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Hot-electron cooling and second-generation phonons in polar semiconductors
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The acoustic-phonon bottleneck is studied theoretically within the model which includes Frohlich in-

teraction between electrons and LO phonons, and anharmonic coupling between the LO phonons and
second-generation acoustic phonons, in the form of the Klemens interaction operator. Calculations are
performed for bulk CdSe and GaAs. The acoustic-phonon bottleneck effect is shown to depend on the
amount of energy provided by the laser pulse. The lifetime of the hot-electron cooling in the regime of
the acoustic-phonon bottleneck appears to be controlled by the highly efficient channel of the fusion of
acoustic phonons into LO phonons.

I. INTRODUCTION

The process of cooling of the hot-electron —hole plasma
in semiconductors, excited by a laser pulse, is one of the
important processes in the field of nonequilibrium trans-
port phenomena of electrons and phonons. ' In polar
semiconductors, at not very low temperatures, the hot
electrons relay their energy mainly to the longitudinal-
optical (LO) phonons. The reduction of the hot-electron
cooling rate observed in experiment has been ascribed, on
the basis of simple estimates performed with the help of
the Golden rule formula, to the effect of the LO phonon
bottleneck, although among the possible reasons for this
reduction the effect of the electric screening and of the
phonon-plasmon coupled modes have also been con-
sidered. In the case of the LO-phonon bottleneck the
rate of the hot-electron cooling is controlled by the life-
time of the LO phonons, so that the whole electron-
phonon system is cooling down with a time constant of
picoseconds. The decay channel of the LO phonons is
considered to be the decay of an LO phonon into a pair
of acoustic phonons, at least in GaAs. Usually, these vi-
brational modes, into which the LO-phonons decay, are
considered to stay at equilibrium with the ambient lat-
tice.

In several experimental papers the hot-electron cooling
after a short laser pulse has been reported to have quite a
large relaxation time constant. In CdS, CdSe, super-
lattice A1GaAs-GaAs, and in a solid-state solution
CdS& Se, it has been observed that several tens of pi-
coseconds after the termination of the laser pulse, typical-
ly 30 ps long, the lifetime of the hot-electron cooling is
about 150—400 ps. Such a low cooling rate has been ten-
tatively ascribed ' to the effect of acoustic-phonon
bottleneck, in which the relaxation of the electron-
phonon system is controlled by the lifetime ~z of the
acoustic phonons. In Ref. 6, the possibility of the
acoustic-phonon bottleneck was supported by a simple
argument based on balancing the energy relayed from the
light pulse to the electrons and from the electrons to the
phonon modes. A hot-electron cooling with very long re-
laxation times was also detected in GaAs-A1GaAs quan-
tum wells, in bulk GaSb, ' and in A1Sb-GaSb quantum

wells. " In Refs. 5 —11 the long relaxation times are usu-
ally observed under conditions in which large amounts of
energy are available to the electron-phonon system via
the excitation of electrons.

Within the acoustic-phonon bottleneck effect interpre-
tation, the hot electrons are again assumed to emit LO
phonons, the population of which can, in close vicinity to
the I point, become larger than the equilibrium popula-
tion, corresponding to the temperature of the ambient
lattice. The nonequilibrium LO phonons, which can be
called "first-generation phonons" in the present context,
are assumed to decay into pairs of second-generation
phonons, which, in GaAs, are assumed to be identical
with the longitudinal branch of the acoustic phonons
(LA). Because of the energy and momentum conserva-
tion restrictions these second-generation phonons are
produced mainly at such wave vectors in the reciprocal
space, at which the second-generation phonons have en-
ergy equal to the one half of the LO-phonon energy. In
the present paper we shall consider the case when the
second-generation phonons are the LA phonons, which
appears to be a reasonable approximation. This point
will be discussed later in this paper.

The nonequilibrium population of the second-
generation phonons can, under favorable conditions, be-
come hot, so that the first-generation phonons (LO pho-
nons) cannot cool down efficiently and the acoustic-
phonon bottleneck can be expected to develop. The
buildup of the acoustic phonons produced by the decay of
the LO phonons was demonstrated experimentally. '

The occurrence of the LO-phonon decay into a pair of
LA phonons is supported by the experiments in the GaAs
heterojunction. '

The second-generation phonons have been assumed to
decay anharmonically with a certain lifetime. In particu-
lar, in GaAs, " the LA phonons are expected to decay into
pairs of (third-generation) transverse-acoustic phonons.
One can ascribe the LA phonons a lifetime ~~, due to
this channel of decay. In Ref. 6 the lifetime ~~ of the
second-generation phonons has been closely connected
with the lifetime of the observed hot-electron cooling.

Let us note that the problem of the considerable slow-
ing down of the relaxation of the electronic subsystem in
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semiconductors, after a long laser pulse, has been studied
earlier; see, e.g. , Refs. 14 and 15. In Ref. 14 the cooling
of the hot-electron plasma in laser excited Ge was mea-
sured to have the relaxation time of about 40—75 ps. The
reader is also referred to Ref. 16 for references related to
the so-called "laser annealing debate" of the early 1980s.

It is clear that the effect of the slowing down of the
hot-electron cooling, either alone or in connection with
the possibility of a buildup of the second-generation pho-
nons, still deserves attention. In our previous work' the
effect of the acoustic-phonon bottleneck was studied
theoretically in the dispersionless approximation, in
which both the energy of the LO phonons and the veloci-
ty of the acoustic phonons were assumed to be constant
throughout the entire Brillouin zone. The acoustic pho-
nons, as the second-generation phonons, were considered
to decay in two ways in Ref. 17. First, they decay into
third-generation phonons by an anharmonic mechanism.
This decay channel was represented by a relaxation time
approximation term in the kinetic equations in Ref. 17.
Second, the second-generation acoustic phonons were
shown to annihilate very efhciently in the reaction of
fusion of two acoustic phonons into a LO phonon. The
decay lifetime ~F of second-generation acoustic phonons,
with respect to the fusion channel, was estimated to be
roughly equal to the lifetime of the LO phonon. In part,
this high efficiency of the fusion channel was ascribed to
the simplified characteristics of the dispersionless model
assumed, in which the energy and momentum conserva-
tion restrictions are broadly fulfilled. It was suggested in
Ref. 17 that although the fusion channel may always con-
tribute to a certain extent to the decay of the nonequili-
brium acoustic-phonon population, it can, at least in
part, be shut by taking into account the realistic disper-
sion of the LO phonons.

In the present paper our previous theoretical analysis'
of the relaxation of the laser pulse excited electron-
phonon system is continued. The process of the hot-
electron cooling and the effect of the acoustic-phonon
bottleneck are studied taking into account the dispersion
of both the longitudinal-optical and longitudinal-acoustic
phonons. Also in contrast to the previous work, the finite
duration of the exciting laser pulse is simulated here. In
Sec. II the model of the physical system is introduced.
The kinetic equations are formulated in Sec. III. In Sec.
IV a simple but realistic approximation to the dispersion
of the lattice modes is presented, and in Sec. V we de-
scribe the process that we analyze. Our results are
presented and discussed in Sec. VI.

II. THE PHYSICAL MODEL

In the experiments with which we wish to compare our
theoretical results, the electrons of the valence band are
excited over the band gap by the laser pulse, thus leaving
the holes in the valence band and the electrons in the
conduction band. In order to simplify the theory we ig-
nore completely the process of the hole cooling, expect-
ing that this neglect does not alter significantly the con-
clusions of the present work.

The Hamiltonian of the unperturbed conduction-band
electrons is

H, =g e(k)ck ck
k, cr

where e(k) =iri k /(2m *), k = ~k~ is a nondegenerate and
parabolic electronic energy band with the effective mass
m *. The particle operator ck annihilates an electron in
the state with the wave vector k and the spin projection
O.

We assume that the hot electrons emit only LO pho-
nons (first generation). The free LO phonons have the
Hamiltonian

Hi o =gA'co„o(q)b tb
q

In (2) b is LO-phonon particle operator. In the approxi-
mation of the present paper the electron and phonon sys-
tems are assumed to be isotropic and the Brillouin zone is
approximated by a sphere having the same volume. The
simplified dispersion of coLo(q) will be specified in a later
section.

The second-generation phonons can be, according to
the crystal structure of III-V and II-VI compounds,
acoustic phonons or optical phonons. So, in GaAs the
second-generation phonons are acoustic phonons, while
in wurtzite modifications of CdS and CdSe, the second-
generation phonons are identified with a certain branch
of longitudinal-optical phonons. ' It is well known,
however, that within good accuracy, ' ' the crystal
modifications of CdS and CdSe can be approximated by
the corresponding sphalerite modifications. In particu-
lar, both the first-, and second-generation phonons in
wurtzite structures, including the main characteristics of
the Brillouin zone, can be approximated by those of the
corresponding sphalerite structure. Namely, as a good
approximation, we can view the second-generation opti-
cal modes of wurtzite structure simply as a part of the
branch of the longitudinal-acoustic modes of the corre-
sponding sphalerite structure. As a prototype of the
sphelerite structure we take the one of GaAs. Our results
thus refer to both the sphalerite and the wurtzite
modifications of the crystals in question, although we
must be aware of a certain inaccuracy caused by the as-
sumption made above.

The free-particle Hamiltonian of the second-generation
acoustic phonons is

H„=g A'ai~(q)a a
q

The dispersion of the acoustic-phonon frequency ai~(q)
will be discussed later in this paper.

Even if we took into account the realistic phonon
dispersions, together with the proper shape of the Bril-
louin zone, we would still be seriously limited by the
present state of knowledge ' of the operator V~ of the
anharmonic coupling, which provides the channel of the
decay of LO phonons into pairs of the acoustic ones,

Vz=gV ' g P(q, q')(bq+qa aq, +b + .aqa„), (4)
q, q'

in which Vis the volume of the sample and

(5)
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Her e coo:coLo( q =0). The presence of ~o in (5) makes
P(q, q') dimensionless. The uncertainty in the knowledge
of Vz is connected with the dependence of the coupling
factor P(q, q') on the wave vectors of the phonons. The
functional dependence (5) was originally introduced on
the basis of a certain generalization and has not been
given any great quantitative reliance upon. With re-
gard to the isotropy of the phonon dispersions assumed
above and because of the fact that the hot optical pho-
nons are concentrated near the center of the Brillouin
zone, the acoustic phonons are generated at the states
which have the energy near A'coo/2. With good accuracy,
the coupling factor P(q, q') could then be reduced to a
constant. However, in the case when the acoustic pho-
nons become hot and thus the reverse processes of the
fusion of two LA phonons into a single LO phonon be-
come important, then the knowledge of a proper shape of
P(q, q') would be desirable. The reason for this is' that
the momentum conservation law permits the LO pho-
nons to be produced by the fusion processes in a quite
broad range of q space, not only in the close vicinity of
the I point. The restriction imposed on the fusion chan-
nel by the energy conservation may depend critically on
the wave-vector dependence of the optical-phonon ener-
gy. In addition, the dependence of the coupling function
P on the wave vectors of the phonons taking part in the
fusion can further inhuence the eKciency of the fusion.
The calculation will nevertheless be performed with the
operator (4) including the form (5) of the coupling con-
stant.

The electrons will be assumed to interact with the LO
phonons via the Frohlich interaction operator

VF= g A~(bq —b q)c„" c
k, q, o.

in which the coupling constant of the statically screened
interaction ' is

A = ie(%co )'—(2E V) ' (ic ' —ic ')' q 'f

in which the screening factor fq 1s (q =
l q l )

2
q

+q

The Debye screening parameter qa is given in Ref. 27,

(8)

III. KINETIC EQUATIONS

The electrons will be assumed to be nondegenerate and
thermalized at each instant of time, being characterized
by the dimensionless reverse temperature parameter x,
x =A'coo/(k&T, ). The phonon subsystem will be charac-
terized by the single-phonon distribution functions. The
corresponding kinetic equations are derived within the
framework of the nonequilibrium statistical operator
theory.

The LO phonons, characterized by the mean number
v of the LO phonons in the state with the wave vector q,
interact with the conduction electrons and acoustic pho-
nons. In the lowest order in V„and Vz we confine our-
selves to the following two terms of the rate of change
d Vqfdt:

dv Idt (dv Idt )e 1o+(dv /dt )Lo (10)

where the term (d v /dt ), zo denotes the generate rate of
LO phonons produced by the hot-electron cooling. The
second term, (d v Idt )Lo „,is the rate of the decay of LO
phonons into the acoustic ones. At the level of approxi-
mation of the Boltzmann equation we get

qD=e n, l(Eoa. „kiiT, ) .

T, is the temperature of the electronic subsystem at a
given instant of time, e )0 is the electronic charge, Eo is
the permittivity of the free space, ~ and ~0 are, respec-
tively, the high- and low-frequency dielectric constants,
and kz is the Boltzmann constant. Consistent with mak-
ing the assumption that Frohlich coupling provides a
significant energy relaxation channel of the hot electrons,
we consider only moderate concentrations of the conduc-
tion electrons and assume that they obey classical statis-
tics, taking into account that at high densities the
Frohlich coupling is seriously screened and its eA'ect is
only minor. '

(dv /dt) ~
g g y~(qi q qi)[(1+N )(1+N

q )vq Nq Nq —
q (vq+1)]

X6[A'coLo(q) —Ace~(q —q, ) fico&(qi)] . —

Here X is the number of acoustic phonons in the state q.
The term (dv /dt ), „o is the rate of generation of LO phonons by hot-electron cooling. Because the inclusion of the

LO-phonon dispersion into this generation rate causes only negligible corrections to it, which is due to the fact that the
LO phonons are generated only in a very small neighborhood of the I point by the hot-electron cooling, we use here the
formula given already in the previous paper, ' namely

(dv /dt), Lo= &rr/2n, +mficoo(iC„' —
iCO ')&x e '" '~+' ~' [1+v —v e"],

c.ofz q

where q =q[ii/(2mcoo)]'~ .
The rate of change diV /dt of the acoustic phonons is a sum of two terms,

(12)
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dNq /dt (dNq /dt ) ~ t o+ (dNq /dt )~ (13)

where the first term contains the decay of the LO phonons into the acoustic ones and also the terms giving the reverse
process of the fusion,

2 4
(dN /dt)„„o= gP (q, q, )[(1+N )(1+N )v + NN—(1+v + )]

gl

X5[Aco„o(q +q, ) irico„—(q) fico—„(q,)] . (14)

The second term in (13) is the decay rate of the longitu-
dinal acoustic-phonon population into third-generation
phonons. We shall express this term simply in the relaxa-
tion time approximation taking the third-generation pho-
nons as a reservoir having a constant temperature of the
ambient lattice TI. The second-generation phonons are
thus decaying with the time constant w„according to the
rule

(dN /dt)~ =—

is the equilibrium population of the second-
generation acoustic modes corresponding to the tempera-
ture T~,

N' '= {exp[A'co„(q)/(kii T~ )]—1] (16)

The evolution of the electronic temperature is given by

1 1 1+
+LO+LO

2

fico()
exp 2k' TI.

(18)

where

dx/dt= x f q (dv /dt), todq .
3~ n,

Equations (10), (13), and (17) describe time evolution of
the system in question, providing the initial conditions
are given which simulate the experimental conditions we
wish to compare with. These wi11 be specified in a later
section.

Before finishing this section let us show how the cou-
pling constant g in Vz is deduced from the experimental
data in the LO-phonon lifetime. Generally, the rate of
change of the LO-phonon population depends on the
state of the electrons, acoustic phonons, and the LO pho-
nons in a complicated way. However, in the special case,
when the electrons can be excluded out from considera-
tion, when the acoustic phonons are at equilibrium hav-
ing the temperature TI, and when the nonequilibrium
population of the LO phonons is small and close to the
equilibrium population at Tl and confined to a small area
near the I point, then the LO-phonon lifetime ~&& is
given by the equation

cop = 2co g (qp ). rt o is the lifetime of the LO phonons at
absolute zero of temperature. We assume here that our
model is isotropic so that co„(q)=co~(q), q=~q~. The
equations reduce obviously to the results given in Ref.
[17],in the dispersionless limit.

Equation (18) can be derived from the general equation
(11) and is a generalization of the Klemens formula to
the case in which the dispersion of the acoustic phonons
is included. It gives the temperature dependence of the
LO-phonon lifetime. Equation (19) then allows us to ob-
tain the constant g from the LO-phonon lifetime at T=O.
The simple form of (18) is a result of rather serious
simplifications of assuming that the acoustic-phonon
dispersion relation has a center of symmetry. Therefore
the use of (18) assumes a reasonable estimate of an aver-
age dispersion model. This will be discussed in the next
section.

IV. SIMPLIFIED DISPERSION MODEL

In connection with what has been said in Sec. II con-
cerning the plausible approximation of the wurtzite
structure of CdSe by a sphalerite model, we approximate
the Brillouin zones of both materials considered, GaAs
and CdSe, by a sphere, the volume of which is equal to
that of the so-called Jones zone' ' of the corresponding
crystal. Let us note that the volume of the Jones zone of
wurtzite is equal to twice the Brillouin-zone volume,
while in the sphalerite crystal the volumes of both zones
are the same. The Jones zone of wurtzite can be con-
structed by doubling the Brillouin zone in I"-3 direction.
This direction then corresponds, in this approximation,
to the I -I direction of sphalerite. Thus, when we unfold
the dispersion curves, those given for wurtzite
modification of CdSe in Ref. 18, we obtain, within an ap-
proximation, the dispersion curves of the sphalerite ap-
proximation in the 1"-I, direction. The other crystal
directions are not given in Ref. 18.

In the spherical zone we thus consider one LO and one
LA branch of the lattice phonons in both materials under
consideration. Assuming thus the complete isotropy of
the crystal properties we take the phonon frequencies as
dependent only on the magnitude q of the wave vector q.
Then we assume to be valid the following dependences on
q, of the phonon frequencies:

1

(0)
+LO

g ~o

77f1 i co g ( qp ) i

coro(q) i (cop coi )cos +—(cop+coi )

(19)

(&0)

in which co& (qp ) = [dco& (q ) /dq ]z and qp is such that co „(q)=cousin mq
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TABLE I. Parameters of the wave-vector dependence of pho-
non frequencies.

Quantity

COp

Unit

1013 —1

1013 —1

1013 —1

10" m-'
A
ms

CdSe

4.000
3.200
2.315
1.0187
4.295

3569

5.502
4.370
3.641
1.0945
3.997

5226

Here Q is the radius of the spherical zone. The volume of
the Jones zone of both structures is VJ, =(2~/a) V2,
where a is the length of the basic lattice vector. The ideal
wurtzite structure with the ratio of the basic vector
lengths c/a =&8/3 is assumed. We put VJ, =—43~Q .
Also, rp, =co„o(Q) and coz=co„(Q) (zone boundary). The
magnitudes of coI and ~2 are chosen such that an overall
agreement is achieved with the available data on the zone
boundary optical properties and sound velocity U. ' '

The value of the acoustic frequency at the spherical zone
boundary, obtained in this way, can be considered as
plausible. The parameters of our dispersion model are
given in Table I.

V. THE PROCESS CONSIDERED

In experiments, as a result of the laser excitation of
electrons over the band gap, an electron gas in the con-
duction band is obtained, with density n, and a certain
temperature. After the termination of the laser pulse the
electrons cool down while the phonon modes are heated
up, thus having the mode temperatures above the temper-
ature of the ambient lattice TI . The whole system cools
down finally to the temperature TL .

It is important to recognize that the phonon modes be-
come partly heated already in the course of the finite
laser pulse duration. In order to simulate in a simple way
the elf'ect of the finite laser pulse duration and of the cool-
ing process which follows after the termination of the
pulse, we solve the kinetic equations for the following
process: Namely, we assume that at t =0 the electrons
have a density n„which is assumed to be independent of
time, and a temperature T,o, while all the phonon modes
have the temperature Tl . We assume that the whole pro-
cess consists of two periods of time: a heating period and
a relaxation period. Thus, in the course of the heating
period 0 ( t (t, the length of which simulates here as the
length of the laser pulse, the electrons are kept at a con-
stant temperature T,o, while the phonon modes are being
heated up via the interaction among the electron and
phonon subsystems. After the instant of time t, in the
relaxation period t )t, the condition of the electronic
temperature being constant is abandoned and the whole
electron-phonon system is let to be relaxing spontaneous-
ly towards the equilibrium with the ambient lattice. Let
us remark that in the experiments under consideration
the pulse lengths of several hundreds of picoseconds are
not expected to cause any substantial heating of the am-
bient lattice.

VI. NUMERICA. L RESULTS AND DISCUSSION

The material parameters used in solution of the kinetic
equation are compiled in Table II. The lifetimes of the
LO phonons rLo and of the acoustic phonons r„(for
CdSe) are taken from Refs. 2 and 6. For the lack of ex-
perimental data we have chosen ~z =150 ps for GaAs,
which is the same value as in CdSe.

In CdSe the numerical calculations were performed
taking T,0=2000 K and TL =77 K. The density of the
conduction-band electrons is taken to be n, =1.1X10
m (see Ref. 6). At this density and under the condi-
tions considered in this work the electrons remain nonde-
generate. The distribution functions in this work are
displayed in the form of the effective temperatures T of
the modes which are connected with the mode population
by means of the Bose-Einstein distribution function.
Thus, we introduce T and T" as mode temperatures of
optical and acoustic modes, respectively. In all the
figures the temperatures T are displayed as relative tem-
peratures with respect to Tl . We introduce therefore
AT =T —TL, AT"=T —TL, and AT =T —TI,
with obvious meaning.

A. CdSe

TABLE II ~ Material parameters.

Quantity

m */mp
K~
Kp

(p)
+LO

A

Unit

ps
ps

CdSe

0.13
6.2
9.6
4.4

150

GaAs

0.067
10.91
12.91

8
150

Presenting the results for CdSe, let us first consider the
evolution of the system during the heating period
0(t (t . In Fig. 1 we display the temperature of the
LO-phonon mode with the wave vector q =1.2X10
m ' in the heating period for t =200 ps. The quantity

q is chosen here to be the magnitude of such a wave
vector at which the mode temperature reaches approxi-
mately an overall maximum. The dashed horizontal line
denotes the electronic temperature AT, = T,o

—TI, which
is constant within this period of time. We observe that
the LO-phonon population sharply increases during the
first several picoseconds and stabilizes after about 50 ps
at a constant value.

As it is well known, the LA phonons produced in the
course of the decay of the hot LO-phonon population are
concentrated in the close vicinity of a spherical surface in

q space. The radius qo of the sphere, near which the
LA-phonon population reaches the maximum, is given
approximately by the condition cpp =2cp g ( pp ). In Flg ~ l
we also display the LA-phonon temperature AT 0 taken
at qo in this heating period. The acoustic-phonon tem-
perature increases during about the first 50 ps. Also in
Fig. 1 is the temperature ET0 of the LO-phonon mode
with q =0 displayed as a function of time. The q =0 LO
phonons are produced solely by the acoustic-phon on
fusion. This is why the LO-phonon curve ATQ is slight-
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FIG. 1. The time dependence of the relative temperatures in
CdSe in the heating period, computed at T,o =2000 K, TL =77
K d t =200 ps. Curve a (dashed line), electronic tempera-an

LOture 6T„curve b (solid line), LO-phonon temperature b Tq

q = 1.2 X 10' m '; curve e (solid line), LA-phonon temperature
b, T" qo =68 X 10 m '; curve d (dashed line), LO-phonon tem-qO~ qO

perature AT~ at q =0.

ly retarded behind the LA-phonon curve. The time of re-
tardation rejects the finite lifetime of the nonequilibrium
LA-phonon population with respect to the fusion chan-
nel.

The q =0 LO-phonon mode becomes heated consider-
ably after about the first 50 ps. From the reasons con-
nected with the fusion processes, all the long-wavelength

8 —1LO-phonon modes with approximately q & 0.2 X 10 m

FIG. 3. q dependence of the LA-phonon relative temperature
AT" at t =200 ps in CdSe. T,o=2000 K and Tz =77 K.

q

are heated to about the same temperature as the q =0
mode. This is seen in Fig. 2, giving the optical-phonon
temperature 6T at t = t =200 ps. In a more simple

q

model with the hot LA phonons neglected, the heating of
the long-wavelength LO phonons would be only due to
the hot-electron cooling and thus ATq would be negligi-
ble because of the energy and momentum conservation in
the long-wavelength region of the optical phonons.

In the present case of CdSe the LA phonons are gen-
erated near q =q =6.8 X 10 m ', as observed in Fig. 3,O ~

in which the LA-phonon temperature 5T is given at
t = t =200 ps. It is observed that the maximum value of
the LA-mode temperature is close to that of the long-
wavelength LO phonons. This is expected, realizing that
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FIG. 2. q dependence of LO-phonon relative temperature
6T" at t =200 ps (end of the heating period) in CdSe.q

Te0 2000 K and TL =77 K

FIG. 4. Time dependence of relative temperatures in CdSe in
the relaxation period (t ) t~ ). See caption of Fig. 1 for other
data.
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dence of the LO-phonon energy on q. In this case the en-
ergy conservation law brings a restriction of the q space
available for the products of the fusion channel, although
the fusion channel remains open to such an extent that
the hot-electron cooling time is still lower than the ob-
served experimental values reported to be of the order
of hundreds of picoseconds. The inability of the present
theory to approach the experimental values of the hot-
electron cooling rates could be partly ascribed to the
choice ' of the coupling function P in Klemens interac-
tion operator, which does not seem to be understood
enough at present.

As far as the inclusion of the finite pulse length simula-
tion is concerned, the significance of it appears to be com-
parable with the importance of the dispersions. We con-
clude, therefore, that the laser pulse length, which is re-
ported in Refs. 5 —8 to be about 30 ps, may be an impor-
tant factor in numerical simulation of those relaxation
processes, which should lead to large relaxation times. In
other words, the amount of the energy provided to the
electronic subsystem by the laser pulse may thus be a
significant factor.

The numerical calculation shows that the results are
sensitive to some extent to the magnitude of the spherical
zone radius. This is not a surprise because the magni-
tudes of qo are rather large on the scale of the zone ra-
dius. In this context the importance of umklapp process-
es is unresolved as yet.

Summing up, we have solved the kinetic equations for
the system of hot electrons and hot optical and acoustic
phonons, taking into account the anharmonic coupling
between the optical and acoustic phonons and realistic
dispersions of both. The conditions were found. to be
more favorable for the occurrence of the acoustic-phonon
bottleneck in the case of the realistic dispersions and
finite laser pulse lengths included than in the case of the
dispersionless approximation and short pulses. The re-
laxation time constant in CdSe, being about 30 ps, is
larger than the value of 9.2 ps obtained previously in the
dispersionless approximation, although it is still lower
than the experimentally observed time constants. The
value of the relaxation time constant obtained in the
present case appears to be controlled by the fusion pro-
cesses of the acoustic phonons.
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