Photoemission linewidths and quasiparticle lifetimes

N. V. Smith

AT&T Bell Laboratories, Murray Hill, New Jersey 07974

P. Thiry and Y. Petroff* Laboratoire pour l'Utilisation du Rayonnement Electromagnétique, Université de Paris-Sud, F-91405 Orsay, France (Received 3 September 1992)

Expressions are derived for the relationship between the measured linewidths in angle-resolved valence-band photoemission spectra and the lifetimes of the photoelectron and photohole. The expressions are different for the energy-distribution curve (EDC), constant initial-state spectrum (CIS), and constant final-state spectrum modes of data acquisition, and are significantly angle dependent for the EDC and CIS. The circumstances in which the lifetime widths of the photoelectron and photohole can be separated from each other are discussed with special reference to a debate on high-temperature superconductors. Surface states offer the only case where the photohole lifetime can be rigorously isolated. The nearly-free-electron approximation is elaborated and used to explain some counterintuitive behavior in recent data on Ag(100).

I. INTRODUCTION

The relationship between linewidths in valence-band photoemission spectra and the lifetimes of the photoelectron and photohole has been considered by a number of workers.¹⁻¹² The aim of this paper is to offer a more comprehensive derivation of this relationship than that which has appeared in the literature so far. We shall consider the cases of both normal and off-normal emission, and we shall do it for the three principal modes of photoemission data taking [the energy-distribution curve (EDC), the constant initial-state spectrum (CIS), and the constant final-state spectrum (CFS)].

This work was stimulated by a recent discussion of photoemission linewidths on approaching the Fermi edge in high-temperature superconductors.¹³⁻¹⁵ It emerged from the discussion that there was a need for further study of photoemission linewidths and quasiparticle lifetimes in normal materials.¹⁶ We shall discuss below the rather restrictive circumstances in which the lifetime widths for the photoelectron (Γ_f) and the photohole (Γ_i) can be isolated from each other. In general, the expression for the measured linewidth (Γ_m) is a linear combination of Γ_f and Γ_i whose coefficients depend on details of the band structure, are angle dependent, and are different for the three modes of data taking. The nearly freeelectron approximation will be presented and used to show how counterintuitive behavior (peaks increasing in width on approaching the Fermi edge) can occur.

Our approach is at the simplest level. It adopts narrow Lorentzian line shapes and a first-order expansion within a one-electron band structure. While we shall be considering the energy dependences of Γ_i and Γ_f , we shall treat these parameters as constant within a spectral line. In more rigorous approaches, ^{1,8,12} Γ_i and Γ_f are the imaginary parts of the photohole and photoelectron self-energies and depend upon both energy *E* and momentum

k. The respective real parts of the self-energy will (through Kramers-Krönig relations) also be dependent on E and k. Such refinements are ignored here. Indeed, the intent of this paper is to show that the extraction of quasiparticle lifetimes is potentially intricate even in the simplest of models. While our emphasis is on the intrinsic limitations of linewidth analysis, we shall discuss briefly the extrinsic (i.e., experimental) limitations, particularly the problems associated with lack of sample perfection.

II. OPTICAL CROSS SECTION

The effects of the surface and the finite lifetimes of the photoelectron and photohole may be simulated by treating the perpendicular component of the wave vector as complex, $k_{\perp} = k_{\perp}^{R} + ik_{\perp}^{I}$. At this level of approximation, the cross section for an optical transition between an initial state in band *i* and a final state in band *f* has Lorentzian form:

$$\sigma \propto \frac{1}{(k_{i\perp}^R - k_{f\perp}^R)^2 + (k_{i\perp}^I + k_{f\perp}^I)^2} .$$
 (1)

This can be derived directly from the one-step formalism of photoemission⁷ or thought of as the k_{\perp} convolution of two Lorentzians.^{8,12} The cross section is maximum when $k_{i\perp}^R - k_{f\perp}^R = 0$, that is to say when the maximum of the k_{\perp} envelope of the final state coincides with that of the initial state. This is the residue of the direct (i.e., vertical) transition selection rule. The parallel component k_{\parallel} , on the other hand, is strictly conserved. The half maximum intensity occurs when

$$k_{i\perp}^{R} - k_{f\perp}^{R} = \pm (k_{i\perp}^{I} + k_{f\perp}^{I}) .$$
⁽²⁾

This condition, which arises from the additivity of Lorentzian linewidths, is illustrated in Fig. 1 for the three principal modes of photoemission data acquisition. If Γ_i

<u>47</u> 15 476

PHOTOEMISSION LINEWIDTHS AND QUASIPARTICLE LIFETIMES

FIG. 1. Geometrical representation of the k_1 -space convolution in the derivation of optical cross sections and measured linewidths (Γ_m) for the three principal modes of photoemission data taking (a) EDC (energy-distribution curve), (b) CIS (constant initial-state spectrum), and (c) CFS (constant final-state spectrum). The half-widths k_i^I and k_f^f are the imaginary parts of the perpendicular wave vector and are given by $\Gamma_i/2\hbar |v_i|$ and $\Gamma_f/2\hbar |v_f|$, respectively, where Γ_i and Γ_f are the lifetime widths of the photohole and photoelectron, and v_i and v_f are the respective group velocities. From the additivity of Lorentzian linewidths, the intensity at half maximum occurs when the half maximum of the final state lies directly above that of the initial state as indicted by the open circles and vertical dashed lines. (The expressions in the boxes refer to the case of normal emission.)

and Γ_f denote the lifetime widths of the photohole (initial state) and photoelectron (final state), respectively, we have

$$k_{i\perp}^{I} = \Gamma_{i} / 2\hbar |v_{i\perp}| , \qquad (3)$$

$$k_{f|}^{I} = \Gamma_{f} / 2\hbar |v_{f|}| , \qquad (4)$$

where $v_{i\perp}$ and $v_{f\perp}$ are group velocities $(\hbar v_{i\perp} = \partial E_i / \partial k_{\perp})$, and so forth).

Some authors draw a physical distinction between the contributions of the photoelectron and the photohole to the spectral linewidth, emphasizing momentum broadening for the former and energy broadening for the latter.^{1,12} Here, the photoelectron and photohole are treated on an equal footing. Each is held to have a well-defined energy, and the scattering effects are treated in terms of momentum broadening. A more significant physical distinction, as far as this paper is concerned, is the choice of spectrum-measurement mode.

III. LINEWIDTH ANALYSIS

There are three principal modes of photoemission spectroscopy. The most common is the EDC mode in which the photon energy $\hbar\omega$ and the polar angle of emission θ are held constant and the spectrum is acquired by sweeping the kinetic energy E of the photoelectrons. The CIS

and CFS modes exploit the continuum nature of synchrotron radiation,¹⁷ and will be defined below.

In all three modes, the following three kinematical conditions must apply. First, energy conservation requires

$$\delta E_f - \delta E_i - \delta \hbar \omega = 0 . \tag{5}$$

Second, conservation of parallel momentum $(k_{f\parallel}-k_{i\parallel}=g_{\parallel})$, where **g** is a reciprocal lattice vector) requires

$$\delta k_{f\parallel} = \delta k_{i\parallel} = \delta k_{\parallel} . \tag{6}$$

Third, the kinetic energy $E \ (\equiv E_f - E_V)$, where E_V is the vacuum level) of the photoelectron in vacuum is given by $\hbar^2 k_{\parallel}^2 / 2m \sin^2 \theta$, where

$$\delta E_f = -\frac{\hbar^2 k_{\parallel}^2 \cos\theta}{m \sin^3 \theta} \delta \theta + \frac{\hbar^2 k_{\parallel}}{m \sin^2 \theta} \delta k_{\parallel} \quad . \tag{7}$$

In all three modes, θ is held strictly constant ($\delta \theta = 0$), so we may write

$$\delta k_{\parallel} = \frac{m \sin^2 \theta}{\hbar^2 k_{\parallel}} \delta E_f .$$
(8)

In addition to these kinematical constraints, we have, by definition of the group velocities for the real bands

$$E_{f}(k_{f\parallel}, k_{f\perp}^{R}) \text{ and } E_{i}(k_{i\parallel}, k_{i\perp}^{R}),$$

$$\delta E_{f} = \hbar v_{f\perp} \delta k_{f\perp}^{R} + \hbar v_{f\parallel} \delta k_{f\parallel} , \qquad (9)$$

$$\delta E_i = \hbar v_{i|} \delta k_{i|}^R + \hbar v_{i||} \delta k_{i||} . \tag{10}$$

Our procedure is to examine the consequences of Eqs. (9) and (10) for the different measurement modes. We shall assume perfect instrumental resolution in both energy and angle section. That is to say we concentrate on the *intrinsic* broadening mechanisms associated with the photoelectron and photohole lifetimes. (A brief discussion of *extrinsic* broadening mechanisms is offered below in Sec. IV D.)

A. EDC mode

In the EDC mode, $\hbar\omega$ is held constant $(\delta\hbar\omega=0)$ so that $\delta E_i = \delta E_f = \delta E$. Invoking Eqs. (6) and (8), Eqs. (9) and (10) become

$$\hbar v_{f\perp} \delta k_{f\perp}^{R} = \left[1 - \frac{m v_{f\parallel} \sin^2 \theta}{\hbar k_{\parallel}} \right] \delta E , \qquad (11)$$

$$\hbar v_{i\perp} \delta k_{i\perp}^{R} = \left[1 - \frac{m v_{i\parallel} \sin^2 \theta}{\hbar k_{\parallel}} \right] \delta E \quad . \tag{12}$$

Let us introduce $k_{0\perp}^R$ as that perpendicular wave vector for which the cross section is maximum. The left-hand side of Eq. (2) becomes

$$k_{i\perp}^{R} - k_{f\perp}^{R} = (k_{i\perp}^{R} - k_{0\perp}^{R}) - (k_{f\perp}^{R} - k_{0\perp}^{R}) = \delta k_{i\perp}^{R} - \delta k_{f\perp}^{R} .$$
(13)

Thus from Eq. (2), the half maximum intensity condition is

$$\frac{\delta E}{\hbar} \left[\frac{1}{v_{i\perp}} \left[1 - \frac{m v_{i\parallel} \sin^2 \theta}{\hbar k_{\parallel}} \right] - \frac{1}{v_{f\perp}} \left[1 - \frac{m v_{f\parallel} \sin^2 \theta}{\hbar k_{\parallel}} \right] \right]$$
$$= \pm (k_{i\perp}^I + k_{f\perp}^I)$$
$$= \pm (\Gamma_i / 2\hbar |v_{i\perp}| + \Gamma_f / 2\hbar |v_{f\perp}|) . \tag{14}$$

Finally, noting that $\Gamma_m = 2|\delta E|$, we obtain

$$\Gamma_{m} = \frac{\Gamma_{i} / |v_{i\perp}| + \Gamma_{f} / |v_{f\perp}|}{\left|\frac{1}{|v_{i\perp}|} \left(1 - \frac{mv_{i\parallel} \sin^{2}\theta}{\hbar k_{\parallel}}\right) - \frac{1}{v_{f\perp}} \left(1 - \frac{mv_{f\parallel} \sin^{2}\theta}{\hbar k_{\parallel}}\right)\right|}.$$
(15)

This derivation has been presented previously by Thiry.⁷ The $\sin^2\theta$ terms have the following physical interpretation. Holding θ constant while sweeping E means that k_{\parallel} is varying across the width of the spectral line. Depending on the magnitudes and signs of $v_{i\parallel}$ and $v_{f\parallel}$, this can compress or expand the measured linewidth. Equation (15) has been quoted also by Chiang *et al.*,⁵ but without derivation. The appearance of θ -dependent terms has been disputed by Grepstad, Slagsvold, and Bartos⁸ but their treatment explicitly neglects the variation of k_{\parallel} across the line.

B. CIS mode

In the CIS mode, E_i is held constant, and the spectrum is acquired by sweeping the kinetic energy $E (\equiv E_f - E_V)$ and $\hbar\omega$ synchronously. We have $\delta E_i = 0$, and so $\delta E_f = \delta \hbar\omega = \delta E$. Equations (9) and (10) become

$$\hbar v_{f\perp} \delta k_{f\perp}^{R} = \left[1 - \frac{m v_{f\parallel} \sin^2 \theta}{\hbar k_{\parallel}} \right] \delta E , \qquad (16)$$

$$\hbar v_{i\perp} \delta k_{i\perp}^{R} = \left[0 - \frac{m v_{i\parallel} \sin^2 \theta}{\hbar k_{\parallel}} \right] \delta E \quad . \tag{17}$$

Noting that $\Gamma_m = 2|\delta E|$, we obtain

$$\Gamma_{m} = \frac{\Gamma_{i} / |v_{i\perp}| + \Gamma_{f} / |v_{f\perp}|}{\left| -\frac{1}{v_{i\perp}} \left(\frac{m v_{i\parallel} \sin^{2} \theta}{\hbar k_{\parallel}} \right) - \frac{1}{v_{f\perp}} \left(1 - \frac{m v_{f\parallel} \sin^{2} \theta}{\hbar k_{\parallel}} \right) \right|}$$
(18)

As in the EDC, k_{\parallel} can vary across a spectral line, and this can compress or expand the measured linewidth.

C. CFS mode

In the CFS mode, E_f is held constant, and the spectrum is acquired by sweeping $\hbar\omega$. We have $\delta E_f = \delta E = 0$, and so $\delta\hbar\omega = -\delta E_i$. Also $\delta k_{f\parallel} = \delta k_{i\parallel} = \delta k_{\parallel} = 0$. Equations (9) and (10) become

$$\hbar v_{f\perp} \delta k_{f\perp}^R = 0 , \qquad (19)$$

$$\hbar v_{i\perp} \delta k_{i\perp}^R = -\,\delta \hbar \omega \,\,. \tag{20}$$

Noting that $\Gamma_m = 2|\delta \hbar \omega|$, we obtain

$$\Gamma_m = \frac{\Gamma_i |v_{i\perp}| + \Gamma_f / |v_{f\perp}|}{1 / |v_{i\perp}|} .$$
(21)

In the CFS, E and θ are constant. There is therefore no variation of k_{\parallel} across the spectral line, and therefore no θ -dependent terms in Γ_m . This strong difference in the θ dependence of the EDC, CIS, and CFS modes is the principal new result of this paper, and could form the basis of an experimental strategy to test linewidth analysis. (A similar set of results can be obtained for inverse photoemission by a trivial reversal of the definitions of initial and final states.)

IV. LIMITING CASES

A. Normal emission

In the case of normal emission $(\theta=0)$, the measured linewidths are given by

EDC:
$$\Gamma_m \left| \frac{1}{v_{i\perp}} - \frac{1}{v_{f\perp}} \right| = \frac{\Gamma_i}{|v_{i\perp}|} + \frac{\Gamma_f}{|v_{f\perp}|} ,$$
 (22)

CIS:
$$\Gamma_m \left| \frac{1}{v_{f\perp}} \right| = \frac{\Gamma_i}{|v_{i\perp}|} + \frac{\Gamma_f}{|v_{f\perp}|} ,$$
 (23)

CFS:
$$\Gamma_m \left| \frac{1}{v_{i\perp}} \right| = \frac{\Gamma_i}{|v_{i\perp}|} + \frac{\Gamma_f}{|v_{f\perp}|}$$
 (24)

These expressions are identical with those in the boxes of Figs. 1(a), 1(b), and 1(c). The normal emission expression

for the EDC is the expression usually quoted in the literature. Note, however, that even for normal emission the expressions for the EDC, CIS, and CFS are significantly different from each other.

B. Isolation of Γ_f

If the initial states are sufficiently close to the Fermi level E_f , we have $\Gamma_i \rightarrow 0$, and the linewidths are then totally determined by the photoelectron lifetime parameter Γ_f . A particularly simple case is offered by the CIS. If Γ_i can be neglected, we may equate Γ_m with Γ_f . This identity has been asserted, without derivation, by Eastman and co-workers,^{2,3} and their results are shown in Fig. 2. In normal emission EDC's from Cu(100), there is a direct-transition peak which crosses E_F in the photon energy range $\hbar\omega = 9 - 12$ eV. The open squares in Fig. 2 represent the intensity in the EDC just below the Fermi edge $(E_i = E_F - 0.13 \text{ eV})$. This is a CIS, albeit taken point-by-point rather than by a continuous sweep of $\hbar\omega$. The data points fall close to a Lorentzian curve whose full at half maximum (FWHM) can be equated with Γ_f (1.2 eV in this particular case). An analogous situation arises in inverse photoemission with those instruments which employ parallel detection over $\hbar\omega$, as opposed to the more conventional isochromat mode.

C. Isolation of Γ_i

Another useful limit occurs when $|v_{i\downarrow}|$ is much smaller than the other group velocities, that is to say, when the energy dispersion of the initial-state band perpendicular to the surface is very small. The normal emission cases for both the EDC and CFS give

$$\Gamma_m = \Gamma_i + \left| \frac{v_{i\perp}}{v_{f\perp}} \right| \Gamma_f .$$
⁽²⁵⁾

In the extreme case when $v_{i\perp}$ vanishes (i.e., a perfectly flat band perpendicular to the surface), we may identify Γ_m

FIG. 2. CIS intensity (open squares) for a direct transition in Cu(100) with initial energy held at $E_i = E_F - 0.13$ eV. The $\hbar\omega$ dependence can be simulated quite well with a Lorentzian. Since we may take $\Gamma_i = 0$, the width 1.2 eV can be equated directly with Γ_f [from Knapp, Himpsel, and Eastman (Ref. 3)].

with Γ_i , the imaginary part of the photohole self-energy. This identity is sometimes tacitly assumed, particularly in recent discussions on high-temperature superconductors.

An excellent example here is the linewidth analysis performed by Knapp, Himpsel, and Eastman³ on normal emission EDC's within the *d* band of Cu. The *d* bands are rather flat, and their E(k) dispersion is well known. The dispersion of the final-state bands is also well established. It is therefore possible to make a confident estimate of the magnitude of the second term in Eq. (25); it turns out to be ~0.1 eV, considerably smaller than the measured linewidths (0.3–0.6 eV) permitting a reliable correction to Γ_m and the isolation of Γ_i . Very similar analyses have been presented in Ref. 7.

Layer compounds furnish a class of materials in which $v_{i\perp}$ is small. The high-temperature superconducting materials are also good candidates. Bi₂Sr₂CaCu₂O₈ is especially interesting since it can be cleaved in vacuum and generates very-high-quality angle-resolved photoemission spectra.¹³ Much interest has focused on the finding that Γ_m varies linearly on approaching E_F , and this is regarded as possible evidence of non-Fermi-liquid-like behavior.^{14,15} Some actual values of $v_{i\perp}$ are known from the band calculations of Mattheiss¹⁸ and are illustrated in Fig. 3, which shows the k-space average values $\langle v_{i\downarrow} \rangle$ calculated for Bi₂Sr₂CaCu₂O₈. At E_F , $\langle v_{i\perp} \rangle \sim 0.04 \times 10^8$ cm/sec, and this leads to an estimate of 30-50 meV for the second term in Eq. (25). This may help to explain the nonzero intercept at $E = E_F$.¹⁶ Moreover, the $\langle v_{i1} \rangle$ curve has strong structure showing a peak just below E_F . Structure in the nonaveraged $v_{i\perp}$ for the specific k directions investigated experimentally could be even stronger, and will distort attempts to isolate the energy dependence of Γ_i . On the other hand, it can be argued that the electronic structure of these materials is so anomalous that band theory is of limited applicability.^{14,19} Specifically, since this material is essentially insulating in the perpen-

FIG. 3. Averaged perpendicular group velocity $\langle v_{i1} \rangle$ for Bi₂Sr₂CaCu₂O₈ as a function of E_i as generated in a first-principles one-electron band calculation by Mattheiss (Ref. 18).

dicular direction, band calculations such as those in Fig. 3 can be expected to overestimate v_{i1} .

In principle, a rigorous isolation of Γ_i can be achieved by measuring photoemission from *surface states*. Such states have no dispersion with k_{\perp} , and so we have $v_{\perp}=0$ and $\Gamma_m = \Gamma_i$. An attempt to realize this condition was made some years ago by Kevan²⁰ using a well-known surface state at the center of the surface Brillouin zone on Cu(111). The intent was to demonstrate that Γ_m decreased as $E_i \rightarrow E_F$. The actual measurements showed that Γ_m increased. This surprising result has been attributed to an extrinsic broadening mechanism which will be discussed immediately below.

D. Extrinsic broadening mechanisms

Tersoff and Kevan²¹ have rationalized the anomalous results on Cu(111) by invoking some sort of in-plane scattering from surface defects or impurity atoms. The surface state in question disperses parabolically $(E = \hbar^2 k_{\parallel}^2 / 2m^*$, with $m^* = 0.4m$) and crosses E_F at $k_{\parallel} = 0.2 \text{ Å}^{-1}$. A constant mean free path *l* would imply a constant Δk_{\parallel} smearing and an increasing ΔE smearing on approaching E_F . The actual results imply a value $l \sim$ 30 Å, which is plausibly consistent with surface defects or impurities at the ~1% level.

The importance of inhomogeneous broadening associated with surface imperfection has recently received dramatic confirmation in high-resolution angle-resolved photoemission experiments by Hricovini *et al.*²² on "ideally hydrogen terminated" Si(111) surfaces. The hydrogen terminated surfaces yield much sharper spectra than untreated Si(111) surfaces, and the clear conclusion is that a high degree of assured surface perfection is required if narrow intrinsic linewidths are to be observed.

Surface states still remain the best hope for observing $\Gamma_i \rightarrow 0$, because this is the only case for which v_{i1} vanishes exactly. In support of this statement, we note that the sharpest structure seen in angle-resolved photoemission so far is the \overline{M} Tamm state on Cu(001) reported by Wincott *et al.*²³ This feature has FWHM of 28 meV at $T \sim 150$ K, a result which is quite remarkable since this feature originates from almost 2 eV below E_F .

Finally, we reemphasize that our analysis has assumed perfect instrumental energy resolution and angle resolution. The effect of finite angular resolution on linewidth determination is treated in detail in Ref. 7. Such corrections must, of course, be considered in any attempt to monitor Γ_i as $E_i \rightarrow E_F$.

V. NEARLY-FREE-ELECTRON APPROXIMATION

A. Linewidth expressions

It is instructive to examine linewidth expressions for the simplest of band structures, the free-electron or nearly-free-electron model. The band energies E_i and E_f are given by $\hbar^2 k^2 / 2m$ and $\hbar^2 (\mathbf{g} - \mathbf{k})^2 / 2m$, respectively. Let us take the case where the reciprocal lattice vector \mathbf{g} is perpendicular to the surface. It is then easy to show that

$$nv_{i\perp} = \hbar k_{\perp} = -(\hbar g/2)(1 - \hbar \omega/E_g)$$
, (26)

$$nv_{f\perp} = \hbar(g - k_{\perp}) = (\hbar g/2)(1 + \hbar \omega/E_g)$$
, (27)

where $E_g = \hbar^2 g^2 / 2m$. Since $m v_{i\parallel} = m v_{f\parallel} = \hbar k_{\parallel}$, Eqs. (15), (18), and (21) reduce to

$$\Gamma_m = \frac{1 + \hbar\omega/E_g}{2\cos^2\theta} \Gamma_i + \frac{1 - \hbar\omega/E_g}{2\cos^2\theta} \Gamma_f , \qquad (28)$$

$$\Gamma_{m} = \frac{1 + \hbar\omega/E_{g}}{\cos 2\theta - \hbar\omega/E_{g}} \Gamma_{i} + \frac{1 - \hbar\omega/E_{g}}{\cos 2\theta - \hbar\omega/E_{g}} \Gamma_{f} , \quad (29)$$

$$\Gamma_m = \Gamma_i + \frac{1 - \hbar\omega / E_g}{1 + \hbar\omega / E_g} \Gamma_f .$$
(30)

for the EDC, CIS, and CFS, respectively. These expressions display once again the strong differences for the EDC, CIS, and CFS modes and also the strong differences in their angular dependence.

B. Example: Ag(001) EDC's

Hwu et al.²⁴ have recently published a linewidth analysis of experimental EDC measurements of a bulk band-structure feature on Ag(001) as $E_i \rightarrow E_F$. Their results for Γ_m (full width at half maximum) are shown as the open circles in Fig. 4. At first sight, the data look anomalous since $\Gamma_i \rightarrow 0$ as $E_i \rightarrow E_F$, whereas Γ_m is actually *increasing* as $E_i \rightarrow E_f$. The resolution of this apparent anomaly lies in the fact that for a *bulk* transition such as this, Γ_m is dominated by Γ_f rather than Γ_i . Putting this more quantitatively, Eq. (28) becomes, for the conditions of this experiment ($\hbar \omega = 14 \text{ eV}, E_g = 36 \text{ eV}$),

FIG. 4. Experimental EDC linewidths from Ref. 24 (open circles) taken on Ag(100) are compared with Γ_m predicted by the nearly-free-electron model taking $\Gamma_i = 0$ and using an empirical Γ_f curve (Ref. 25).

(31)

$$\Gamma_m \sim (0.31) \Gamma_f / \cos^2 \theta$$
.

 Γ_f is expected to increase over the energy range of the experimental data. A recent analysis for a number of similar metals²⁵ suggests $\Gamma_f = 0.13(E_f - E_F)$, and this relation is shown in Fig. 4. The derived values for Γ_m are also shown in Fig. 4. There are two main points of agreement with experiment. First, the measured values Γ_m are lower than the empirical Γ_f by about a factor of 3. This large demagnification is a consequence of the large group-velocity ratio. Second, the predicted Γ_m increases as $E_i \rightarrow E_F$. About half of this increase is due to the increase of Γ_f , and the other half is due to the $\cos^2\theta$ term in the denominator of Eq. (31). The residual quantitative discrepancy is attributed to the approximations of the model and to the uncertainties in subtraction of a background before the line fitting of the experimental spectra. Extrinsic effects associated with finite instrumental resolution may also contribute.

- *Present address: European Synchrotron Radiation Facility, F-38043 Grenoble, France.
- ¹J. B. Pendry, in *Photoemission and the Electronic Properties of Surfaces*, edited by B. Feuerbacher, B. Fitton, and R. F. Willis (Wiley, New York, 1978), p. 87.
- ²D. E. Eastman, J. A. Knapp, and F. J. Himpsel, Phys. Rev. Lett. **41**, 825 (1978).
- ³J. A. Knapp, F. J. Himpsel, and D. E. Eastman, Phys. Rev. B 19, 4952 (1979).
- ⁴P. Thiry, D. Chandresis, J. Lecante, C. Guillot, R. Pinchaux, and Y. Petroff, Phys. Rev. Lett. 43, 82 (1979).
- ⁵T. C. Chiang, J. A. Knapp, M. Aono, and D. E. Eastman, Phys. Rev. B **21**, 3513 (1980).
- ⁶S. D. Kevan and D. A. Shirley, Phys. Rev. B 22, 542 (1980).
- ⁷P. Thiry, thesis, Université de Paris-Sud, 1981.
- ⁸J. K. Grepstad, B. J. Slagsvold, and I. Bartos, J. Phys. F 12, 1679 (1982).
- ⁹F. J. Himpsel, D. E. Eastman, and E. E. Koch, Phys. Rev. B 24, 1687 (1981).
- ¹⁰H. J. Levinson, F. Greuter, and E. W. Plummer, Phys. Rev. B 27, 727 (1983).
- ¹¹B. J. Slagsvold, J. K. Grepstad, and P. O. Gartland, Phys. Scr. **T4**, 65 (1983).
- ¹²J. E. Inglesfield and E. W. Plummer, in *Angle Resolved Photo-emission*, edited by S. D. Kevan (Elsevier, New York, 1992), p. 15.
- ¹³C. G. Olson, R. Liu, D. W. Lynch, R. S. List, A. J. Arko, B.
 W. Veal, Y. C. Chang, P. Z. Liang, and A. P. Paulikas, Phys.

VI. CONCLUDING REMARKS

This paper offers a strategy for future studies of photoemission linewidths in normal materials. The strong differences in the expressions for the EDC, CIS, and CFS modes, as well as the anticipated strong angular dependence of the EDC and CIS linewidths could provide a stringent test of internal consistency. The first step, however, would be to investigate whether the expressions presented here are borne out by experiment or whether a more elaborate analysis is called for. It is clear than any such investigation must be in close association with band-structure determinations since the band derivatives are needed in the separation of Γ_i and Γ_f . The ultimate goal is to refine the analysis to the point where we can address the behavior of the photohole lifetime on approaching close to the Fermi level.

Rev. B 42, 381 (1990).

- ¹⁴P. W. Anderson and J. R. Schrieffer, Phys. Today 44 (6), 54 (1991), and references therein.
- ¹⁵C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989).
- ¹⁶N. V. Smith, Comments Condens. Matter Phys. 15, 263 (1992).
- ¹⁷G. J. Lapeyre, A. D. Baer, J. Anderson, J. C. Hermanson, J. A. Knapp, and P. L. Gobby, Solid State Commun. 15, 1601 (1974).
- ¹⁸L. F. Mattheiss (unpublished), quoted in Ref. 16.
- ¹⁹P. W. Anderson, Science, 235, 1196 (1987); and private communication.
- ²⁰S. D. Kevan, Phys. Rev. Lett. **50**, 526 (1983).
- ²¹J. Tersoff and S. D. Kevan, Phys. Rev. B 28, 4267 (1983).
- ²²K. Hricovini, R. Günther, P. Thiry, A. Taleb-Ibrahimi, G. Indlekofer, J. E. Bonnet, P. Dumas, Y. Petroff, X. Blase, Xuejun Zhu, Steven G. Louie, Y. J. Chabal, and P. A. Thiry, Phys. Rev. Lett. **70**, 1992 (1993).
- ²³P. L. Wincott, N. B. Brookes, D. S.-L. Law, and G. Thornton, Phys. Rev. B 33, 4373 (1986).
- ²⁴Y. Hwu, L. Lozzi, S. La Rosa, M. Onellion, P. Almeras, F. Gozzo, F. Lévy, M. Berger, and G. Margaritondo, Phys. Rev. B 45, 5483 (1992).
- ²⁵A. Goldman, W. Altmann, and V. Dose, Solid State Commun. 79, 511 (1991).