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The one-step model of photoemission is generalized to the case of space-filling potential cells of
arbitrary shape. The resulting method difFers from the usual mufBn-tin formalism in an improved
treatment of the single-center scattering, already successfully employed in full-potential Korringa-
Kohn-Rostoker band-structure calculations. Finally it results in generalized matrix elements for the
four contributions to the photocurrent that take the full nonspherical crystal potential into account.
This generalized photoemission theory will be useful for the calculation of (inverse) photoemission
spectra of ordered systems, such as pure elemental solids, compounds, and alloys, in a unified manner.

I. INTRODUCTION

The one-step model of photoemission is an impor-
tant and useful tool to interpret experimental data from
angle-resolved ultraviolet photoemission (ARUPS) and
angle-resolved bremsstrahlung isochromat spectroscopy
(ARBIS). Moreover, it has advanced considerably in its
range of applicability since its original formulation by
Pendry and co-workers. In particular the enlargement to
inverse photoemissions 4 and the incorporation of a real-
istic model for the surface potential as well as the in-
clusion of temperature and relativistic9 ~ effects have
strongly improved the number of applications. In addi-
tion an extension of the theory to materials with several
atoms per unit cell is available. ~ The low-energy electron
difFraction (LEED) theory, which is included in the one-
step model of photoemission, has already been published
in Ref. 12.

This model, which describes the photoemission pro-
cess in a dynamical way, was originally formulated for
muffin-tin potentials, which are spherical symmetric and
nonzero only inside a sphere inscribed in the Wigner-
Seitz cell, the so-called muon-tin sphere. The muFin-
tin approximation appears adequate for closed-packed
systems, but it is a crude approximation for covalently
bonded systems. In intermediate situations its adequacy
depends on the accuracy sought. But even for those
crystals, where this approximation is well justified, the
restriction to the mu%n-tin form is not desirable.

Growing interest in the electronic structure of com-
plicated materials with more open structures, which are
not well described by muffin-tin potentials, has led to the
development of full-potential band-structure techniques,
e.g. , full-potential Korringa-Kohn-Rostoker (KKR), is 2i

full-potential linear mufBn-tin orbital, ~~'~3 etc. These
self-consistent calculations employ a space-filling crys-
tal potential divided into cells of arbitrary shape, since
contributions from regions outside the inscribed sphere
are non-negligible and the potential inside the muon-tin
sphere deviates from the spherical average in most cases.
A proper treatment of such systems within the one-step

model of photoemission therefore also requires an em-
ployment of space-filling cell potentials, determined in
self-consistent band-structure calculations on the basis
of density-functional theory (DFT). An interpretation of
photoemission spectra of more covalently complex sys-
tems will then be possible.

Since the widely used KKR theory for the calculation
of band structures has been generalized to the case
of space-filling cell potentials of arbitrary shape,
the idea to develop a full-potential photoemission the-
ory arose because these two theories are closely related
in basic issues. As a basic requirement within both the-
ories, the Schrodinger equation for a generally shaped
nonspherical potential with proper boundary conditions
must be solved. The method of solution is the expan-
sion of the wave function inside the smallest sphere cir-
cumscribing the cell in a set of basis functions that are
themselves integral equation solutions to Schrodinger's
equation, the so-called "phase function" solutions. This
basic idea was originally suggested by williams and van
Morgan 3 and led us to the generalization which is the
subject of this paper.

A brief plan of the paper may be helpful: Section II
presents the general theory of photoemission, calculated
within the framework of many-body theory, and eludi-
cates the remaining approximations made to transform
the problem in a manageable form. Section III is devoted
to the phase functional ansatz. It gives a short idea of
how to use multiple-scattering theory in the case of a
space-filling crystal potential. Moreover, the Schrodinger
equation in the case of a single-cell potential is solved in a
piecewise fashion by dividing space into a sphere contain-
ing the cell and the region outside, where the potential is
zero. Section IV contains the generalization of some ba-
sic equations of photoemission theory to the full-potential
case. In detail it is pointed out how the phase functional
ansatz and therefore the picture of a nonspherical poten-
tial in a cell of arbitrary shape modifies the scattering
solutions for a single cell, the scattering matrices for a
single layer and the dipole operator. Finally, the four con-
tributions to the photocurrent are calculated in Sec. V.
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These derivations demonstrate that the phase functional
ansatz enters the contributions in a straightforward man-
ner, and though they are modified, the basic structure of
the one-step model is kept. Section VI contains a short
summary.
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II. TEMPERATURE-DEPENDENT
QUASIPARTICLE PHOTOEMISSION

Zg ——a„,
Z y=ak

for ARBIS and ARUPS, respectively, where ak (ak) is
the creation (annihilation) operator for an electron with
wave vector k and energy E. The operator Z„obeys the
relation

Zt =Z-. . (3)
The intensity of the resulting radiation is directly related
to the one-electron spectral density A„(E) by

I.(&) =, +, , (
—„"(&) l (4)

P denotes the Boltzmann factor. The one-electron
spectral density Ak(E) for an electron with wave vec-
tor k and energy E is connected with the retarded
one-electron Green function of the interacting system

Gi, (E) = ((ak, at )) via

(E) = —1 ™((a„a„'))~"

Im (k, E Gk(E) k, E) . (5)
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The energy E is referred to the Fermi energy E~. The
intensity of the resulting radiation for ARUPS (ARBIS)
results by rewriting Eq. (4) as
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1
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The one-step model of (inverse) photoemission devel-
oped by Pendry and co-workers describes the process
of (inverse) photoemission in a dynamical way. The
formula for the photocurrent, originally derived from
Fermi's golden rule, can also be calculated on the basis of
many-body theory sW. ithin this framework it is possible
to give an abstract formulation of one- and two-particle
spectroscopies such as ARUPS, ARBIS, Auger-electron
spectroscopy, and appearance-potential spectroscopy in
a consistent way. 25

The central process relevant for one-particle spectro-
scopies like ARUPS (ARBIS) consists in the creation (an-
nihilation) of an electron with wave vector k and energy
E. Within the second quantization these spectroscopies
may be described in an abstract manner by the operator
Z„(r = +1). The index r denotes the change in the total
number of electrons within the system:

Gi (E) = Gk(E) + Gk(E) ~i (E) Gi (E)

Gio(E) denotes the one-electron Green function of the
noninteracting system. Many-body correlation effects are
taken into account by the complex self-energy Zk(E).
The spectral density (5) can be expressed as a function
of the real and imaginary part of the self-energy

1 Im[Zi, (E)]
(E —g(k) —Re[Z&(E)]) + Im[Z&(E)]'

(&)

The one-particle energies e(k) result from band-structure
calculations based on the DFT. The imaginary part of
the self-energy contributes to the intensity of the result-
ing radiation by broadening the peaks appearing in the
spectra. This effect corresponds to a finite lifetime of
the initial state. The energetic positions of the peaks are
shifted by the real part of the self-energy. For strongly
correlated systems Re[Zi, (E)] exhibits a pronounced en-

ergy dependence. This results in the occurrence of addi-
tional peaks (satellites), which correspond to many-body
effects ~7

We have to keep in mind that the photocurrent for
ARUPS (ARBIS) is not monitored by the intrinsic vari-
ables k and E of the final state, but by ey and kii, the
single-particle energies of the outgoing (incoming) elec-
tron and the wave-vector component parallel to the sur-
face. This is done by mapping the state k, E) with the
help of first-order perturbation theory on a time-reversed
LEED state kii, ef). With the help of this projection
the geometry of the experiment, the different densities of
states for electrons (ARUPS) and photons (ARBIS) and
the model of the semi-infinite crystal enter the theory:

k, E) = i-")+G2 (E+ h~) kii, ey), (10)

(k, E = (kii, ef G+2 (E + h~) 4 . (11)

hu denotes the energy of the electromagnetic wave
field. The propagator of the excited high-energy elec-
tron Gs (E+hw) is derived from multiple-scattering tech-
niques, while the operator 4 mediates the coupling to the
electromagnetic field:

e e2

(A. p+p A) —ec + A A. . (12)2mc 2mc

(E ) Ep) . (7)

According to Eq. (3) both spectroscopies are determined
by the same Green function Gi, (E), which fulfills the
Dyson equation
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A and C are the vector and scalar potential of the in-
cident light field. p denotes the momentum operator.
Using the well-justified dipole approximation, " we ob-
tain L in its final form

e
A p.

mc

Inserting Eqs. (10) and (ll) in (6) leads to the final
expression for the photocurrent:

I (k~~, ef) =
& „& ~

— Im(k~~, ef G2 (E+ hen)AGk(E)6+Gz (E+ h~) k~~, ef) ~
. (14)

This formula is a proper generalization of the one-step model to temperature-dependent quasiparticle photoemission.
Neglecting the temperature dependence and all many-body correlations (Re[Xi,(E)] = 0), except lifetime effects
(Im[Zk(E)] g 0), Eq. (14) reduces to the expression for the photocurrent, originally derived by Pendry and co-
workersi

I (k~~, ef) = — Im(k~~, ef G2+(E+~)AG+(E)A+G~ (E+(u) k~~, eg)
1

(15)

1
I(k~~, E+u) = ——Im dr dr' C(r, E+co)

xA G+, (r, r', E)
xA+ C "(r', E+ ~) . (17)

C(r, E + u) denotes the multiple-scattered final-state
wave field of the photoelectron

C (r, E + ~) = (kii, E + (u
i Gz (E + (u)

i r),
and Gi (r, r', E) is the Green function of the hole state

G+, (r, r', E) = (r~ G+, (E)~r') .

In the following we will evaluate Pendry's formula for the
photocurrent for a semi-infinite solid with a space-filling,
nonspherical crystal potential and a realistic model for
the surface potential. 5 The intensities of the electron
(ARUPS) and photon current (ARBIS) are connected in
a simple manner:3

2Ec2 cos 8
gARUPs(k E g )

s
yARBIs(k E + g )

GJ COS A

(16)

o. and 8 denote the polar angles of the photons and elec-
trons and ef ——E + hw the single-particle energy of
the final state. Incorporation of relativistic eÃects and
the temperature dependence into this model is discussed
elsewhere. 0 The extension to several atoms per unit
cell is straightforward. ' These enlargements of the
original theory are independent and an inclusion within
the full-potential photoemission theory is easily possible.

Because of this reason we will concentrate on the evalu-
ation of a nonrelativistic, temperature-independent, full-
potential theory of (inverse) photoemission for solids with
one atom per unit cell. In the following we will use atomic
units (5 = e = m, = l, c = 137.036) and the positive z
axis points inside the semi-infinite crystal. As usual the
crystal is divided into identical layers parallel to the sur-
face. Each of these layers consists, in the case of one
atom per unit cell, of identical Wigner-Seitz cells, filled
with the full nonspherical crystal potential.

For an explicit calculation of the photocurrent it is
necessary to rewrite Eq. (15)

I

We will evaluate formula (17) for a space-filling crystal
potential V, (r), which possesses the symmetry of some
infinite regular lattice, using the structure of the method
proposed by Hopkinson, Pendry, and Titterington.

III. THE PHASE FUNCTIONAL APPROACH
TO MULTIPLE-SCATTERING THEORY

In order to perform the calculation of the photocurrent
for a solid with a space-filling, nonspherical potential, it is
necessary to calculate the multiple-scattered initial- and
final-state wave field in the whole crystal. For the solu-
tion of this problem we can use techniques which are well
known from full-potential KKR calculations. Espe-
cially the phase functional ansatz, which will be intro-
duced in this section, was employed in the calculation of
band structures from space-filling cell potentials.

Considering an advancing wave field entering a crystal
with a space-filling potential, the problem of calculating
the total scattered wave field at an arbitrary point r in-
side the solid can be solved by multiple-scattering theory.
General principles of this theory state that each point of
an incoming wave front is scattered independently at the
potential in its vicinity. For this reason, it is possible
to decompose the crystal potential into nonoverlapping
cells of arbitrary shape. These cells act as independent
scatterers. We are free to introduce a virtual intersti-
tial region of infinitesimal volume that separates each of
these cells. Since this region occupies zero volume, we
choose the potential there to be zero. 2 Each of the
independent scatterers act as a source of secondary out-
going waves, and it is the multiple scattering of all these
secondary waves that determines the form of the whole
scattered wave field.

All information concerning the scattering process is in-
cluded in the scattering phases, resulting from match-
ing conditions of the wave function at cell boundaries.
There the wave functions inside the cell are matched to
the solutions in the virtual interstitial region. Once we
have determined the scattering phases, we can assume
the scatterers as points and use the well-known technique
of multiple scattering by dividing the crystal into layers
and each layer into cells.
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As a basic requirement, it remains to solve the
Schrodinger equation for a single cell

H+ V(r) —E]@(r,E) = 0. (20)

The potential consists of a cell with volume 0, filled with
the crystal potential V,(r), that is surrounded by zero
potential:

bounding sphere S

I
I

I

muffin-tin sphere
I
I

I
I

V, (r), V r C A0' '
V. ere —n. (21)

A solid with one atom per unit cell is broken up into
identical Wigner-Seitz cells. Within each cell there is
just one singularity in the potential at the cell origin.
For an atomiclike potential this singularity is less than
v 2 and the potential is almost spherical symmetric near
the origin.

Equation (20) ean be solved in a piecewise fashion and
the solution throughout the whole space is obtained by
taking the proper matching conditions at the cell bound-
ary into account. For r E Rs —0 Eq. (20) reduces to
the Helmholtz equation. The solution 4'o(r, E) in all
space is well known and analytic. For a given set of local
basis functions CP, (r, E) the solution 4'+(r, E) can be
expanded inside the cell asia zi

4"(r, E) = ) AL„(E) Cr, (r, E) .
Ly

(22)

Li denotes the composite labels (timi). The basis con-
sists of those solutions of Eq. (20) that behave like free
regular spherical waves at the origin:

lim CL, (r, E) = Jg, (r, E) . (2S)

Jl, (r, E) =j i (rr) Y& (r) is a solid harmonic, which is reg-
ular at the origin, and e = +2E. Therefore 4+(r, E) is
well defined and analytic throughout Q.z Because point-
by-point matching of the wave functions @+(r,E) and
4'o(r, E) across nonspherical cell boundaries is a trouble-
some way to meet the proper boundary condition

4"(r, E) =4'(r, E), Vr e BA, (24)

we make use of the analytic properties of these functions.
Thus, we can match the analytic continuation of these
wave functions at any surfaces, where the potential is
zero, instead of matching them at cell boundaries. is

To obtain a solution that is expandable into spherical
harmonics we choose a spherical surface. We match the
solutions on a sphere circumscribing the whole cell, the
so-called bounding sphere S (see Fig. 1). The center of
the sphere coincides with the center of the atom inside
the cell and therefore with the potential singularity. The
equivalent boundary conditions are

I

I
I

cell A

I

I

I

segments (S- A)

FIG. 1. Schematic representation of a typical cell of vol-
ume 0, circumscribed by the bounding sphere S with radius
R. The potential in the segments (S —0) is zero.

Using the nonspherical generalization of the phase func-
tional ansatz of Calogero, which was first used in full-
potential band-structure calculations, we obtain solu-
tions that form a set of complete, linearly independent
functions, in terms of which an arbitrary solution of
Eq. (26) can be expanded. i4 This phase functional ansatz
yields a way of solving Schrodinger's equation for very
general local potentials. is'2s In our case the solutions are
expandable in spherical harmonics:

CL„(»E)=) Yl..(r) C'I.,I., (r E)
L2

=).~., (r, E) CP...(r, E)
L2

L~(r, E) SL L (r, E) . (28)

Nl, (r, E) = ni(rr)Y&~(r) is an irregular solid harmonic,
and CP, I (r, E) and Sl,l, (r, E) are coefBcient matrices.
If the potential behaves reasonably smooth in the cell 0
without singularities except at the origin, we can define
the following decomposition inside the bounding sphere:

V, (r) = ) V„(r) V,, (r) (29)

for a potential that is nonzero within the Wigner-Seitz
cell and zero in the segments (S —fI) (see Fig. 1)

v (,) .( )
0 VrgS —A.

(r, E) = @o(r,E), V r g ciS . (25) with

H+ Vg(r) —E] CP, (r, E) = 0, V r c S (26)

The basis functions OL+ (r, E) will now be determined
within the bounding sphere with proper boundary con-
ditions on the surface cIS and at the origin. We seek for
local solutions of the Schrodinger equation

Vt (r) = dr Vs(r) Yl.', (r) (30)

and Vs(r) defined by Eq. (27). Inserting the phase func-
tional ansatz (28) and the expansion of the potential in
spherical harmonics (29) into the Schrodinger equation
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(26) enables us to rewrite this equation as a coupled sys-
tem of two linear difFerential equations for the coefficient
matrices:

C—l, r, (r, E) = —2 K r n(, (er)n 2

x ) ) V~, (r) Il.,l.,r„
L3 L4

(3I)

SI—,L, (r, E) = —2 r r j i, (er)n 2

x ) ) VI„(r)II,,I.,I„
L3 L4

xC, , (r, E) . (32)

The coefficient Il„l„i„describes the angular mixing:

ILg L3L4— dr Yg, (r) Yl., (r) Yl,, (r) .

~r".,r., (0 E) =o

the following integral equations result:

CL, L, (r, E) = 6r„l.,
—2K dr dA Nr*, (r, E)

~)

& ( ) @",( E) (35)

SP,I, (r, E) = 2r—dr dA JL, (r, E) Vs(r)

xCI, (r, E), (36)

where Jl, (r, E) = j i(Kr)Y& '(i) and NI" (r, E)
ni(rr)YP'(r) denote the complex-conjugate solid har-
monics. Solutions can be determined by outward in-
tegration from the origin to the radius r for any po-
tential less singular than n 2 at the origin. Integra-
tion out to the radius R of the bounding sphere S au-
tomatically determines the solution outside the bound-
ing sphere (r 6 9P —S), where the coefficient matrices
CP I (R, E) and SP,L, (R, E) are constant. The solu-
tions of the Schrodinger equation are determined by the
matrices C and S in the whole space. Inside the bound-
ing sphere they are a function of r and outside constant.
In the following we can drop the index 0 because so-
lutions are in the whole space of the same structure.
The coefBcient matrices are the nonspherical equivalents
of the scattering phase shifts cos(6i) and sin(6i) for the
mufBn-tin case. They determine the correct boundary
conditions at the radius of the bounding sphere, and the
scattering matrix can be directly extracted from their
asymptotic form (see Sec. IVB).

Including the correct boundary conditions at the origin
(23),

L~L, (0~ E) = 6L~L&

Theoretically the l. expansions (28) and (29) must be
carried out to infinity. In practical calculations they
are truncated at a reasonable value 3 ~„ that guaran-
tees convergence for the basis functions C~,L„(r). The
value of l „depends on the chosen geometry of the cell
and the expansion of the potential inside the bounding
sphere. These two conditions are closely related because
the choice of the cell geometry determines the poten-
tial inside and Anally the number of spherical harmonics
needed in Eq. (29) to describe the potential with suf-
hcient accuracy. First applications of the full-potential
KKR theory to simple metals show strong convergence
rates for l~«& 4. It is anticipated that calculations in-
volving more open structures will not require a value of
lm«higher than 6 or 8. Moreover„ the value of t~«
depends on the excitation energy. For example, t~ „=4
is a good value for calculating ARUPS spectra in the
energy range from Lu = 0 —40 eV.

A problem that arises in practical calculations of the
wave functions is the abrupt truncation of the potential
at cell boundaries. Because of this truncation high non-
spherical parts enter the expansion of the potential for
large values of r, which cause convergence problems in
the L expansion of the phase functions. Therefore Brown
and Ciftan suggested a technique for calculating these
functions that avoids truncation of the potential. i4 i5 zs

They use the full, untruncated crystal potential within
the whole bounding sphere to determine the radial wave
functions C'~, L,, (r). Finally they solve the integral equa-
tions (35)and (36) for the coefficient matrices with these
wave functions, employing the truncated potential. It is
required that the segments (S—0) do not contain any sin-
gularities, but this can be realized by a reasonable decom-
position of the crystal potential in cells. The solutions
calculated with the help of this technique built an identi-
cal set of basis functions to those obtained via direct cal-
culations dealing with the truncated potential, since the
boundary conditions at the origin are identical. More-
over, they exhibit a stronger convergence rate. 20

We can now expand an arbitrary solution 4'(r, E) as a
linear combination of the nonspherical phase functions.
All information concerning the scattering process of an
incoming wave field at a nonspherical potential of arbi-
trary shape is included in the coefficient matrices C and
S. Though we used a difI'erent set of basis functions as in
the muon-tin case, we obtained a solution which has the
same basic structure. Inclusion in the one-step model of
photoemission will therefore be straightforward.

IV. BASIC FORMULAS OF THE FULL-
POTENTIAL PHOTOEMISSION THEORY

In this section we present the way the phase functional
ansatz enters several basic formulas of photoemission the-
ory. Moreover, we will eludicate the difFerences of these
quantities to those obtained in connection with mufn. n-
tin potentials. z z In Sec. IVA we describe how scat-
tering by a single Wigner-Seitz cell takes place and the
way the irregular solution of the Schrodinger equation is
determined. The scattering matrix for a single layer is
introduced in Sec. IV B, and in Sec. IV C we describe the
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generalized dipole operator that mediates the coupling of
the high- and low-energy wave Geld in the full-potential
case.

C,+, (r, E) = —, ) V;,'„(R,E) H,"'(r, E).
La

(43)

A. Scattering by a single cell

We already described in the preceding section the
manner, in which the Schrodinger equation for a single
Wigner-Seitz cell surrounded by zero potential is solved.
This solution enables us to predict how incident electrons
will move inside the bounding sphere. Once the incident
wave is given, we are able to calculate the total wave
function, incident and scattered, in all space.

The solution outside the bounding sphere (28) may be
expressed in the form

C ~, (r, E) = - ) H,",'(r, E) U&, ~, (R, E)'L,
+.H~ (r, E) VI,,I, , (R, E) . (37)

Hz~
' (r, E) = ht

' (rr)YP (r) denote the spherical Han-
kel functions. Their asymptotic behavior leads us to iden-
tify the two parts of the expression as an outgoing and
incoming wave. The coeKecient matrices U and V are
given by

UI,,I, , (R, E) = CI„I., (R, E) + i SL„L„(R,E),

We use again the phase functional ansatz to calculate
the irregular wave function inside the bounding sphere
(re S):

4+& (r, E) =) C&+, &, (r, E) YL„(r)
Ig

= —) Ul„l,, (r, E) H~~ l (r, E)
La

+VI„I„(r,E) HI, (r, E) . (44)

This solution to Eq. (26) is, however, irregular at the
origin. The boundary conditions at the radius of the
bounding sphere R are

Ul„l,, (R, E) = VI, I (R, E),
(45)

Vl„l„(R,E) =0 .

Inserting this ansatz (44) into the Schrodinger equation
(26) yields analogous expressions for the coefficient ma-
trices U and V that determine the irregular solution in-
side the bounding sphere:

Vl.,l„(R,E) = Cl., l, , (R, E) —i Sl.,l., (R, E) .
(38)

We can decompose (37) into unscattered C»0, (r, E) and
scattered 4L (r, E) components:

+2i K dr

UI„I„(r,E) = V~ I (R, E)
R

dA H~~'~*(r, E)
7t)

xVs(r) C~+ (r, E)
C l., (r, E) = C I, (r, E) + 4L, (r, E),

C ~, (r, E) = ) JL„(r,E) VI,,I,, (R, E), (40)
Vl„l,, (r, E) = —2iK dr dA H~~ *(r,E)

~)

x Vs (r) C ~+ (r, E), (46)

I'I.,L„(R,E) = —
~ ) UI„I„(R,E)VI I (R, E)

L4

bL, I,, — (42)

If the potential happens to be zero inside as well as out-
side the bounding spher"-- -the nonscattering cas" the
matrix product UV ~ turns into the unit matrix. There-
fore the scattering matrix and the scattered component
of the wave function vanishes. I'I.,r., (R, E) is the non-
spherical equivalent to the scattering phase e~'~' in the
mufBn-tin case.

The irregular solution C& (r, E) of the Schrodinger
equation for r ~ %3 —S can be easily obtained from
the scattered component (41) of the wave function:

C'1, (r, E) =) ) Hq (r, E) I'I., l., (R, E) VI,,I., (R, E) .
L2

(41)

I'L„l„(R,E) is the scattering matrix for the cell:

where Hl ' *(r,E) = ht
' (rr)Yt *(r) denote complex-

conjugate Hankel functions. These integral equations
employ the truncated potential and therefore the con-
vergence rate is worse than in the case of the regular
solutions, calculated with the help of the technique sug-
gested by Brown and Ciftan. Since the integration for
the coeKcient matrices U and V starts at the radius of
the bounding sphere, we are not able to use this tech-
nique for the irregular solution. We are then left with
two different values of / „ for the regular and the ir-
regular solution. To take full advantage of the technique
for calculating the phase functions introduced by Brown
and Ciftan, one should use a different way to determine
the irregular solution. The radial regular and irregular
solution C I.,r„(r,E) and C»+ & (r, E) to the Schrodinger
equation meet a set of coupled Wronski-like relations,
which reduce in the case of a muKn-tin potential to a
well-known relation. By solving this set of coupled dif-
ferential equations one can also obtain the irregular solu-
tions with an identical L expansion up to the same value
of / ~, as for the regular solution.
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B. The scattering matriw for a single layer

Using the calculational scheme suggested by Pendry
and co-workers, we have to determine the scattering ma-
trix for a single layer. Once we know how an advanc-
ing planar wave field is scattered by a layer consisting of
potential-filled Wigner-Seitz cells, we are able to calcu-
late the multiple-scattered wave field between the layers
in the whole crystal. For reasons of simplicity we will
mark the energy dependence in the following by an in-

I

dex 1 (2) for the initial- (final-) state energy E (E+w).
Starting point for the calculation of the transmission and
reHection matrices of one layer is an advancing planar
final-state wave field

eo (r) = ) W+ e"' (' (47)
g

cj denotes the position of the layer. g is a two-
dimensional reciprocal lattice vector. W+ stands for thejg
amplitude of the advancing final-state wave field and k2+

is its wave vector:

k2 = (—kII + g, + 2[(E+~) Vor iV0&2] —
I

—"II + g~ (48)

Vo„—E~ + W~, where W~ denotes the work function.

By Vo, ~ we take the lifetime eKects in the final state into
account. This complex part in the inner potential may
be identified with the imaginary part of the complex self-

energy. We can expand this wave field into spherical
waves as

@2q(r) = ) ) Wq+ 4vri ' YL (k2 ) ji, (K2r) YL, (r)

(49)

+2, (r) =) . c'2L, (r) A2&L,
L1

= ) ) HL()(r) W2L, L, (R) A2~L, ,

L1 L2

with

(55)

pression for the matrix GL, L, is given in Ref. 12. Once
we obtained the correct coefficients A2~L, , we are able to
determine the scattered wave field from (41):

with

K2 = +2(E+(u —VP„—iV0, 2) . (50)

W2L L (R) = ) I'2L L (R) V2L L~ (R)
Ls

=i 82L L (R) (56)

&2, ( ) =).C2L, ( ) A2, L, (51)

420 (r) corresponds to the unscattered part of the total
wave field

The amplitudes of the incoming and outgoing planar
wave field are connected via the transmission and reflec-
tion matrices T2gg and R2gg for one layer:

where C 2OL (r) is determined by formula (40). We obtain

the coefficient A2 L by comparison of (51) and (49):

L2 g

W = ) R2sg W+, ,

g/

V+ = ) T2ss W+, .
g

(57)

(58)

X V2L, L, (R)A20, L, , (53)
~/

A2L L3 —) ) e'" ' GL L (R'rr ~j) ~2L L (R) ~

L2

(54)

The prime on the summation over j denotes that the
unit cell at the origin has been omitted. An explicit ex-

(52)

Multiple-scattering within the layer is taken into account

by Kambe's method. i '3 As an extension. to conventional

LEED theory we obtain in the full-potential case a gen-

eralized X matrix, correcting the coeKcients A&.L, con-

cerning planar scattering within a layer:

A2iL, =) ) ) V2L~L, (R) (1 —K)2L, Ls
L2 L3 L4

@s (r) ) V+ e ~g/ ( r')
ig (59)

We can rewrite this expression as

v+ =-1
ig g2

@s (r) e ikzz(r —c )
II 2j (60)

where Z~ denotes the area of unit cell of the layer. The
transmission matrix can be identified by evaluating the
integral (60) with the help of techniques suggested by
Pendryi2 and by comparison with (58). We obtain

We can calculate the transmission matrix from the scat-
tered component of the whole wave field. Summing
over all outgoing waves from cells within the layer and
transforming to a plane-wave representation gives for the
transmitted waves

8 sr~
2 '=

~ k ) ) ) i "Y,(k+,)I',L„(R) (1 —X) z'Y' (k+) +
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7r2
2 '=

~ k ) ) ) i 'Y, (k,+,)1, , (R)(l —X) ' i'Y (k ).
2

(62)

C. The dipole operator

The basic process of photoemission consists in the ex-
citation of an electron from an initial state (E) to a final
state (E+w). This excitation is described by the dipole
operator 6 (13) that mediates the coupling of the high-
and low-energy wave field. As a consequence of conven-
tional manipulations we get

4+(r) = AOV'Vs(r) e '~' .
2(d C

(63)

q denotes the wave vector of the photon field and Ao
is the amplitude of the spatially constant vector poten-
tial. The potential Vs(r) is defined inside the bounding
sphere by (27), (29), and (30), where the potential is
zero in the segments (S —0). Since regions where the
potential is zero do not contribute to the photocurrent,
we are allowed to expand the dipole operator in spherical
harmonics throughout the bounding sphere:

4+(r)= e ' ' ) ) AL, (r).
I1 a=1

(64)

The three components of the dipole operator are classi-
fied by their angular dependence:

A~+'(r) = b, ~+'(r) Yg, (8, p),
+ , ( ) = + , (") Y (8 V') ot(8) (65)

E~ (r) = b, ~ (r) Yl., (8, &p) sin '(8) .

The radial parts have the following form:

, (i)

&i+,', (&)

Ai+s (r)

av„, ( )
r Of' 9

Vi, ~, (r)
8 l )r

l/2i(2l +3 ) V. . .()

+'i (p rni r

(66)

This generalized dipole operator reduces for a spherical
muffin-tin potential to the usual form, well known from
standard photoemission theory.

It can be easily shown that the transmission and refiec-
tion matrix for one layer, consisting of cells filled with the
full crystal potential (61) and (62), are the nonspherical
generalizations of the matrices obtained in the muffin-tin
case. Replacing the coefficient matrix I' by their spher-
ical equivalent z(ez'~' —1) reduces Eqs. (61) and (62) to
the expressions derived in the muffin-tin case.

Now we are able to calculate the multiple-scattered
wave fields for the Bnal-state electron moving inside a
crystal with space-filling potential at an arbitrary point
r inside the crystal. At this stage the full-potential LEED
theory is complete.

V. THE FOUR CONTRIBUTIONS
TO THE PHOTOCURRENT

A. The atomic contribution

We begin by calculating the atomic contribution. The
Bnal-state electron wave field 42&, represented outside
the crystal as a time-reversed I EED state, is propagated
inside the solid. It is scattered in between and inside
each layer of Wigner-Seitz cells. Inside each bounding
sphere surrounding a cell the final-state electron wave
field is coupled to the corresponding initial-state wave
field by the dipole operator. The outgoing initial-state
wave Beld is excited within the same bounding sphere
and thus acts as a source of an outgoing high-energy wave
field that propagates outside the crystal. On its way to
the surface again all scattering events inside the complete
half-infinite crystal are taken into account.

The advancing planar high-energy electron wave field
at the jth layer is

@0 (r) ) ( ~+ eikzz{r —c~) + V
—eikzz{r —c~)

)
1 +

2g

(67)
The amplitudes W+ and V. are determined with the
help of the layer-doubling method originally used in
LEED calculations. iz All coordinates are referred to the
origin of the jth layer cz. Expanding this wave Beld in
spherical harmorucs, we obtain in analogy to (52) and
(53) the coefficient of the whole multiple-scattered wave
field inside the bounding sphere centered at c~

A2 I, = ) ) VzL I, (R) (1 —X)2r I„

x ) 4vri" W+ Yl*., (kz+s)

I
+V YL', (kz ) (68)

The total final-state wave field inside the bounding
sphere consists of the scattered and the unscattered corn-
ponent

Prom the preceding section we know, how to general-
ize the basic relations used in photoemission theory for
the full-potential case. Since we were able to keep the
complete structure of the one-step model, developed in
connection with muffin-tin potentials, an evaluation of
Eq. (17) in the well-known manner is possible. From
the decomposition of the crystal in identical layers and
a surface barrier, it results as a consequence of multiple-
scattering theory that the total photocurrent is divided
into four diferent contributions. Each contribution may
be calculated separately and the sum over all four parts
leads us finally to the total photocurrent.
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1
C'2~(r) = —) C'2gL. (r) &2gL.

L

) ) YLg(r) [@2jL L (r) + @2jL L (r) l+23L
L L

(69)

The atomic Green function for a cell of arbirtrary shape filled with the nonspherical crystal potential is constructed
from the regular (37) and irregular (44) solution of the Schrodinger equation (26):

G& (r, r') = —4ir. q ) ) ) YL, (r) YL, (r')
L1 Lg Ls

x C q&L, L, (r) C&.L L (r') O(r' —r) + 4'q~L, L, (r') C» L L, (r) O(r —r'), (70)

with

dr' 42~(r) Az(r) Gz (r, r')

xA+(r')C2, (r') . (72)

Kg ——+2(E —Vo„—iVo; g ), (71)
where Vo;q denotes the complex part of the inner poten-
tial for the initial state. The dipole operator is de6ned
by (64)—(66). For the atomic contribution we have to
evaluate the following integral:
Ia,tomic (k

R R
= ——Im ) dr

7t . 02= 0

I

The integration is carried out over the bounding sphere
of radius R. The sum over the layers j runs up to a finite
value n, depending on inelastic effects taken into account
by the complex part of the self-energy. It starts with n =
2, because the surface potential barrier is interpreted as
the first layer of the crystal and calculated as a separate
contribution (see Sec. V D).

It is convenient to separate the radial parts of the inte-
gral from the angular parts. As a consequence of the non-
spherical potential we get three different angular matrix
elements. These result directly from the more compli-
cated structure of the dipole operator:

Dl ig C~
L,L,I., —

2
dr" YL, (r) YL, (r) YL, (i),

D2 $g C~I 1LgL3 2(dC

3 $g c~
L1Lg L3 2' C

dr YL, (r) YL, (r) YL, (r) cot(e),

dr YL, (r) YL, (r) YL, (r) sin (8)

(73)

The radial parts of the integral (72) are given by

ML, .L,
———4elab r' dr' C 2,L,L, (r) d;L, (r)

x @&i«L.(") @i~L„L.(" ) eP' —r)

+ C'q~L, L, (r') 4+~ LL, (r) O(r —r.') 6+&,(r') O'Z~L, L, (r') . (74)

Though the double radial integration is carried out to the radius of the bounding sphere, we still calculate the
photocurrent from a Wigner-Seitz cell, because the potential is zero in the segments and thus does not contribute to
the photocurrent. The indices a and b (a, b = 1, 2, 3) belong to the three different radial components of the dipole
operator (66). Therefore we get nine different types of energy-dependent radial matrix elements, each as a function
of nine sets of quantum numbers L, , expanded up to a reasonable high value of t „.The atomic contribution to the
photocurrent is

n 3
I "(k~~ E~+co) = Im

~ 2 ~ ) ) A2~L, )
2 j=2 Az a=1

where As denotes the set of composite labels Lq

3

) Da M Db~ A*jLgL3L4 jL1."L9 j L6L7LS 2j L9
b=l

(75)

B. The intralayer contribution

The atomic contribution to the photocurrent is corrected by the intralayer contribution, which takes the multiple
scattering of the outgoing initial-state wave field within a layer into account. Therefore Eq. (17) must be rewritten as
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I"""(k„,Z+ ) = ——'I )
7t j=2

dr C 2, (r) A, (r) 4',"," (r) . (76)

The wave function @'i"." (r) acts as a source of hole states:

@intra( ) dr' G+,, (r, r') di~+(r') C2, (r') . (77)

Inserting the expression for the Green function Gi (r, r'), the dipole operator 6+(r') and the final-state wave field

4z (r) in Eq. (77) enables us to determine the outgoing initial-state wave field:

@i,(r) = —). ).) .Bi,I., Vil.l.(&) C'&, L„L„(r)Yl-. (r)
L1 Lg L3

(78)

where the coefIicient is defined by

Bi &, =-«i ).):).).)
Lg L3 L4 L5 L6

dr' YL'„(r') C.'2, 1.,1„(r')

+lx 6+~'(r') + E~ (r') cot(e') + A~ (r') sin '(8')

x Yl,, (r') e' '& Yl*, (r') C i, l„I„(r')Vil', I (R) . (79)

In the following we have to take into account that the
outgoing initial-state wave field is scattered within the
jth layer consisting of Wigner-Seitz cells. Therefore we
introduce a virtual incoming initial-state wave field

I

virtual advancing wave field from the total initial-state
wave field:

@1j (r) Z ) ) YL (r) @ijL L (r) +lj I (so)

K",'"(r) =
~ ) ) Yl. (r) oigl. ~ (r) Bi,l.,

Ly Lg

with

(83)

where Coi.z z (r) is defined by (40). The amplitudes of
the virtual incoming and the outgoing initial-state wave
field are connected by the following relation: Bi~I, ———) ) ) Vi„L,L(R)( (1 —X)iI ~1.

L2 L3 L4

+ljLq =
2 ) ~1L~Iq( ) ijLg' L,

~L L )
xr„', (B) B,'„, . (s4)

Now we are able to use the X-matrix formalism we al-
ready introduceds2 (see Sec. IVB) to take scattering
within a layer into account:

Bi~I,, = ) ) ) Vil ~1~(R) (1 —X)i1.~1.3

To calculate the intralayer contribution to the photocur-
rent we have to substitute (64)—(66), (69), and (83) in

Eq. (76). Separating this expression in angular (73) and
radial parts, we obtain three types of single radial matrix
elements:

xVil.,l., (R) A.i I, . {s2) MjL1Lg L3L 4L5 r dr C2, 1„g,(r) A~, (r) Ci, I„L,, (r),

BljL denotes the coeKcient of the total initial-state wave
field, but for the calculation of the intralayer contribution
of the photocurrent we just need the scattered component
of this wave field. We obtain this by subtracting the

a = 1, 2, 3 . (85)

The final expression for the intralayer contribution to the
photocurrent is

n 3
""'(k~i~i, &+~) =&~

I Z2 I) ) &22L ) M2'L ...2 n2L' LLI n22L. ,
Ag a=1
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Finally we have to take into account that the outgoing
initial-state wave field is also scattered between the lay-
ers Therefore, we obtain an additional contribution to
the photocurrent arising from the outgoing initial-state
wave Beld, multiple scattered between all layers.

Once again we use Eq. (76)

linter(k @+

——Im )7j j=2
dr 42&(r) A~(r) 4'i~ "(r) . (87)

We have to determine the initial-state wave field
@'P"(r), representing the hole state, multiple scattered
in the whole semi-infinite crystal. The starting point
is the outgoing initial-state wave field that is already
corrected concerning intralayer scattering within the jth
layer. Outside the bounding sphere it has the form

@1i(r) g ) ) ~L (r) ~lj L L (+) Bi L
L, L,

(88)

with the coefFicient we already calculated in the preceding
section:

iiL = —) ).).V1L', L, (&) (I X)1L,L. -
Lg L3 L4

where the index As denotes a set of composite labels
Lg . . L5.

C. The interlayer contribution

kis ——(—k[[+g, + 2[E —Vor —iVo;il
I

—
k~~ + gl2 ) .

The coeKcients of this planar wave Geld leaving the jth
layer are defined by

xWiiL, L, (R) Bi~L, .

With the help of the layer-doubling method we are able
to calculate the planar initial-state wave Geld advancing
at the jth layer, multiple scattered between all layers:

iiia (r) ) ( d+ eik&e~ &l + d. e &e~ &l )ig ig
s (93)

The coeflicients of the advancing wave front d can be
easily determined from the coefficients of the outgoing
wave front a+. , since we already determined the trans-
mission snd refiection matrices for a single layer (see
Sec. IV 8). Expansion in spherical waves leads us to the
following expression for the whole initial-state wave field
inside the bounding sphere:

~'",'"( ) =
~ ) . ).Y., (') C;...( ) G,', ,

Jx

where the coefFicient GiiL, is already corrected concern-
ing intralayer scattering within the jth layer:

, L = ) ) V,L'L (R) (I —X)iL L
I.~

x F'iL.L, (R)Bi,I. (89) x ) 4vri" d+ YL, (k+s)
s

To calculate the interlayer scattering it is useful to ex-
pand this outgoing wave field into plane waves:

ps (r) ) n+ eikre (I —c, )1
(90)is

k& denotes the wave vector of the initial-state wave field

+d~g YL, (kis) (95)

Inserting the final-state wave field (69), the dipole oper-
ator, defined in Sec. IV C, as well as the wave field 4
in Eq. (87), we obtain the interlayer contribution to the
photocurrent. Separation in angular (73) and radial (85)
parts lead us to the final expression

3
r'"'"(&~~ &+~)=~~ I, l). ) &2jr)~pc, -c.. n7L, r„c, ) +lit. .

J i=s A.
(96)

The index As again denotes a set of composite labels
~ ~ e

photocurrent the formula

I'"'
(k~~, E+ u) = ——Im dr 42i(r) Ai(r) @ii' (r) .

D. The surface contribution

The general theory of the surface contribution to the
photocurrent in the one-step model is described in detail
elsewhere. 6 Therefore we wiH concentrate in this section
on the few differences arising in full-potential photoemis-
sion theory.

In general we have for the surface contribution to the

(97)
Since we consider the surface potential as the first layer
of the crystal, the index j equals l. C2i(r) then denotes
the high-energy wave field at this layer. In the plane-wave
expansion it can be calculated from Eq. (67), where the
transmission and reflection matrices of the surface barrier
for the anal state are set to T = I and A = 0,3
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(&) ) ( V+ &ikss(r —cz) + V—&ikss(r -cx)
)

+
21 g ]g 1g

(98)

The surface potential of a solid is described by an
one-dimensional model barrier, 5 since corrugation ef-
fects in the surface potential seem to be of relative
insignificance. The dipole operator (63) for a one-
dimensional surface potential V~(z) is given by

A. . .. d
Ei(r) = ' e ' ' —Vjy(z),2uc dz (99)

where A, is the z component of the photon field. The
complete initial-state wave field at the surface barrier
results from standard manipulations, i and in the plane-
wave representation we arrive at the following expression:

@li (r) = (rl Gi &i G2 lk~~ & + ~)

) (o+ + & d
—

) ik~s(r —cq }

le(r —Cq) (loo)lg

This is the expression where the full-potential ansatz
enters the surface contribution, though we use a one-
dimensional surface barrier. With the eoefBcient ai we
take the hole state emitted by the surface barrier into
account. It is already corrected concerning interlayer
scattering inside the half-infinite crystal with space-filling
potential. The intial-state wave field of the bulk region,
emitted from the Wigner-Seitz cells and multiple scat-

assur ( ) ) @ (Z) eikgsii(rii —c, ii)
1

g

with

@.( .) =.+, + ~ .d, + d.
and again for the final state

@2i(r) — ) p~ (Z) e' sell ( iii)

g

with

(1o1)

(102)

(103)

4~g(ci. ) = Vig + Vig. (1o4)

Herein Pig and @2g denote the regular solutions of the
Schrodinger equation for Vz(z) in the range —oo ( z (
ci, . The value ci, defines the point where the surface
potential goes smoothly into —Vo„ inside the bulk crystal.

Inserting (101) and (103) into Eq. (97) and rewriting
the surface contribution for the current, we arrive at the
following expression:

tered in the crystal with space-filling potential, enters
the surface region via the coeFicient di . It is calculated
from Eq. (90) by the layer-doubling method. In the re-

gion of the varying surface potential we have an incoming
component d1 and an outgoing component rizd1 of this
wave field.

According to the z dependence of the barrier potential,
we have to calculate the initial- and final-state wave field

numerically in the surface region. It follows for the initial
state

lsurf(k Q + ~) Im e gil ~

qli )II ~ ~22 2(uc
E

Cl»

dz 42g(z) d 4ig(z) e""dpi
dz

(1o5)

The problem that remains is the calculation of the co-
eKcient a1, which belongs to the initial-state wave field
emitted by the surface barrier. The initial-state matrix
element (rla+iA+Gz lk~~, F + u) can be manipulated to
a form more appropriate to a direct calculation:

(rlG'i+&+G'; lk~~, z+ ~)

'( lG', '" + G", "',a,'' l, )

x 4+ (r'l G'2 lk(], @+ ~) (106)

where G1 is the free-electron Green function for the
initial state. After integrating over dr'~~ in Eq. (106), we

can describe the matrix element by a plane-wave expan-
sion, which is valid in the region of our interest, namely
between the surface barrier and the first bulk layer:

(rlG'+i~+6';lk~~, ~+ ~) = —' ) o+„.'k'*( -")
5

(107)

with

—'CQ CljAze
a+1

2&ckigz
(1 + rig)

Cl » —i(q +A:, ) (z —cl )

42g(z) (1o8)de
dz

For a step barrier Vii(z) = Vo O(z —ci,), where O is

the unit step function, we obtain Pendry's result.
In calculating the matrix element for the surface contri-

bution we follow Pendry's original ansatz. The main ef-

fect from a z-dependent surface barrier results in a strong
variation of the barrier reBection coeKcient ri+. For that
reason we use for the evaluation of this coeKcient a po-

tential model for Vjy(z), which has been introduced first

by Rundgren and Malmstromss in I EED calculations.

VI. SUMMARY

In this contribution we have derived a general tech-
nique for the calculation of (inverse) photoemission spec-
tra within the one-step model that employs space-filling
potential cells of arbitrary shape. Since we removed the
muon-tin approximation and therefore the geometrical
restrictions for the potential, we are now left with stan-



47 FULL-POTENTIAL PHOTOEMISSION THEORY 15 499

dard approximations of photoemission theory. The treat-
ment of muffin-tin potentials, e.g. , for closed-packed crys-
tals, within this generalized theory will still be possible.
The method of solution contains all advantages of the
original method of Pendry and co-workers. Moreover,
the different enlargements of the original theory devel-
oped in recent years can also be incorporated in the full-
potential case. Since we already demonstrated in this
paper how to perform the calculation of (inverse) photoe-
mission spectra for arbitrary ordered systems, employing
a space-filling crystal potential and a realistic model for
the surface potential, it remains to show explicitly how to
perform the incorporation of relativistic and temperature
effects. This will be done in a forthcoming publication.

The basic idea for the treatment of space-filling cell
potentials in photoemission theory is the phase func-
tional ansatz that enters the one-step model in a

straightforward manner. It has been demonstrated in
full-potential KKR calculations that an application of
multiple-scattering theory to full-potential cell scatter-
ing is rigorously valid. The non-muffin-tin photoemission
theory presented here demonstrates the feasibility of full-
potential calculations of the photocurrent within the one-
step model; the question whether the L expansions for
strong covalently bonded systems are manageable with
reasonable computational effort must be studied.

We are currently working on the computational imple-
mentation of this model.
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