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Complex dynamics of current filaments in the low-temperature impurity breakdown regime
of semiconductors
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The formation of spatial and spatiotemporal patterns (current filaments) in semiconductors in the re-

gime of low-temperature impurity impact ionization is investigated theoretically. Our model yields
stable filaments, breathing filaments, and traveling filaments which show an intermittent spatiotemporal
instability, resulting in chaotic oscillations of the average carrier density and of the current. The crucial
role of the dielectric relaxation of the transverse electric field is singled out. Different strategies for the
numerical treatment are discussed.

I. INTRODUCTION local energy-field relation

Current filaments in semiconductors are self-organized
spatial structures which are associated with a transversal-
ly modulated inhomogeneous current Aow. Such current
filaments have been observed in the low-temperature im-
purity breakdown of n-type GaAs (Refs. 1 —3) and p-type
Ge, as well as at room temperature in Si p-i-n diodes
and p-n-p-n diodes. ' The filaments are usually connect-
ed with an S-shaped current-voltage characteristic with
negative differential conductivity (SNDC).

In this paper, we theoretically investigate the forma-
tion and evolution of current filaments in the low-
temperature regime. Our model is based upon coupled
nonlinear partial differential equations with only one
diffusive variable, viz. , the carrier density, and includes
the dynamics of the electric field. Previous models pro-
posed for this physical system deal with stationary spatial
structures, linear modes of the current filaments, or
homogeneous oscillations. ' ' Other descriptions
parametrize the dynamics of the spatial inhomogeneity
with few order parameters. ' ' Our model will extend
these studies to describe the full nonlinear spatiotemporal
dynamics of the filaments. As a result, we are able to ex-
plain in detail the complex, turbulent dynamics occurring
far from thermodynamic equilibrium.

II. THE MODEL

As the relevant dynamic variables for the description
of the charge transport in the semiconductor, we choose
the density of the free majority carriers n and of the car-
riers bound at M shallow impurity levels n;
(i = 1, . . . , M) corresponding to ground and excited
states. These are coupled to the electric field 8 via
Maxwell's equations. In this analysis, we make the fol-
lowing assumptions. '

(1) Momentum relaxation occurs faster than all other
processes, so that the mean momentum per carrier p can
be eliminated adiabatically.

(2) The mean energy E of the carriers is also a fast vari-
able with a small heat diffusion constant. This implies a

B(nv, )+ =P(n, n„A'),
t)t Bz

Bn,
=P, (n, n„8),

Bf

(2)

with mean transverse velocity v, =@[6,—(1/n)t)n/Bz]
and generation-recombination (GR) rates P and P„with
P+g;, (b,. =0. Here we have introduced M-dimensional
vector fields n, =(n„. . . , nM) and P, =(P„.. . , tbsp).
Note that all quantities are given in dimensionless units

E =E + m elt2@2
2

where Eo=( —,')kit TL is the thermal equilibrium energy,
m* is the effective mass, p is the mobility of the carriers,
g =2m;/r is twice the ratio of the energy and momen-
tum relaxation times, kz is the Boltzmann constant, and

TL is the lattice temperature.
(3) As shown experimentally ' ' and theoretically, '

the dominant structure formation in the system con-
sidered occurs perpendicular to the current Aow, in the
form of current filaments. Thus we assume spatial inho-
mogeneity only in this direction. Experimentally, spatial
structures in the direction parallel to the current How,
e.g., mainly a distortion of the filament walls due to con-
tact effects, have also been observed. However, for
suSciently large contact spacing, the essential spatial
structure is in the transverse direction.

(4) Since all occurring velocities are much smaller than
the velocity of light in the semiconductor material, the
electric field is treated as purely longitudinal, i.e., free of
vortices ( V X 8=0).

Let us choose the coordinate system such that the drift
current and the drift field (6„)are in the x direction, and
the internal space-charge field 6, due to current filamen-
tation is in the z direction. The sample is considered to
be suSciently small in the y direction so that we can as-
sume homogeneity in this direction (this allows for plane
filaments). From a moment expansion of the Boltzmann
equation, we obtain the balance equations
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TABLE I. Dimensionless variables.

Quantity Unit

n, n,

po (low-field mobility)

N~ =NA —ND

C
+M

epoN~
1/2

k~TI c,
LD

k~ TL

eLD

a@,
cjz

M
=p=n+ gn, —1 .

The sample is connected to a constant voltage source Uo
via a load resistor R in series and a parallel capacitor C.
The time evolution of the electric field due to dielectric
relaxation is given by

as listed in Table I. We have assumed p-type material
where the carriers are holes, but the results can be easily
transferred to n type. Since the electric field is free of
vortices, 8 cannot depend on the spatial coordinate:
B8 /Bz =0. Additionally, the local charge density p cou-
ples with the electric field via Poisson's equation

(n )—:f ~n dz/W.
Equation (6) can be obtained by adding (2) and (3) and

combining the result with Eq. (4).

III. THE HOMOGENEOUS STEADY STATES

The spatially homogeneous steady states (denoted by
e ) are obtained by setting all temporal and spatial deriva-
tives in (2)—(6) equal to zero. For common GR kinetics,
the GR rates are linear in n„' so (3) leads to a unique re-
lation between n, and n, 6' of the form n,*(n, 8). This im-

plies that the steady-state charge density can be expressed
as a function of n, A' alone: p*(n, B). Further, 8,*=0
holds by (6). The steady states are given by the condition
of local charge neutrality [p'(n, A')=0 by (4)] and by the
static current-density-field relation j p(n, @) [by (5)]. Bista-
bility of the homogeneous steady state can occur if
p*(n, h ) =0 has more than one solution n*(6) in a cer-
tain field range. This can be achieved if more than one
impurity level is taken into account. '

As an explicit example, we refer to p-type Ge at 4 K.
We consider two impurity levels (the ground level n, and
the first excited level n2) The .GR kinetics is given by'

/=X&nz —T', n(N„/N~ n, —n2)+—X,nn, +Xfnnz,

P, = T*nz X*n—, —X&nn, ,

(5)

Bn

at ' az
= —p n (6)

wh««„=1+1.C/(As), A is the cross section of the
sample, I. is the size of the sample in the x direction,
J'p = Up /(R AeppNg 8p) ai, =L /(R AeppN„* ), E =E„Ep is
the relative and absolute permittivity. For the current
balance (5) we have integrated the total current density
j"'=BC/Bt+ j over the cross section of the sample, tak-
ing into account divj"'=0. The brackets denote the
spatial average over the sample width 8':

where X& is the thermal ionization coefficient of the excit-
ed level, T', is its hole capture coefficient, X, and X; are
the hole impact ionization coefficients from the ground
and excited levels, respectively, X* and T* denote the
transition coefficients from the ground to the excited lev-
el, and vice versa, respectively.

In the following, the GR coefficients as a function of
the electric field 8=(6' +A', )' are obtained by a spa-
tially homogeneous Monte Carlo (MC) simulation. The
numerical parameters used for the GR processes, X
T*, and X& (see Table II), have been calculated on the
basis of the Lax cascade-capture model, " using de-

TABLE II. Material parameters for p-type Ge at 4 K.

NA =10' cm, N =5X10' crn c,„=16 TL =4 K p=p0=10 cm /Vs
~~=10 ' s, LD=5.6X10 cm, 80=60.8 V/cm
X*=10-",T*=7.21X10-', X; =1.4X10-'
X, (A)=x, exp[ —xz(a8) ']
X,*(6)=x*, exp[ —x,*{a@)' ]
T;(6)=t, exp[ —t, (t, +ah)']+t, (t, +a@) '

with

%1=7.85X 10
x2=11.3
x3 = —0.745
a=60. 8

xi =4.18X10
xq =3.72
x3 = —0.66

t& = 1.2X 10
t& =0.2
t3 = —0.254
t4 = 1.73 X 10
t5 =0.421
t6 = —0.887
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tailed balance. ' The MC transport data are fitted by
smooth functions of the electric field yielding SNDC in
the resulting carrier density-field characteristic (Fig. 1).
This multistationarity can be explained in the following
manner: for low electric fields, almost all carriers are
trapped in the ground state of the impurities. When the
electric field increases, the few carriers in the valence
band gain energy in the field, until they are able to impact
ionize carriers from the ground level (note that the excit-
ed level is not populated). The breakdown occurs in the
field regime that corresponds to the (higher) energy need-
ed to ionize carriers from the ground level. When the
electric field decreases, the carriers in the band will be
trapped in the excited level. Since the transition time to
the ground state is very long, the population of the excit-
ed level will be high until the energy of the free carriers is
too small to ionize the carriers in the excited level. So the
freeze-out occurs in the field regime corresponding to the
(lower) energy needed to ionize carriers from the excited
level. This results in a hysteresis under voltage control.

IV. STABILITY OF THE HOMOGENEOUS
STEADY STATES

The stability of the homogeneous steady states of the
system C&*=(n*,n,*,6*,A',*) against small fiuctuations
M&(z, t) =5&oe'"'e ' can be determined by linearizing
(2)—(6) around this steady state. Most of this linear sta-
bility analysis has been reported previously, ' so here we
give only a brief summary.

Since the electric field is vortex free, k58 =0 holds.
This implies that only homogeneous modes (k =0) allow
for 58„%0. This motivates the separate treatment of
homogeneous and inhomogeneous modes.

In the rest of this paper, we restrict ourselves to the
case of c„=1 (no external capacitance) and o L

=0
(current source).

For the case k&0, 56', =0 holds, so that the linearized
Eq. (5) can be neglected. In this case, a Fourier transfor-
mation of the linearized system leads to M+1 branches
of the dispersion relation A, (k), since the dynamics of the
M+3 dynamic variables n, n„8„,6, is restricted

through 5C =0 and the Poisson equation (4).
Since for normal GR kinetics, the rates are linear in n„

(3) leads to

X5n, =8 (n)5n, +d5n, (10)

V(X)—:(A+pn , *) = —pk
H(A, )

G(A, )
(12)

where H(A)=G(k) —g; .adj(8 k); d/=—det(AoR —A).
3&R is the Jacobian matrix of the subsystem describing
the charge-neutral fluctuations of the carrier densities
with 54 =0 and 5p=0.

The time scales introduced in the model are (i) the time
associated with the transport of the carriers, i.e., the
dielectric relaxation time sM, and (ii) the GR lifetime

Depending on the ratios of these time scales, three
major regimes can be identified: (a) wM ))~GR (relaxation
semiconductor, corresponding to low conductivity); (b)

rM &(ro~ (lifetime semiconductor, corresponding to high
conductivity); and (c) ~M =rGR (intermediate regime).

For lifetime semiconductors, we can drop the left-hand
side of (6) and obtain

, H(A, )

G ( A, )
(13)

For relaxation semiconductors, we can drop the left-hand
side of (3), thus

H(0)
G(0)

(14)

where H(0) detA=Ga and G(0)=detB This a. diabatic
elimination of the fast carrier dynamics is only valid if
the obtained quasistationary state is stable against Quc-
tuations of the fast variables. We obtain the linearized
continuity equation by summing up (3) and (2):

where the components of the matrix B and the vector d
are given by 8, =OP;/Bn and d, =BQ;/Bn .Thus the
Auctuations 5n, can be expressed by 5n only:

a—dj(B —
A, )—

G(A, )

where G (A, ) =det(B —
A, ), and (adjB); . is ( —1)'+~ times

the determinant of the matrix obtained by deleting the
jth row and the ith column of 8 (adjunct of 8). The zeros
of G (A, ) describe fiuctuations of the trapped hole concen-
trations, with 5n =0 and 56, =0. Linearizing and
differentiating (6) with respect to z can be combined with
(4) to the eigenmode equation

i

0.02 0.04 0.06 0.08 0.10 0.12

A5p= —p n*+k 5p .2 G(0)

In conclusion, we obtain the eigenvalue equations by (14),
(15), and (6):

A6p= —p n *+a 5p,p G(0)
H (0)

FIG. 1. The homogeneous steady-state carrier density n in
units of N~ vs the steady-state longitudinal electric field in units
of Do calculated with the parameters of Table II.

A,56, = —p n *58, ik 5p-G(0) (17)
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with the eigenvalues

A, = —pn*, k = —p n +k 2 G(0)
H(0) (18)

The last term can be connected with the stationary
homogeneous current-density-field relation. Since, under
steady-state conditions,

P, (n, n,*(n, 6', ), e, ) =0 (19)

thus

dX
BP, dn,

BX dX
+B (20)

dnt

dX aX
(21)

With X =n, we obtain

Bp H(0)
dn

@ G(0)
(22)

With this, the eigenvalues (18) read

~, = —pn *, A2= —p n'+k 2 ~P (23)

where A, , corresponds to a pure damped dielectric relaxa-
tion mode and A,2 to a coupled-relaxation —GR mode,
which may be unstable on the NDC branch of the
current-voltage characteristic because (Bp/Bn )@(0 holds
there.

Equation (22) implies an important general theorem
about the stability of the homogeneous steady states, '

holds, the total derivative of P, with respect to X (where
X is n or 8, ) vanishes:

M+1
A,;(0)=H(0) =G (0)

n
(24)

The eigenvalues associated with G (A. ) are usually all neg-
ative [which can be proven for the specific GR rates in (8)
and (9)]. Since p is a continuous function of n, the right-
hand side of (24) changes sign between consecutive zeros.
This imphes that stable and unstable steady states alter-
nate for fixed electric field.

Figure 2 shows the resulting dispersion relations for
the special model (7)—(9). For the higher current density
[Fig. 2(a)], the eigenvalue spectrum according to (12)
matches perfectly with that from (13) which allows us to
neglect the fast transversal dielectric relaxation in this re-
gime. For the lower current density [Figs. 2(b) and 2(c)],
significant differences are seen between the full solution
(continuous line) and the lifetime approximation (dashed),
thus the full system has to be investigated. We note that
the current density jo for both Figs. 2(a) and 2(b) corre-
sponds to steady states on the NDC branch of the
characteristic in Fig. 1. In both cases, an instability
Rek, )0 occurs for a range of k vectors.

For homogeneous modes (k =0), a necessary condition
for an oscillatory instability (Hopf bifurcation) of the spe-
cial model (8) and (9) is ndu/dh (A,„where A, , is the
largest eigenvalue of AGR. ' This condition can only be
achieved on the NDC branch of the static current-field
characteristic if the concentration n is low and the
differential mobility du/d6 is small and positive. It
turns out that for our material parameters the system is
stable against homogeneous Auctuations.

As a result, we obtain a long-wavelength instability on
the NDC branch. Fluctuations with a wave vector k & k,
grow in time, where k, is the marginal wave vector with
A, (k, ) =0. These inhomogeneous fluctuations trigger the
formation of current filaments. The physical origin of this
instability is the autocatalytic impact ionization process.

3-
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0.000 0.015 0.030 0.045
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FIG. 2. The eigenmode spec-
trum (a) jo=0.001 and (b) and
{c): jo=2.3X10 '. In {a), the
full solution (continuous line)
and the approximation (13) of a
lifetime semiconductor (dashed)
coincide, while in (b) and (c) they
are significantly di6'erent for the
upper two branches of the
dispersion relation A,(k). (k in
units of 1/~M, k in units of
1/I D.)
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V. DYNAMICS OF INHOMOGENKOUS
FILAMENTARY STATES

In order to obtain more insight into the nonlinear dy-
namic behavior of the system, we have analyzed (2)—(6)
numerically. Depending on the actual ratio of the
relevant time scales, different strategies have to be ap-
plied for this purpose. For higher current densities, where
the dielectric relaxation is very fast compared to the GR
processes, we can eliminate the electric field adiabatically.
This implies for the longitudinal field

Z(i) Z(i)++@(t)g (32)

The weight of each macroparticle varies due to GR pro-
cesses:

n" n "+y(n",n,",e,")ht . (33)

and GR processes. At is assumed to be so short that we
can consider only the linearized processes.

The center z" of each macroparticle will move in At
due to the drift according to

Jo
p(n&

' (25)

The trapped carriers are treated in a similar manner.
The diffusion tends to expand a macroparticle, and de-

crease its weight by

Bn

BZ

is satisfied. There remains a local dynamics,

Bn =P(n, n„( ),at

(26)

(27)

together with (3) and the additional constraints (4), (25),
and (26).

In the intermediate time-scale regime, the full dynamic
system has to be taken into account.

For the simulation, we use the method of particles.
We divide the cross section of the sample into X equal
cells. In each cell C; (i =1, . . . , N) we assume homo-
geneously distributed carrier densities n" and n,",which
are considered as "macroparticles. " This allows us to
write the charge density as

N

p(z, t)= gp"(t)O, (z, t), (28)

with

p"(t)= —1+n "(t)+y n "(t),
j=1

where

(29)

1 for z+[z")—h/2, z")+h/2]
0 zt='

0 otherwise . (30)

z"=(i —1/2) W/N is the center of the macroparticle i.
We obtain the transverse electric field in the center of
each cell (,"(t)=6,(z",t) by integration of (4):

g(i) g(0)+h P + y (j) (31)
2 '

1

where h = 8'/N is the length of each cell and 8,' ' is the
boundary condition 6, (O, t) The carrier de. nsities n"
can vary in the time interval At due to drift, diffusion,

The transverse displacement current density can also be
neglected, which implies that the drift current density
pn 6', is compensated for by the diffusion current density
—pBn/Bz. Physically, this means that the transport of
the free carriers due to drift and diffusion is much faster
than GR processes. The carriers rearrange themselves in-
stantaneously (on the faster time scale r~) in such a
manner that

h) h+Ah =h+
h

(34)

n (i) n (i)
h +Eh

(35)

The latter is a good approximation if bh «h, thus
b, t «h 2/(2p).

The above mappings are performed for all cells. The
new carrier distribution is calculated via

N

n(z, t+bt)= gn "(t+bt)O, (z, t+ht) . (36)

For the next time step, new macroparticles are created
from the former ones with the initial center
z"=(i —1/2)W/N and cell length h = W/N, but a
different weight, calculated through integration of (36):

z ' +h/2
n "= n (z, t + j) t)dz .z"'—I /2

(37)

From the "particles" point of view, appropriate bound-
ary conditions are causing particle Aow to vanish at each
boundary. So if a macroparticle or a part of it attempts to
cross the boundary of the sample, it is forced to remain in
cell C, or CN, respectively.

From a macroscopic point of view, appropriate bound-

ary conditions are fixed values of the transverse electric
field at the boundaries C, (0, t) =8, ( W, t) =0 The.
above-mentioned particle conservation implies global
charge neutrality, i.e.,

Q= I p(z, t)dz =0 . (38)
0

This together with (4) ensures C, (O, t)=h, ( Wt). Since
these values can be controlled via the integration con-
stant 6 ( ', the "macroscopic" boundary conditions are
fulfilled.

For the intermediate time-scale regime, the above algo-
rithm is implemented as described. Additionally, the dy-
namics of the longitudinal field has to be taken into ac-
count.

For the lifetime regime, the difference between the time
scales of the GR and transport processes does not allow a
direct application of the algorithm. As described above,
the dynamics of the electric field can be eliminated adia-
batically. The remaining local dynamics (27) and (3) can
be solved fast with a second-order Runge-Kutta
method. In addition to the Poisson equation (4), Eq.
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FIG. 4. DiQ'erent types of spatiotemporal dynamics: (a)
jo =0.00045 (simulated time interval T = 1.24 X 10 rM ); (b)
jo =0.0001 (T = 1 ~ 6 X 10 r~)& (c) jo =0.000 05 (T=6 X 10 rM);
and (d) the same as (c) but for the simulated time interval from
t =1X 10'rM to t =2.3X 10'r~. The width of the sample is
8' =2000LD.

ization rate and thus to an increase of the carrier density.
At the back end, the carrier concentration decreases due
to the lower electric field. As a result, both walls of the
filament move in the same direction, i.e., the filament
travels to one side. This asymmetry of the concentration
profile of traveling current filaments is inverse to the
asymmetry of the field profile in the case of traveling field
domains, e.g., in the Gunn effect.

The motion of the filament through the sample may be
suppressed by inhomogeneities such as roughness in the
contact region, or inhomogeneous doping. We have in-
vestigated the situation for a slightly higher doping in the
center of the sample. For current densities larger than a
minimum value, this inhomogeneity is able to pin the fila-
ment. While the position of the filament is fixed at the
inhomogeneity, the walls still show breathing oscillations
[Fig. 6(a)]. Intermittent destruction and renascence of
the filament is also possible [Fig. 6(b)]. For smaller
current densities the dielectric relaxation time becomes
so long that the dielectric relaxation is no longer strong
enough to force pinning against the random transverse
motion of the filaments. Experiments to check these
theoretical predictions would be desirable.
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FIG. 5. The carrier density n as a function of z at a fixed time
for jo =0.0002 with cyclic boundary conditions. The arrow indi-
cates the direction of the traveling filament. The width is
8 =1000LD.

FIG. 6. Dynamics of the carrier density n (z, t) in a
modulation-doped sample with width of 8'=1000LD and the
corresponding time series of the longitudinal field 4 for (a)
j0=0.00021 and (b) j0=0.00022. The acceptor concentration
is 15%%u& higher than in the rest of the sample within a layer of
120LD in the center of the sample.

VI. CONCLUSIONS

We have presented a macroscopic model for the spa-
tiotemporal nonlinear dynamics of current transport in
semiconductors at low temperatures, based on a micro-
scopic transport description of the scattering and
generation-recombination processes, in particular impact
ionization of impurities by Monte Carlo simulations.
Our numerical simulation method allows for the treat-
ment of the different time scales involved. The model
shows a bifurcation scenario (with decreasing current)
from homogeneous states to stable filaments, breathing
filaments, and traveling filaments, including novel com-
plex spatiotemporal intermittent behavior in which a
breathing instability triggers spatiotemporal intermitten-
cy of filaments traveling from one side of the sample to
the other. We suggest that this complex oscillatory insta-
bility offers the first detailed explanation of the chaotic
spatiotemporal oscillations observed in p-Ge at 4 K.

The physical origin of the oscillatory instability is
based upon the autocatalytic impact ionization process of
the acceptor ground and first excited states. A Auctua-
tion of the carrier concentration in the filament wall
tends to increase due to impact ionization. In the lifetime
regime, this excess carrier density can be distributed
effectively via drift and diffusion processes leading to
stable filaments. For smaller current densities, the trans-
verse electric field reacts too slowly upon such Auctua-
tions, which allow the fluctuations to increase further and
trigger instabilities.

We would like to point out the different time scales of
the breathing filament oscillations and the traveling fila-
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ment oscillations. These time scales are connected with
different dielectric relaxation times: the breathing fila-
ment oscillation mode is localized at the filament wall,
where the carrier density is orders of' magnitude higher
than outside the filament, leading to a short dielectric re-
laxation time and high-frequency oscillations. Outside
the filament there are almost no free carriers, which re-
sults in very large GR and dielectric relaxation times.
These very slow processes are responsible for the ob-

served low frequencies. This solves the discrepancy exist-
ing hitherto between the frequencies obtained in experi-
ments and theories. ' '
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