calculate for the quantum-well structure of
Si/Siy ¢Gegy 4/Si grown on Si(001) used by Park,
Karunasiri, and Wang!© for their experiment. The well

[

width is taken to be 40 A, in which the center 30 A of the
well are 8 doped, with a doping level of 5X 10" cm 3.
The potential discontinuity is obtained using the band-
offset calculations of Van de Walle and Martin?! and Peo-
ple.!” As shown in Fig. 1, the valence-band top of the
strained well is taken as the zero energy level. In the cal-
culation, we add 20-meV band bending for all valence
bands due to the high doping concentration used.?? The
band bending in the well is assumed to be constant, which
greatly simplifies the calculation. But this assumption
causes some discrepancy in the subband separation
(13-17 meV) in comparison with that obtained by the
self-consistent calculation, in which the isotropic, para-
bolic, and decoupled valence bands were used.® As will
be shown later, this discrepancy is also present in our
case. The labels of the quantized subbands are adopted
from the characteristics of the basis states at the zone
center. That is, the HH1 represents the first heavy-hole-

TABLE I. Material parameters used in this work.

Parameter Si Sig ¢Geo.s Ge Unit
A —4.22 (Ref. 18) —5.43 —13.30 (Ref. 18) a.u.
B —0.79 (Ref. 18) —1.47 —8.50 (Ref. 18) a.u.
N —8.61 (Ref. 18) —11.47 —34.14 (Ref. 18) a.u.
D, 3.41 (Ref. 31) 3.37 3.32 (Ref. 32) eV
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type subband, although, strictly speaking, no rigid assign-
ment can be made due to band mixing, as discussed previ-
ously.

In calculating the subband structure of the SiGe/Si
quantum-well system, the envelope-function approxima-
tion is used, in which the wave function in each layer is
written as the product of a slowly varying envelope func-
tion and the basis function of the particular semiconduc-
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tor. Due to the material similarity, each SiGe layer is as-
sumed to be represented by the same basis functions. In
quantum wells, although the potential discontinuity
breaks translational symmetry along the growth direc-
tion, the wave vectors in the plane directions are still
good quantum numbers. Thus for a given energy E and a
plane-wave vector, k,(k,,k, ), the total envelope function
for each layer can be written as®>

F(r)=[a,F,(k,)e"* +a,F (ke +a,F,(k,)e" = +a,F,(—k,)e

tasF—kye " ragF(—kye "=le

where F and F; are the 3X1 tensor, and F; is the en-
velope function obtained from the Gauss elimination.??
k,; is the wave vector in the growth direction obtained
from the sixth-order secular equation for a given E and
k,. From the boundary conditions®* of the envelope
function continuity and the current conservation at the
interfaces, we obtain 12 linear equations for the barrier
and well. The 12 linear equations are used to determine
the 12 unknown coefficients needed for two barriers and
one well side. For the case of the bound-to-bound transi-
tion, only decaying functions in the barrier are used, and
these six coefficients are eliminated from the total of 18.
For the bound-to-continuum transition, a large-box mod-
el is used in the barrier regions to eliminate six
coefficients. We can set up a 12X 12 determinant, and
the confined energy levels are obtained from the zeros of
the 12X 12 determinant.

Ekenberg, Batty, and O’Relli®® calculated the valence-
subband dispersion of the strained Sij sGe; s/Si quantum
well using a modified variational method. We tried to
reproduce the valence-subband dispersion of their struc-
ture using the method described in the preceding para-

l— 40A —=f
(meV) (O)HH (meV)
YR T e —— HH1(-50)
------------ LH1(-120)
HH2(-194)
(-269)SO [[rmrRrmnaaTy LH2(-262)
.................... SO1(-314)
(-355)HH,LH ! : 7/
("400)50 ............. H ~..

Si Sig.6Gep.4 Si

FIG. 1. The band structure of the strained Si0,§GeM quan-
tum well grown on Si(001) with a well width of 40 A, where the

center 30 A is doped to 5X107!° cm™3 used in the work of

Park, Karunasiri, and Wang (Ref. 10).

JUegx +k,p)

(3)

graph, and the results are in good agreement with their
calculation. This demonstrates the reliability of our cal-
culation.

Using the quantum well structure of Park, Karunasiri,
and Wang, '° we obtained the valence-subband dispersion
for three different directions of the plane-wave vector:
the [100] (solid line), 22.5° from [100] (dashed line), and
[110] (dotted line) directions as shown in Fig. 2. The five
confined subbands are also shown. The curvatures of the
highest subband HH1 are very close to those of the bulk
heavy-hole band for a small k,, and become nonparabolic
as k, increases. However, the other subbands show a
severe nonparabolic behavior, dependent on the plane
direction. This fact indicates that the valence bands are
strongly mixed in the quantum well. The broadness of the
intersubband transition peaks is partially due to the non-
parabolic behavior of the valence subbands. Moreover,
the different nonparabolic behavior of the subband ener-
gy levels depends on the direction of the plane-wave vec-
tor, and thus affects the position and magnitude of the

0.0 T T

HH1

Energy (meV)

0 0.05 0.1 0.15
Wave vector (A™)

FIG. 2. The dispersion relation for the quantum well de-
scribed in Fig. 1. The solid, dashed, and dotted curves are the
dispersion relations for the plane-wave vector in the [100], 22.5°
from the [100], and [110] directions, respectively.
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absorption peak for the transition away from the zone
center.

B. Bound-to-bound intersubband transition

Generally, the intersubband transition for quantum
wells with a doping concentration lower than 1X10'®
cm ™3 is treated elsewhere. In this case, where the many-
body effect may not be important, the absorption occurs
at the photon energy equal to the subband separation.
However, for a high carrier concentration, the absorption
peak does not agree with the subband separation, as
shown in the n-type inversion layer of Allen, Tsui, and
Vinter!! and Ando.'? In those prior works, the
discrepancies in the absorption energy and subband sepa-
ration were explained as the result of many-body effects,
depolarization, excitonlike and exchange effects, 26271112
For doping concentrations higher than 1X 10'° cm ™3, the
depolarization effect is expected to be dominant in shift-
ing the absorption (resonance) frequency.?> For a two-
level system, the resonance frequency o, is shifted to a
higher frequency ,., due to plasma effects:!!

o =w,t+ao] , @

where @, is the plasma frequency. However, the above
rule is valid only when two subbands are employed and
those subbands are assumed to be isotropic and parabol-
ic. For a three-level system, Allen, Tsui, and Vinter for-
mulated the absorption and showed that the coupling in-
teraction gives rise to a change of the absorption line

shape when the level broadening is included. When in-
J

222 wn'm(k;)
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volving the nonparabolic and anisotropic nature of the
multiple valence subbands, as in our case, the coupling
interactions among the oscillators become essential (each
transition being considered as an oscillator).

To include the depolarization effect in the calculation
of the intersubband absorption for the valence band, we
follow the scheme of Allen, Tsui, and Vinter. However,
that nonparabolicity and anisotropy were not included in
their formulation. We have included these effects in our
formulation. In doing this, the integral for the depolari-
zation charge, An,, (z), becomes

e c‘)nm(kt)

An, (z)=—2
T S k)~ o

XP*(z,k, ¥, (2, k,)
X, (k)|dlY,,(k,)) , (5)

where 7,,, and ©,,, are the lifetime and frequency for the
subband separation between the initial state m and the
final state n, respectively, o is the incident photon fre-
quency, and @ /7,,, indicates a level broadening. 1, and
¥, are the initial and final states, respectively, and ¢ is
the perturbing potential as a result of photon absorption.
The perturbing potential along the growth direction may
be written from Poisson’s equation as

2
9% _CAn (2, (6)
dz? e "

where € is the dielectric constant. From Egs. (5f*and (6),
a set of coupled linear equations can be written as

—eznm(kt):¢nm(kt)+ 2 —
n',k:

where z,,,(k,) and ¢, (k,) are the simplified forms of the
dipole and perturbing potential matrix elements, respec-
tively, for a given k,. S(n,k,,n’,k;) is a product of two
overlaps of the involved wave functions as defined by Al-
len, Tsui, and Vinter.!! To simplify the calculation, the
square of S(n,k,,n’,k;) is evaluated as the product of
S (n,k,,n,k,)XS(n'k;,n’,k;), since the evaluation of
S(n,k,,n’,k;) is much more time consuming (CPU). We
have compared these two calculations and the results are
very close. Thus for all subsequent calculations, we use
the latter to evaluate S(n,k,,n’,k;). In doing this, we
choose the single particle Bloch state without including
the effect of the random distribution of the acceptors.
The effect of the random charge distribution, sometimes
referred to as a band-tailing effect, is included in the life-
time 7.

It should be noted that the above linear equations are
k, dependent, and a large set of linear equations is needed
in order to account for the subband nonparabolicity and
anisotropy. Thus it becomes an immense task for compu-
tation for each oscillator (between the m and n states).
To circumvent this problem, instead of solving the linear

€fi w2, (K,)—o*+jo /Ty,

bm(KS (n,k,,n',K,) )

[

equations directly, we define a k,-dependent plasma fre-
quency to account for the coupling among the oscillators:
(k)= 3 28 (K)S(nk,,n',K))

pnm \ Tt e nm t s By t

’
n',kx

Purm (k)
@2 (K)) =0+ /Ty

@2, (k) —*+jo /Ty
X . (8)
bum (K;)

With the complex plasma frequency defined above, the
relation between the perturbing potential and optical ma-
trix element shown in Eq. (7) can be rewritten as

d’nm(kt)
wf,m(k,)—coz—i-ja)/Tnm

—€2,,,(k,)
= 2 7 )
O (K )+ Opp (K ) — 0"+ jo /Ty,
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where € is the electric field produced by the carrier distri-
bution. Equation (9) shows that the dipole matrix element
Z,, is not linearly proportional to the perturbing poten-
tial matrix element, since these plasma frequencies are

]

e? Zym (K} cof,m(k,)-i-wfmm(k,)—co2+jw/1',,m
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also functions of ¢,,,. For an incoming photon, the oscil-
lators respond to the perturbing potential with a shifted
response frequency. Equation (9) is inserted into Eq. (8),
and the complex plasma frequency can be written as

w;’”‘" 2 ﬁ nm(k')s(n’ [5” k)
'k

As seen in Eq. (10), the above plasma frequency for the n
and m states at k, is affected by other plasma frequencies
due to the coupling among the oscillators. If the k,-
dependent plasma frequencies are determined simultane-
ously, the coupling interactions among the oscillators can
be effectively considered without solving the large set of
linear equations. Instead, Eq. (10) can be easily solved by
iteration, beginning the evaluation without coupling.
When the broadening (#%/7,,) caused by damping is
smaller than 30 meV, the plasma frequency converges
slowly near the resonance frequency for each k,. For-
tunately, in this case, the depolarization is small and may
be ignored. For broadening larger than 30 meV, as in our
case, the plasma frequency converges readily and the cou-
pling among oscillators is easily taken into account. In
our calculation, we used 31 directions of the wave vector
between the [100] and [010] directions, and, for each
direction, the larger value of the wave vector is continu-
ously used until the carrier occupancy of the lowest sub-
band is negligibly small.

For a two-level system with parabolic and isotropic
subbands, the above plasma frequency for all k,’s is re-
duced to a constant value, and thus the resonance fre-
quency can be represented by Eq. (4). However, for the
case of a multilevel system with nonparabolic and aniso-
tropic subbands, the plasma frequency is k, dependent
and becomes a complex value depending on the level
broadening as well as the transition frequency. In this
case, the plasma frequency can be separated into two
parts as

P"m(k =3 Qpnm(k;)+
K/

S Q. K) . (1)

' n'#n, k

The first term is the contribution from the same subband
n with diﬁ'erent k;. Near the shifted resonance frequency
(0~ w2, +wpnm ), the change of the subband separation
in the same band is small compared with that of the
damping term, #/7,,, (230 meV). In this case, the first
term is mainly real. The second term is the contribution
from the other subbands n’. Because of large subband
separations, the second term is complex and has a large

fdzk o —Fu ), (K, (&

fd2k

@, (@)=3,

zﬁc €n,m3L

+2 m =) {0, (K,

2ﬁc €on,m3L

Z,m(k,) @2, (K, H'(oi,,'m(k; )=+ /Tyim

N@EP) e [¥m k)

r

imaginary part near the shifted resonance frequency.
When o,,,(k,)>o,,,(k;), the latter imaginary part is
negative, as seen from Eq. (10). Whereas, for
Opm (k) <@, (Ky), it is positive. The change in @,,,
will substantially affect the absorption spectra for the
highly doped case, as will be explained later.

From the procedure of Allen, Tsui, and Vinter,!! the
absorbed power can be obtained by

JwE

nk,

P=1Re Nbm (k)12 (12)

By inserting Eq. (9) into Eq. (12), the absorbed power can
be expressed in terms of the dipole matrix element and
plasma frequency by the relation

e, (K, )o?

P=
",Ek, AT

8an(kt)

(k,)—

13
e (13)

(k,)+ 0+ /Ty

pnm

The depolarization effect of the above absorption power
is derived from the assumption that the perturbing poten-
tial ¢ is only the function of z. In other words, we assume
that only the polarized field in the growth direction can
result in a perturbing potential, allowing the dipole ma-
trix element to be expressed in terms of the optical matrix
element as
2

(k1)|(€p)€z|¢m(kt)> ’

lez,,, (k,)|*= (14)

where A is the vector potential due to the incoming pho-
ton,?® m,, is a free-electron mass, and € is the unit polar-
ization vector of the incident photon. The absorption
coefficient for the bound-to-bound intersubband transi-
tion can be represented as the superposition of the
responses of a collection of damped oscillators (each with
different »n and k,) plus a plasma frequency shift (in a
quadratic fashion) as

@ (K /T
O (k) =+ j0 /7, |?
O (K /Ty

|02, (k,)—a?+jw /T, |?

)?

(k
P)ezllljm ¢) lw%m(k;)‘F

, (15)
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where L is the quantum-well width and f is the Fermi
distribution function. As explained before, the first term
of Eq. (11), or the plasma frequency due to the same sub-
band at near the resonance frequency is mainly real. The
real value of the plasma frequency causes the shift of the
resonance peak position similar to that of Eq. (4). On the
other hand, the coupling interaction from the lower sub-
bands (smaller resonance energy) induces the large nega-
tive imaginary part [the second term of Eq. (11)]. Thus
the coupling interaction due to the lower subband
effectively decreases the damping constant (w/7,, ) in
Eq. (15). In other words, it decreases the width and in-
creases the absorption coefficient. Likewise, the coupling
interaction with the higher subbands effectively broadens
the absorption peak, since the higher subband (large reso-
nance energy) provides a positive imaginary value.

The optical matrix element & p in Eq. (15) can be ob-
tained from the k-p matrix element. The optical matrix
element has the same form as the k-p matrix element, ex-
cept that k;k; is replaced with k;€;+k;€; and multiplied
by a constant factor m/%.2° Then the resulting matrix is
transformed by the unitary transformation which makes
the 6X6 total Hamiltonian into two 3 X3 Hamiltonians.
The optical matrix used accounts for all directions of the
polarized electric field of the incoming light. Its elements
are as follows:

My, My, M,
(ui|€‘P'"j)="ﬁ“ My, My M|, (16)
Msh Msl Mss

where the elements of the optical matrix are

M, =2(A4 —B)e,k,+(24 +B)e, k., +€,k,),
.1 . ,

My, =]—‘/T3N(e,c cosn—e€,sinn)k, — j1Ne, k, ,

—V73B (e, k,

1 .
+ —ﬁN(exky +€ykx )siny ,
1 .
Ve N(—¢, cosn+e,sinn)k, +{Ne, k,

+jV'6B (€,k, —¢€,k,) cosy

—e€,k,)cosy
Mhs:

2 .

_‘/—EN(exky—Feykx )siny ,

My, =My, ,

M;=2(A4 +B)e,k, +(24 —B)(e, k, +€,k,), 17
1

M, = |j2V2Be, + 5

Ne, cos(x —n)—¢,sin(x —7) |k,
—j\/ZB(exkx-%-eyky)
1
~72Nezk, cos(y—27) ,
MSh:M;S ’
Mslelz ’
M =24d¢€,k,+2A4 (e, k,te€k,),
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where k, is the magnitude of the wave vector in the plane
direction.

Equation (17) shows the selection rule of the intersub-
band transitions for the p-type quantum well. For the in-
tersubband transition involving the same type of basis
functions (M, M, and M), the oscillator strength is
proportional to the polarized field times the wave vector
in the same direction for the isotropic band. In this case,
k, is usually larger than k, for high confined energy lev-
els, resulting in a large absorption for the z-polarized
field. On the other hand, when the multiple bands, e.g.,
the heavy- and light-hole bands (or the heavy-hole and
spin-orbit bands) are involved in the subband transition,
three components, €,k,, €,k,, and €k, become pro-
nounced. The intersubband transition due to €k, and
€,k, becomes large only when carriers occupy the large
value of k, (the high doping case). On the other hand,
the €,k, term is larger than the other two terms due to
the large k,.

C. Bound-to-continuum intersubband transition

In the calculation of the absorption of the bound-to-
continuum transition, care must be exercised in wave-
function normalization. For a single-band case, the wave
functions can be normalized by assuming that the well
width is negligibly narrow. However, for the multiband
case, the normalization of the wave functions is not easy,
and a large-box model is used in our calculation. In this
method, the continuum state is assumed to be confined in
a large box which is ten times wider than the SiGe well,
and energy levels are calculated in a manner similar to
that for the confined energy level in the quantum well.
The number of subband energy levels in the large box is
increased until the absorption saturates. For the bound-
to-continuum transition, the depolarization effect is not
included in this calculation for the following reasons.
For an infinitely large box or free space, the amplitude of
the wave function in the well is extremely small. Thus
the overlap between the initial and final states is negligi-
ble when compared with the bound-to-bound case. For
an extremely small wave-function overlap, the depolari-
zation effect becomes negligibly small. According to the
experimental data of Park, Karunasiri, and Wang,'* the
peak position is almost independent of the polarization of
the incident light, supporting our previous assertion.
Thus the bound-to-continuum intersubband transition
can be calculated from Eq. (15) at the zero plasma fre-
quency limit as

"

an(@)=a, (o), ¢, (18)

and the total absorption is the sum of the bound-to-
bound and bound-to-continuum intersubband transitions,
i.e., the sum of Egs. (15) and (17).

III. RESULTS

Figures 3(a) and 3(b) show squared momentum matrix
elements (SMM’s) of the structure for the z- and x-
polarized fields, respectively. We show the SMM’s of the
important intersubband transitions for the wavelength
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range shorter than 10 um. For convenience, H1L2 is
defined as the transition when the initial state is HH1 and
the final state is LH2. For the z polarization, as shown in
Fig. 3(a), HIH2 and L1L2 are very strong for a small k,,
and decrease as k, increases, whereas H1L2 is forbidden
at the zone center and becomes large for a large k,. This
fact indicates that the heavy- and light-hole bands are
strongly coupled by means of k,. For low doping, where
the carriers have a small wave vector, the absorption
strength of the H1H2 is large. For high doping, the
H1L2 peak is greatly enhanced because of the occupancy
at high k,. The L1L2 transition is very similar to HIH2,
and the peak position is also close to the HIH2 in this
case. That is, only two strong peaks, HIH2 and H1L2,
are expected according to the SMM since the H1H2 and
L1L2 energies overlap into one peak. For the x polariza-
tion, the SMM shown in Fig. 3(b) is smaller than that for
the z polarization of Fig. 3(a). Thus it is predicted for the

04 T T
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03 H1H2

Squared Momentum Matrix ( eV )

0 0.05 0.1 0.15
Wave vector (A™)
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0.02 |-
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FIG. 3. Squared momentum matrix elements of the strained
Sip ¢Geo 4 quantum well grown on Si(001) between various bands
with a 40-A well width. (a) z-polarized field and (b) x-polarized
field.
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bound-to-bound intersubband transition that the z-
polarized transition is stronger than that for the x- or y-
polarized case. It is important to note that the absorp-
tion strength of the H1L2 does not vanish completely at
the zone center because of the optical matrix term of
€, k,. However, without the inclusion of s-p coupling, this
transition (or bulklike interband transition) is extremely
weak because of the orthogonality of the basis functions.
The experimental proof will be shown later.

Figure 4 shows the absorption coefficient for the
bound-to-bound intersubband transitions at 300 K. In
this figure, the depolarization effect is not included and
an infinite lifetime is assumed. Two cases are used to
check the effect of the anisotropic characteristics of the
valence subbands: one assumes the isotropic valence
bands (k,|[[100]), and the other uses the anisotropic
valence bands. The Fermi energy levels for the isotropic
and anisotropic cases are 137 and 107 meV, respectively,
for the doping density of 5X 10" cm ™3, below the top of
the valence-band edge. The lower Fermi energy level for
the isotropic case is due to the small density of states of
the HH1 in the [100] direction. The polarization direc-
tion is chosen such that the polarized field has equal x
and z components (xz polarization) or the x component
only (x polarization). The conditions are equivalent to
those used in the experiment by Park, Karunasiri, and
Wang!? for a polarization angle of 0° or 90° with a 45°
bevel angle of the waveguide. The dotted and chain-
dotted curves (designated as x-I and xz-I) are for the x-
and xz-polarized fields, respectively, for the isotropic
case, whereas the dashed and solid curves are for the an-
isotropic case (designated as x-A and xz-A). The spec-
trum near 9.2 um consists of HIH2 and L1L2 as a result
of nonparabolicity. As expected from SMM’s in Fig. 3,
these two transitions are very strong for the xz-polarized

T
H1H2 & L1L2
1

Absorption Coefficient ( 10* cm™ )

Wavelength (um)

FIG. 4. The absorption coefficient of the bound-to-bound in-
tersubband transitions without the depolarization effect. The
dotted and chain-dotted curves are the absorption for the x- and
xz-polarized fields, respectively, when the isotropic valence
bands (x-I,xz-I) are assumed. The dashed and solid curves are
for the case when the anisotropic characteristics (x-4,xz-A4)
are included.
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field. The peak for the anisotropic case is larger than
that for the isotropic case. This is mainly due to the k,-
dependent density of states and its SMM’s. For the iso-
tropic case, more carriers have larger k,, where the SMM
is small. For the x-polarized field, both cases give smaller
peaks than those for the xz-polarized field, similar to the
polarization dependence of the intersubband transition in
the n-type quantum well. The peak near 7 um is due to
the transition from the ground heavy- to the excited
light-hole subbands (H1L2), and is forbidden at the zone
center. However, the band mixing among bands away
from the zone center makes the transition possible, as ex-
pected from Fig. 3. The peak positions near 7 um for the
two cases are 10 meV apart, in contrast to the peak at 9.2
pm, where there is no difference in the peak positions.
This fact indicates that the absorption occurs mainly
away from the zone center. The transition from HH1 to
SO1 gives a peak near 6.2 um. In this case, the same par-
ity of envelope functions and different types of Bloch
states make the peak much smaller than the others.

In Fig. 4, when the peaks from the two different polar-
izations are compared, the anisotropic case shows that
the absorption due to the xz-polarized field is much
stronger than that for the x-polarized field. However, the
isotropic case does not give the strong polarization
dependence. That is, the isotropic case tends to overesti-
mate the absorption for the x-polarized field. For the xz-
polarized field, the H1H2 is underestimated and the
HI1L2 is overestimated.

As described above, the calculated absorption gives
two peaks for both the isotropic and anisotropic cases.
On the other hand, the experimental result of Park,
Karunasiri, and Wang'® shows only one broad peak in
the region of 4~ 8 um for the xz-polarized field. Several
factors, which are not considered in our calculation, may
account for the difference. The scattering processes, such
as phonon, alloy, and impurity scatterings, may broaden
the peaks to some extent. Also, the band-tailing effect
due to the high doping may be important. But the in-
clusion of these effects alone does not make the two peaks
merge into a single broad one. However, as shown next,
the unusual broad peak in the experimental data can be
explained by the inclusion of the depolarization effect.

Including the depolarization effect, the absorption
spectra for the xz-polarized field is calculated for the
bound-to-bound transition. Figure 5 shows the results
for this transition along with the experimental data (given
by AAA). The three calculated spectra are due to
different considerations of the coupling among the sub-
bands. The absorption from the HHI is included only
because most carriers occupy this state at 300 K. The en-
ergy broadenings #/7,,, for each subband are assumed to
be k, independent, and a constant value of 50 meV is
used.® The dashed curve is for the isolated two-level sys-
tem, neglecting the coupling interactions among sub-
bands, but including the coupling interactions among k,-
dependent oscillators due to the subband nonparabolicity
and anisotropy. The result of assuming an isolated two-
level system gives a broad peak, with the peak position
near 8 um. This peak position is 67 meV apart from the
experimental peak. The chain-dotted curve shows the ab-
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FIG. 5. The absorption coefficient of the bound-to-bound in-
tersubband transitions, including the depolarization effect for
the xz-polarized field at 300 K. The dashed curve is the absorp-
tion calculated by using an isolated two-level system and
valence-band anisotropy. The chain-dotted curve is for a cou-
pled multilevel system when the plane-wave vector in the [100]
direction is used only (assuming isotropic). The solid curve is
for the coupled multilevel system with the valence band anisot-
ropy. The symbol A denotes the experimental data (Ref. 10).

sorption when the coupling of the multilevel transitions
plus band nonparabolicity is included, and the isotropic
valence band is assumed. As mentioned earlier, the cou-
pling of other subbands suppresses the absorption of the
H1H2 transition (the lower resonance energy), while
enhancing the H1L2 transition (the higher resonance en-
ergy). In this case, the peak position occurs at 6.4 um,
and the full width at half maximum (FWHM) is about 75
meV. The peak position is 30 meV apart from the experi-
mental data, and the FWHM is somewhat narrower.
When the valence-band anisotropy plus nonparabolicity
and multiple subbands are included, the FWHM becomes
95 meV and the peak position moves to near 6.3 um, and
they are very close to the experimental data. The small
difference of the peak position (17 meV) may be due to
the lack of a self-consistent calculation. The self-
consistent calculation done by Park, Karunasiri, and
Wang!® shows that the subband separation is 13~17
meV larger than ours. From the above results, the exper-
imental data of the bound-to-bound intersubband transi-
tion can only be explained when the depolarization effect,
subband multiplicity, and subband anisotropy are in-
voked.

For the bound-to-continuum intersubband transition,
Fig. 6 shows the measured and calculated spectra for the
x polarization (normal incidence), where the absorptions
from the HH1 and LH]1 are included. The experimental
data are given with the free-carrier contribution removed
and the experimental data of the intersubband transition
equal our calculation at 4.6 pum for 40% Ge and 3.6 um
for 60% Ge, respectively. The depolarization effect is not
included in this case for the reason explained above. In
our calculation, the direct conduction band is not explic-
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FIG. 6. The calculated absorption coefficient of the bound-
to-continuum intersubband transitions for the x-polarized field
at 300 K. The solid and dashed curves are the absorption for
the Ge 40% and 60% quantum wells, respectively. Experimen-
tal data (Ref. 10) (shown in /A and @) are also given for compar-
ison.

itly used as a basis function. However, the s-p coupling
interaction of the direct conduction band is treated as a
perturbation term. Each calculated absorption spectrum
has two peaks, due to two initial states: the heave-hole
(HH1) and light-hole (LH1) ground states. As can be
clearly seen for the 60% Ge well case, the increase in ab-
sorption strength at 2.5 um comes from the heavy-hole
ground state HH1. This contribution is larger than the
other because of its larger carrier occupancy.

As the Ge content of the well increases, the peak posi-
tion shifts to the lower-wavelength (higher-energy) region
and its peak height increases. The lower peak position
for the 60% Ge well is due mainly to the larger band
offset of the quantum well. On the other hand, the
change of the peak heights can be understood from the
s-p coupling between the s characteristic of the direct
conduction band (I'j) and the p-characteristic valence
band (T'ys). This coupling strength is proportional to the
square of the wave vector and inversely proportional to
the square of the direct energy gap to the first order. Be-
cause the continuum state for the 60% Ge quantum well
has the larger k, and smaller direct energy gap, the s-p
coupling for the 60% Ge quantum well becomes larger
and thus gives the larger peak height.

In the data of Figs. 5 and 6, we have explained the ab-
sorption coefficient of the bound-to-bound transition for
the xz polarization and the bound-to-continuum transi-
tion for the x polarization. However, the polarization
dependence of the absorption has not been discussed.
Figure 7 shows the polarization dependence of the calcu-
lated absorption spectra and the experimental data of
40% Ge quantum wells for the bound-to-bound and
bound-to-continuum intersubband transitions. The
curves with symbols are experiment data (/A for the x po-
larization and @ for the xz polarization), whereas the
dashed and solid curves are the theoretical calculations
for the x and xz polarizations, respectively. Because of

Wavelength (pum)

FIG. 7. The absorption coefficient for the strained Si; ¢Geg 4
quantum well grown on Si(001) with a 40-A well width, where
the center 30 A are doped with up to 5X19 cm 3. Symbols
with A and @ are experimentally obtained absorption
coefficients for the x- and yz-polarized fields, respectively. The
dashed and solid curves are the theoretical calculations for the
corresponding fields. The experimentally obtained values in-
clude the free-carrier absorption.

the free-carrier contribution whose quantity cannot be
accurately estimated, it is difficult to compare the abso-
lute peak heights, but the trend of the polarization depen-
dence of the calculated absorption coefficients shows a
good agreement with the experimental data. For the x-
polarized field (normal incidence), the peak near 3.2 um
agrees well for the calculated and experimental spectra.
In this case, the discrepancy between the experiment and
calculation increases as the wavelength increases. This is
expected to be due to the free-carrier absorption in the
experiment data. For the xz-polarized field, the calcula-
tion (solid curve) gives a small peak near 3.2 um while no
clear peak is seen in the experimental data. The reason
for this discrepancy is not clear. When the peak position
of the bound-to-bound transition near 6.2 um is shifted
toward the experimentally obtained peak position (5.9
um), or when the large broadening is chosen, the small
peak may be buried in the broad peak. It should be not-
ed, however, that for the 60% Ge quantum-well case, this
small peak was obtained experimentally to be in agree-
ment with the calculation (although different in energy).
In short, our calculation shows a good agreement with
the experimental data.

IV. SUMMARY

The absorption spectra for the intersubband, bound-
to-bound, and bound-to-continuum transitions in the p-
type 8-doped quantum well were calculated with and
without the depolarization effect. For the bound-to-
bound intersubband transition, the energy and the width
of the experimental peak can only be explained by consid-
ering the depolarization effect, including complicated
effects due to the band-coupling interactions among the
valence bands. For the bound-to-continuum transition,
the depolarization effect seems not as important. The in-
dependence of the absorption peak position from the po-
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larization angle in the experiment supports this fact. In
general, the peak positions and absorption coefficients are
in good agreement with the experimental data for various
Ge contents of the well layer. Our calculation clearly ex-
plains the polarization dependence of the bound-to-bound
and bound-to-continuum transitions in p-type SiGe quan-
tum wells.
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