PHYSICAL REVIEW B

VOLUME 47, NUMBER 23

Mesoscopic persistent current in small rings

Eberhard K. Riedel and Felix von Oppen
Department of Physics, University of Washington, Seattle, Washington 98195
(Received 8 June 1992; revised manuscript received 22 February 1993)

Small normal-metal rings threaded by a constant magnetic flux have been shown to carry a mesoscop-
ic persistent current at low temperatures. The current is a few-electron effect and its sign and amplitude
depend on the microscopic configuration of disorder. Assuming a Gaussian current distribution, we
characterize the effect by three quantities, the rms or typical total current I¥?={I?)}? the average
current 1*¥=(I),, and the typical single-level current i%?=(i2)}/2. Specifically, we review and extend
the analytical calculations for the typical total and single-level currents focusing on the case of nonin-
teracting electrons in disordered rings in the regime of diffusive transport. We calculate and discuss
those current-current correlation functions that describe the dependences of the persistent current on
filling, flux, and disorder configuration. Only the single-electron contribution discussed in this paper is
known to contribute to the first, ¢o-periodic harmonic of the total current in a single ring. The second
harmonic also contains an interaction-induced contribution proposed by Ambegaokar and Eckern that
survives the disorder average. The Thouless correlation energy E. is the characteristic energy scale for
the amplitude of the total current and its dependences on filling, temperature, and inelastic scattering.
The persistent current is sensitive to changing the position of a single impurity. We compare our results
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with the recent single-ring experiment by Chandrasekhar et al.

I. INTRODUCTION

Quantum persistent currents! in small nonsupercon-
ducting rings threaded by a magnetic flux ¢ have aroused
considerable interest over the past few years.2~!* Recent-
ly, the first experimental evidence for their existence has
been reported.*!? Interest in these currents reaches back
to the 1960s,'*!> and work on their mesoscopic na-
ture'®!” began in 1983 for strictly one-dimensional
loops, 8720 and later for ballistic’! and metallic mul-
tichannel rings.> A closely related phenomenon exists in
mesoscopic SNS junctions,?>?3 where the phase difference
of the order parameter across the SNS junction plays the
role analogous to that of the flux.

Persistent currents are an equilibrium property of a
ring that encloses a static magnetic flux ¢=¢/¢d,. They
are periodic with the flux quantum ¢,=hc /e and can be
defined in terms of the thermodynamic potential'*2*
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Mesoscopic persistent currents require that the phase-
coherence length be of the order of the ring circumfer-
ence. In this paper we present a detailed microscopic
theory of the effect for noninteracting electrons applica-
ble to single-ring experiments.

For a single ring the current is highly sample specific.
In an ideal ring without disorder the current is a periodic
function of ﬁlling,21 i.e., the number of electrons N in the
ring or the chemical potential u. The corresponding
period is proportional to the number of transverse chan-
nels M or M A,,, respectively, where A,, is the level spac-
ing at the Fermi energy. The current amplitude depends
sensitively on geometrical details.2?>2® For short
cylinders each channel (characterized by its transverse
momentum) carries a current of order I,=evy /L, where

(1.1)
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L is the circumference of the ring. Since the signs of the
channel currents are uncorrelated the typical amplitude
of the total current is of order M /%[ .%!

In disordered rings, specifically in the diffusive regime,
the current depends sensitively not only on the degree of
filling but also on the disorder configuration.? For a par-
ticular disorder configuration the current fluctuates as a
function of N (or u). The average period of these fluctua-
tions is given by the effective number of channels M (or
the correlation energy E.). This indicates that the
highest M4 occupied levels determine the total current.
In this sense the persistent current is a few-electron effect.
It is well known from the theory of universal conduc-
tance fluctuations?’ (UCF) that phase-coherent mesoscop-
ic phenomena can be extremely sensitive to changes in
the impurity potential.?®=3° For typical experimental pa-
rameters moving one or a few impurities over a distance
of order of the Fermi wavelength k! has essentially the
same effect on the persistent current as redistributing all
impurities.

A complete statistical description requires knowledge
of the probability distribution for the current. We
characterize the persistent current by the disorder aver-
aged current I**=(I), and the variance of the current
(81%)p,=(I%?),—(I)% as appropriate for a Gaussian
current distribution. Although there is some numerical
evidence for this in the diffusive regime,®3! this question
deserves further study. The average current may be mea-
sured directly in a multiring experiment (if the total sig-
nal is proportional to the sum of the signals from the in-
dividual rings). Measurement of the current variance re-
quires a single-ring setup.

The current in the diffusive regime is determined by
two relevant energy scales,” the level spacing
Ay=1/[VN(0)], where V is the volume of the system
and N (0) the density of states at the Fermi energy, and
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the correlation or Thouless energy E_,

Ec=ﬂ'z%°<h/7'00<MeffAM : (1.2)

Here, 7, is the diffusion time around the ring, D is the
diffusion constant, and M =Ml /L is the effective
number of channels.’>3® E, determines the range of
spectral correlations which exist between the slopes of
the energy levels, i, = —(e /h)de, /d¢p, as well as between
level spacings. E_ varies from M A,, close to the ballistic
regime to A,; near the localized regime.

For noninteracting electrons the average current de-
pends on the averaging procedure.’’ Whereas the aver-
age current per ring for a disorder ensemble of many ma-
croscopically identical rings is extremely small if the dis-
order average is performed at a constant chemical poten-
tial,>!° it exhibits positive and nonzero even harmonics in
@ if the number of electrons N is fixed in each
ring.>8-1113.20.34 (N is allowed to vary from ring to ring.)
However, a contribution to the average current due to
electron-electron interactions>?* is much larger. The
interaction-induced current is ¢,/2 periodic and its am-
plitude is proportional to A(e/7p), where A is a renor-
malized, dimensionless coupling constant.>>3¢ Using a
simple (but possibly oversimplified) estimate for A, this
amplitude appears to fall short of explaining the experi-
mental current measured by Lévy et al.*

Only a single-electron contribution to the variance of
the current is known.?” Its flux dependence is ¢, period-
ic. In contrast to the average current the variance of the
single-electron persistent current is independent of the
averaging procedure, i.e., {8I*(N))p=(8I%u))p.? Its
amplitude is of order (8I%?)}?«x(e/7p).? Recently,
Chandrasekhar et al.'?> reported an observation of
persistent-current effects directly in a single gold ring. In
Sec. III D we compare their results with theoretical pre-
dictions. It is a well-known result that electron-electron
interactions do not contribute to UCF [to leading order
in (kpl,)~!] apart from giving rise to an inelastic scatter-
ing cutoff.?’ The influence of interactions on the variance
of the persistent current may be considerably more com-
plicated because of the thermodynamic-ensemble ques-
tions involved.

In the following we focus attention on noninteracting
electrons and single-ring experiments. Under these con-
ditions the average current is negligible compared to the
variance of the current.>8~!! Thus, it is convenient to in-
troduce the typical total current I%P={(1?)}? instead of
the variance. For noninteracting electrons one may also
define a typical single-level current i YP=(j2) /2,

It has been mentioned that the typical current ampli-
tude is “‘easily” determined by the Thouless argument.?
That misses an important point. The Thouless argument
is usually applied to single-level quantities. Quite dis-
tinctly, the total current is determined not just by the
single-level currents but also by the correlations between
them. However, the result for the typical total current
implies a variant of the Thouless argument,
IYP (A, /do)g, in terms of the dimensionless conduc-
tance.?
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In this paper we give a detailed account of the analyti-
cal theory for persistent currents in the diffusive regime
of metal rings, as it applies to single-ring experiments. In
Sec. II we describe the model and present the calculation
of the typical total current I%P and the typical single-
level current i¥P. We show that diagrams involving two
diffusion and Cooperon propagators, which were omitted
in Ref. 2, also contribute to leading order. In Sec. III we
study current-current correlation functions and discuss
our results for the dependences of the current on flux,
disorder, filling, and temperature with an emphasis on
physical interpretation. We also apply the theoretical re-
sults to the single-ring experimental setup and compare
them to the experimental results of Ref. 12. Section IV
contains a brief summary.

II. PERSISTENT CURRENT THEORY

A. Model

We consider a thin-walled normal metal ring (e.g., Cu
or Au) of circumference L and transverse area 4 =L L,
threaded by a static magnetic flux ¢=¢/¢,, as shown in
Fig. 1. We restrict ourselves to short cylinders for which
L>L,L,. We introduce the number of transverse
channels M =k}~A /4. For noninteracting electrons,
the system may be described by the Hamiltonian

2
1 |n_27h ¢ A
— |p—— +V(r),
2m P L ¢0ex (£)

where e, denotes the unit vector in the longitudinal
direction. Unless otherwise stated we consider spinless
electrons. We take the disorder potential V(r) to be
Gaussian white noise, (V(r)V(r'))p=y8(r—r'). The
strength of the random potential y is related to the elastic
mean free path by I, =%#vy/[2myN(0)].>® Alternatively,
one may think of averaging over the positions of random-
ly distributed 8-function scatterers.

Neglecting the curvature, we model the ring geometry
by periodic boundary conditions in the longitudinal
direction. In the ballistic regime the specific shape of the
loop influences the nature of the spectrum?":226 and thus
the persistent current. We believe that this sensitivity is
negligible in the diffusive regime. In the transverse direc-
tions one may choose either periodic or specular hard-
wall boundary conditions.

The flux can be eliminated from the Hamiltonian by a
gauge transformation, which results in flux-periodic
boundary conditions in the longitudinal direction,'4

2.1

¥, (x +L,y,z)=e 2™y, (x,,2) . (2.2)
P=d/e,
— 7/
%—I—'jﬁ A

FIG. 1. Thin-walled ring of circumference L and cross-
sectional area A4 threaded by a magnetic flux ¢=¢/¢,, where
o= hc /e is the flux quantum.
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This demonstrates that the energy levels and therefore all
thermodynamic quantities of the system are periodic
functions of flux. With these boundary conditions one
may use the usual plane-wave basis with discrete k and
shifted longitudinal momentum eigenvalues, k, =27/
L)(n,—@). The current associated with a particular en-
ergy level e, (@) is given by i, =—(e/h)de,/dp. At
T =0, the total current is given by the sum over all occu-
pied levels, =73 ,i,. The total current at finite tempera-
tures can be obtained from the thermodynamic potential,
and flux periodicity implies that the current can be
characterized by its harmonics 1,,,

(2.3)

In the diffusive regime the characteristic length scales
satisfy I, <L <&, where £xMi, is the localization
length. Finite temperatures may be characterized in
terms of the thermal diffusion length I;=(hD /kzT)'/?,
where D denotes the diffusion constant D =1v.l,. We
assume that the electronic phase-coherence length 14(7)
exceeds L. In the ballistic regime one has L </, and in
the localized regime & < L.

Within the same model for geometry and disorder the
effects of electron-electron interaction on the persistent
current can be included.>3° Again, analogous results
were obtained for SNS junctions.?? The self-inductance
of the ring may be neglected because of the very small
magnitude of the persistent current. A magnetic field
penetrating the ring will lead to Zeeman splitting and
smear out the perfect flux periodicity of the energy levels
e,(@) and consequently of the persistent current. The
size of these effects depends on the strength of the mag-
netic field and on the aspect ratio of the ring. A more
complete treatment may also include surface scattering.
However, this might only lead to small changes in the
effective number of channels.

B. Typical total current

Starting from the current operator in second quantiza-
tion, one readily derives the following Green’s-function
formula for the thermodynamic equilibrium current:

=Lt s eions  gu k0 . 2.4)
B % © kr
Here 7 is a positive infinitesimal and o the (Fermion)
Matsubara frequencies, w=(2m +1)7/B. The finite-
temperature Green’s function for a particular impurity
configuration is denoted by $(k,k’;w). We are working
in the gauge with flux-periodic boundary conditions and
longitudinal momentum values k,=(27w/L)(n,—g).
Squaring and impurity averaging the current expression
(2.4) yields for the typical total current,
1 kyky
(I p=I§—53'3 —5 (9kko)9K k35, -
B* orix kr
(2.5)

The prime on the Matsubara sum stands for the exponen-
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tial factors. We employ the usual diagrammatic method
for calculating impurity averages. Figure 2 shows the di-
agrams contributing to this average to leading order in
the diffusive regime.** The disorder averaged Green’s
function is approximated by*®

1
w—E;, +p+iBsgno

G (k0)=(9(k k) p== (2.6)
Since the impurity averaged system is translationally in-
variant, G is diagonal in the momentum representation,
E, is the spectrum for the clean system, and impurity
scattering mixes k states over an energy range
B=1/(27,). We use units with #i=1 in the remainder of
this section. The particle-hole ladder diagram represents
the diffusion propagator D (q_;®,&) of the form3®

1 0(—wf)
20N (0) lo—¢l+D(k—k')?

D(k—k;0,6)= 2.7

The 6 function restricts the Matsubara frequencies w and
& to opposite sides of the Fermi surface. The electron
diffusion represented by the diffusion propagator
D(q_;w,§) is flux insensitive, as reflected by the cancella-
tion of the flux in q_ =k —k’. The maximally crossed di-
agram represents the Cooperon propagator K (q,;®,§)
that has the same form as (2.7) but with q_ =k—k’ re-
placed by q,. =k—+k’. The quantum interference correc-
tions represented by the Cooperon are flux sensitive, lead-
ing to the flux-dependent longitudinal momentum vari-
able (¢, ), =k, +k,=(2w/L)n —2¢). The physical in-
terpretation of the Cooperon in terms of time-reversed
electron paths has been extensively discussed in the litera-
ture.’® The length and energy scales introduced by disor-
der and temperature enter the calculation via the pole
structure of G, D, and K. The information about
geometry and flux is included in the momentum basis.
Although the diffusion contributions are flux indepen-
dent, it is important to keep them when calculating typi-

k k k k
; T T 1 < i~ 7
[ XX X X X
Lk ok S
AR IR
e L7 N
I | J
kl k( kl kl
k k=-p k K k-p 3
< S T 7
\\j'\ e % % x X X X
N N Xt N1/ T/
PVl A /:
VRS \
/////x\\\\\ ! 70N
A | /1N
1
k kl‘*‘p kl kl kl_'p kl

FIG. 2. (a) Diffusion and (b) Cooperon diagrams contributing
to the typical current (2.5) to leading order. The solid lines refer
to the disorder-averaged electron Green’s function (2.6). The
dashed lines with crosses represent the averaged disorder
scattering.
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cal current quantities to obtain the proper flux dependence. This will become apparent in Eq. (2.13). The diagrams in
Fig. 2 translate into

’

k. k,
(1*),=1}% 22 S ——G¥k,0)GXK,{)

o, k,k’ F
D(k—K;0,6)+3 G(k—p,0)G(k'+p,E) Dk —k'—p;0,{)
P
+K(k+k;0,6)+ S Gk—p,0)G(k'—p,H K k+k' —p;w,8) | . (2.8)

P

We eliminate the p’s from the D? and K ? terms by shifting k'’ —k’ F p and introducing p’ =k’ ¥ p, and then obtain

<12>D=1 2 z A —~GUk,0)G(K',§)
o, kk “F
kl ’
=Gk, 6D (k—K;0,8)+ 3 —pf-G(k—k’+p’,co)G2(p’,§)D2(k—k’;w,é’)
kg < kp

’

+ %—G(k’ g)K(k+k';m,§)+EZ—"G(k+k'—p',m)GZ(p',g)KZ(k+k';w,§) . (2.9)
F » FF

The diffusion poles emphasize small q;. =k=*k’, which justifies expanding the Green’s functions to first nonzero order in

q+. In the terms linear in D and K, this implies k =1k’ everywhere except in the diffusion poles. In the terms quadra-

tic in D and K, the unsquared Green’s functions need to be expanded to first order in q;. The & in q, emphasizes the

different flux dependences of the two quantities, i.e., (¢ ), =(27/L)(n —2¢) and (g_), =(27/L)n. In the following,

3 4 is understood to mean summation over these quantum numbers. The expansion yields

(I p=1}—=3’ E—Gz(kw Gk, &)

Bz oc x kf

S [D(q_;0,6)—K(qy;0,8)]

q
py (g-)% (g4 )%

2(p',0)G(p’, §)2 DXq_;0,6)~ ——KXq+;0,8)

} . (2.10)

One can now perform the k and p’ sums by replacing them by integrals. Note that the integrals are nonzero only if
—w&>0. This approximation is equivalent to neglecting the flux dependence of the Green’s functions. Using the Pois-
son summation formula one shows that these flux-dependent terms are of order exp(—L /2l). They give rise to corre-
lations between different harmonics, which therefore are “exponentially small” for the diagrams considered.*! The
momentum sums yield

(12)D=I 2 76TNB((3) S [D(q_;0,8)—K(q4;0,8)]
q
2 2
_m uN(0) ()% , . _(‘I+)x 2 . 211
3 g zq‘, D(q_;w,§) - K4 qu;0,8) | 1. (2.11)

For short cylinders, nonzero transverse q.’s are suppressed by a factor of approximately exp[ —27pL /max{L,,L,}].
The sum over g, (i.e., n) is most easily performed using the Poisson summation formula. We find

12 1 " _— 1 1
(IZ> — 2_ b ’ dx ethpx —
p=To3p p}_w 2 gE f~m 4E.x*+|v| 4E (x —2¢p)*+|v|
2
_2p 1 |2m x i x —2¢ i
3Bm|L 4E,x2+|v| 4E.(x —2¢)*+|v| ’




47 MESOSCOPIC PERSISTENT CURRENT IN SMALL RINGS

using the (Boson) Matsubara frequencies v=w—_§. We
do not exhibit the factor [ —£(£+v)], which is implicit
and indicated by the prime on the Matsubara sum. After
shifting the integration variable in the Cooperon terms to
eliminate the flux, one can combine the linear and quad-
ratic contributions into a derivative,*?

2y 2
X‘LZ' f+wdx e"'z’””‘———-az
BZ Cv —® axZ
2+ ‘V|
XlIn |x —_4Ec
(2.13)

Note that the Cooperon and diffusion terms have com-
bined to give the correct flux dependence, as mentioned
above Eq. (2.8). Correlations between different harmon-
ics are absent to this order.*’ The restricted sum over ¢
produces a factor of B|v| /27. After performing the x in-
tegral, we find

(I*)p=I % 2 p sin’(2mp )

vl
4E,

IVI

X = 2 exp —2mp

o

(2.14)

In the limit of zero temperature, the sum over v turns
into an integral ¥ ,—(B/2m) f dv, which is easily evalu-
ated. This yields for the typical total current at T =0,*

J

24T S b sin*(2mp@)2 Re+
1

C(8E)=I i
°3B < B <, 4E,

At T =0, the sum over v turns into an integral which yields

2 2

1o

M

Meﬂ‘

C(8E)=8 3

) %sin%zﬁp«p) 3—
p=1 p

ox
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(I?)p=3 (1})psin’(2mpe)
p=1
2 2
I, M 1
=24 | — 3 —sin’(2mpe) . (2.15)
M 37 =1 p3

Note that the current amplitude does not depend on M;
the harmonics are (I?)[?=1.04p *"2Iy(l,/L)
=3.1p ~3%¢ /7 including a factor 2 for spin. For finite
temperatures, Eq. (2.14) may be expressed as

(IXT))p (IXT =0)) psin*(2mpe)

hed B
=3 g|p’—0—
p=1 E,

(2.16)
with g (0)=1 and

6
g(x)=7TTx2 S nexp[—(2mnx)'?] . 2.17)

n=1

Equation (2.17) is further evaluated and discussed in Sec.
IIIA.

C. Current-current correlation function
and typical single-level current

In the Introduction we remarked that the total per-
sistent current for a particular impurity configuration is a
sensitive function of filling u. Information about this
dependence in the diffusive regime can be obtained from
the correlation function

CE)={I(u)I(u+8E))p . (2.18)

The calculation of this quantity is analogous to that for
the typical total current. The difference in the chemical
potential at which the two currents are calculated leads
to an additional term i8E sgn(w—¢) in the denominators
of the diffusion poles (2.7). Keeping the same diagrams
as above one obtains instead of Eq. (2.14),

18E|
—2mp 4E - ti AE, . (2.19)
{e *[(1+x)cosx +x sinx ]} , (2.20)

where x =27p1/|8E|/8E,. This result is further discussed in Sec. ITT A.
At zero temperature the correlation function (2.18) may be related to the current carrled by the levels in an energy

range 8E, i(@,8E )=
C(8E)=(I?),

=I(u+8E)—I(u),
—1(i%8E))p .

(2.21)

Of particular interest is {i%(¢,8E) ), with 8E=A,,. Since typical quantities are found to be insensitive to averaging at

constant N or constant u, we argue that

(I(p+A ) —T(w) ) p={[I(N+1)—IT(N)*)p .

(2.22)

This implies that {i*(@,A,,))p is a good approximation of the typical single-level current {i%(¢)) . From Egs. (2.15)

and (2.20) one obtains
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) %sinz(ZTrpcp)
p=1 p

Meﬁ'

<12((P)>D=16 3

I, |’
M

with u=27p(A, /8E)"*=1p(3m/M)"? It is in-

teresting to note the following scaling property of the

typical single-level current at constant flux: 3
I, 2 172
VA RS P

3
Meﬂ'

(i) p= (2.24)

M

The two factors reflect the two basic energy scales of the
problem. I,/M=A,;,;/¢,is determined by the level spac-
ing A,, and the scaling function X involves the correla-
tion energy E, <M 4A,,. A similar but less stringent
scaling property is valid for the harmonics of the single-
level current,

172 ]

Recalling that the harmonics of the energy levels e, and
the single-level currents are related by i, =(e/h)2mpe,,
one establishes from Eq. (2.25) that the combination

M (ep2 YY2M1* as a function of the variable u should

2 172

Iy
M

Meﬂ‘

37

3

Yap2
Meﬂ'

(i7)p= 5 (2.25)

T T TT I] T | T T TTT ll T
10" ¥ =
E * "o 3
— N -
- L *\g ]
S % ]
Tx »
s 102 é“,@ —
=) C ]
A i »
e T
[+}]
g L -
= 3
107k =
<4 i 1 |
lo L1 1t 5 1 j I ;
10 10

+p (37 /Megp)'?

FIG. 3. Scaling plot of the harmonics of the typical single-
level energies, M{e?)?M AT vs 1p(Bn/M ', as dis-
cussed in Sec. IIC. The solid curve is the analytical result ob-
tained from Eq. (2.25). The numerical results of Ref. 13, Fig. 1,
for the Anderson model are also shown. The symbols corre-
spond to those in Ref. 13 and refer to system size and disorder
parameter: Stars 64X4X4, W/t=1.4; plusses 64X4X4,
W /t=2; crosses 64X8X8, W/t=1.4; circles 64X8X38,
W /t =2; black circles 64X 14X 14, W /t=1.4. The deviations
for large arguments reflect the breakdown of perturbation
theory for p 2 M2

3—u—a— ]{1—3““[(1+u)cosu +usinul},
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3u (2.23)

scale. The same scaling behavior was found in numerical
calculations.'® In Fig. 3 we exhibit the scaling function
obtained from (2.25) together with the corresponding nu-
merical data of Fig. 1 in Ref. 13. The numerical data
were obtained for the Anderson model with hopping ma-
trix element ¢ and random on-site disorder in the range
[—W/2,W/2]. In terms of these parameters the elastic
mean free path is given as I, = 4 (¢ /W)?, where the con-
stant A4 is not well known. In view of such uncertainties
in relating the parameters of the numerical and analytical
models, we fit the numerical data by independently scal-
ing both coordinate axes by a constant factor. On the
double-logarithmic scale, this merely shifts the position
of the numerical curve. The good agreement gives us
confidence that the replacement (2.22) is a reasonable ap-
proximation for calculating the typical single-level
current. For large values of u =1p(3m/M)'/? the nu-
merical data points fall below the analytical result
reflecting the breakdown of perturbation theory for
P2 M2
€

For large M., one may replace the sum over p in Eq.
(2.23) by an integral. In particular, for ¢=0.25, the in-
tegral may be evaluated analytically and yields®

2
1 M
12 = _ T 0 eff
=0.25 =—|—= 2.26
(i%p Mo a; Y (2.26)
The fact that the typical single-level current is
iYPoc [P /M2 corroborates the conjecture that

effectively M .+ electrons contribute to the total current.

III. DISCUSSION OF THEORETICAL RESULTS

A. Dependence on filling, temperature,
and inelastic scattering

The dependence of the total current on filling can
be inferred from the correlation function C(8E)
=(I(w)I(u+8E)), which is shown in Fig. 4 for T=0
and flux ¢=0.25, cf. Eq. (2.20). The current-current
correlations decrease exponentially with 8E!/2 on a scale
given by the Thouless energy E, and change sign for
8E =E,. This implies that the total current I(u) for a
particular impurity configuration changes sign with an
average period of order E,. The sign change of the corre-
lation function reflects the anticorrelations in the spec-
trum, due to which effectively only the highest M ¢ levels
contribute to the total current. Similarly, one infers from
Eq. (2.20) that the harmonics of the total current change
sign with average period E, /p?.

This behavior of C(8E) is consistent with the result
that the characteristic temperature for the amplitude
reduction of the typical total current (2.16) is the correla-
tion energy E,. For temperatures kz TR E,/p?, the
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1.0 T T T T I — _]
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FIG. 4. Zero-temperature current-current correlation func-
tion C(8E)/C(0) vs difference in filling 27(|8E|/8E,)'/?, from
Eq. (2.20) for flux ¢=0.25. The current changes sign as func-
tion of filling with an average period E..

Matsubara sum (2.17) is dominated by the first term re-
sulting in

(IXT))p < {IXT=0)),T?
Xexp[ —(27°p*ky T /E,)'/?] .

Note that (27°p%ky T /E,)}/*=2mpL /Iy, in terms of the
thermal diffusion length /. In Fig. 5 we show the har-
monics of the typical total current for an experimentally
relevant temperature range. In this regime one needs to
consider the complete sum (2.17) and finds numerically
that the result may be well approximated by an exponen-
tial, when 0S kT S2E, /p?,
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FIG. 5. Temperature dependence of (IXT)) /{I{T=0)),
from Eqgs. (2.16) and (2.17). Over this range the temperature
dependence is well approximated by an exponential, cf. Eq.
(3.1).
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with (Ipz( T =0))p, given by Eq. (2.15). Within this range
of exponential temperature dependence the current falls
off by more than one order of magnitude from its 7=0
value. From Fig. 5 one also sees that at very small tem-
peratures, TSE_/ (20p2), the curve flattens out. The
scale of the temperature dependence of the pth harmonic
is set by E,/p? resulting in an increasingly rapid
suppression of the higher harmonics. In an experiment
one would therefore expect that only very few harmonics
contribute significantly.

Inelastic scattering reduces the persistent current am-
plitude by destroying phase coherence. This can be taken
into account phenomenologically by an additional 1/74
term in the denominators of the diffusion poles (2.7).3
Here, 74 denotes the phase breaking time. A straightfor-
ward extension of the calculation in Sec. II B shows that
this leads to

IM L 2 2 |17
IDY=v2a—" — |14p = B2
;05 M3z | P, T3

Xexp |—p=— | . (3.2)

Here we introduced the phase-coherence length

lg =(D7g)"/? appropriate for the diffusive regime. The
pth harmonic contributes significantly only if the elec-
tronic phase-coherence length exceeds pL. In contrast to
most weak-localization effects®® the temperature depen-
dence of the persistent current is due mainly to tempera-
ture averaging. Since the characteristic temperature for
inelastic scattering is much larger than the Thouless ener-
gy E., inelastic scattering leads roughly to a
temperature-independent reduction of the current ampli-
tude below temperatures of order E. /kg. For this reason
we neglected thermal averaging in Eq. (3.2).

B. Flux dependence

The flux dependence of the total and the single-level
currents, I (@) and i(¢), can be deduced from the corre-
sponding correlation functions

0

Flo,@)={I(p)(¢"))p=3 (1})psin2mpp)

p=1
Xsin(2mpe') , (3.3)
flo,@)=(i(@li(gN))p=3 (i})psinQ2mpe),
. p=1
Xsin(2mp ') , (3.4)

where we used that only equal harmonics are correlated.
Inserting the Fourier amplitudes from Egs. (2.15) and
(2.23) and performing these sums numerically, one ob-
tains the results shown in Figs. 6 and 7.

The behavior of (I*(¢)), and F(g,¢’) in Figs. 6(a)
and 7(a) is dominated by the first harmonic, which is due
to the 1/p3 decay of the higher harmonics. Therefore, a
single-ring experiment that measures the total current for
a particular impurity configuration should exhibit the
fundamental ¢ -periodic harmonic, only slightly modified
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by higher harmonics. At finite temperatures, tempera-
ture corrections and inelastic scattering lead to a more
rapid suppression of the higher harmonics, since the
relevant energy scales as E, /p? as discussed in the previ-
ous section.

The flux dependence of the single-level current is of
theoretical interest because it gives information about
level correlations. The flux dependence of the typical
single-level current is plotted in Fig. 6(b) and shows
structure on a scale Apx1/M.f* near the symmetry
points ¢=0,1,1,..., where the single-level current is
pinned to i(@)=0. This is due to the crossover of the
harmonics from (i)),/I5<p, when p<<Mj’, to
(i:)D /I3 <p 3, when p >>M!2. This crossover is also
the reason for the peak structure of the correlation func-
tion f(@,¢') shown in Fig. 7(b). The peak occurs at
¢=¢'. Its width depends solely on M s and scales as
1/M{. This indicates that the single-level current as
function of flux changes sign approximately M'f* times
within one period ¢,. By contrast, in the weak-disorder
limit the single-level current oscillates M times. The sign
of i(@) is not correlated on flux scales larger than
1/M!f2. This explains the flux dependence of {i*(¢)),
in Fig. 6(b). Sufficiently far from the symmetry points the
zeros of i(g) occur at random values of flux which de-
pend on the particular disorder configuration. This gives
rise to (iX(@))p,=const, when ¢>1/M'f>. Residual
correlations near the symmetry points lead to the two
maxima.

It is interesting to note that the scaling variable for the
harmonics is given by p2/M ;. This suggests that higher
harmonics might be scaling towards localized behavior
(corresponding to M ;=~1). In the localized regime one
expects exponential behavior as function of disorder in
contrast to the power-law behavior found in the diffusion
regime. For the higher harmonics one might then expect
that this sets in already in the diffusive regime. Indeed, a
simple argument using diffusion constant renormaliza-
tion,* D —D /(1+iD /w&?), yields an exponential reduc-
tion for the pth harmonic of the form exp(—p/M.z).?
However, a more complete treatment is needed.*’ The
results in this section are qualitatively unaffected by this
question as long as the crossover to localized behavior
occurs for p >>M 12,

C. Sensitivity to variations
of the impurity potential

The persistent current is extremely sensitive to changes
in the impurity configuration. Here we apply the theoret-
ical approach developed in the context of the universal
conductance fluctuations?®3° (UCF) to the persistent
current.

The sensitivity to changes in the disorder potential can
be inferred from the correlation function between the
currents I (V) and I(V’) for impurity potentials ¥ and
V', respectively. The two potentials that differ by moving
a certain number of impurities SN, on average over a dis-
tance 8R. The important diagrams that contribute to
this correlation function are those in Fig. 2. Whereas the
Green’s functions are still given by Eq. (2.6), the denomi-
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nators of the diffusion and Cooperon propagators (2.7) in-
volve an additional term a /7,,.%® Here,?®

i

a~

f(kz8R) , (3.5)

1

where N; is the number of impurities in the system and
f(x) is a function that is zero, when x =0, and approxi-
mately 1, when x>1. In terms of the parameter
k=a(L /1,)? one obtains for the correlation function
IMIV")) p= 3 [1+p(3x)/*+pk]
p=1
Xexp[ —p(3)\ 212 p

Xsin®(2mp@) . (3.6)

The correlation function depends exponentially on the pa-
rameter k. This is in contrast to the corresponding result
for UCF,?8-3 where the conductance correlation func-
tion shows a power-law dependence on «. In this sense
the single-electron persistent current is even more sensi-
tive to changes in the disorder configuration than UCF.

The parameter « has the following physical interpreta-
tion.*® Picture the diffusive motion of the electron as a
random walk of step size /,;. While traveling around the
ring once, the electron visits (L /I, )? sites of which a
fraction a < 8N; /N; is inequivalent between potentials V'
and V'. Thus, « gives the number of sites visited by the
electron that differ between the two potentials.

Finally, «k can be estimated in terms of physical param-
eters.”’ Using 1/1,4~(N;/V)o, where V is the volume of
the system, and approximating the cross section o of a
single scatterer by o =4k 2, one finds

N L |k )
= Ni lel f F

SN | L | e(k,8R) 3.7)
NMeﬂ' Iel f F ' '

Thus for parameters characteristic of recent persis-
tent-current experiments,*!> we conclude that «
=8N, f(kpbR) up to a numerical prefactor of order 1.
Hence, the correlation function {(I(V)I (V")) is strongly
suppressed even if the impurity configurations ¥V and V'
differ only by one impurity (or a few impurities, depend-
ing on the numerical prefactor) moved over a distance of
order k; !. Consequently, the signs of the persistent
currents for two such configurations are essentially un-
correlated.

It is appropriate to include a note of caution. The cal-
culation was done for the current at constant chemical
potential. There could be correlations in the spectrum
that make the current at constant N less sensitive to
changes in the disorder configuration. We believe that
this is not significant in the diffusive regime.

D. Application to experiment

The persistent-current effect in a single-ring experi-
ment is expected to contain both the single-electron and
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the interaction-induced contribution. However, the two
contributions can be partially separated due to their
different flux periodicities.

Only the single-electron persistent current contributes
to the first, ¢y-periodic harmonic (generally, all odd har-
monics).’” Thus the typical amplitude of the first har-
monic of the persistent current is given by the first har-
monic of the typical total current (I7_;);? in (2.15).
The first harmonic of the persistent current is a pure fluc-
tuation effect and consequently its sign is a random func-
tion of impurity configuration and filling (for changes of
N larger than M) The extreme sensitivity of the
single-electron persistent current to changes in the im-
purity configuration [cf. Eq. (3.6)] suggests that sign mea-
surements on the same sample before and after thermal
cycling to room temperature are statistically indepen-
dent. Within the model presented here, the first harmon-
ic of the typical total current (I 12,=1 )}/? can be expressed
as a one-parameter formula,

(12 )5*=2E,/¢$p)exp(—kT/E,) , (3.8)
where we have included a factor of 2 for spin [cf. Eq.
(3.1)].

Both single-electron and interaction-induced persistent
currents contribute to the second harmonic (generally, all
even harmonics) of the persistent current. The disorder
average of the second harmonic is dominated by the
interaction-induced effect. (Here we neglect the small
disorder average of the single-electron current in the
canonical ensemble.®-!') The average current is
paramagnetic (diamagnetic) for small flux values if the
electron-electron interaction is repulsive (attractive).’
The single-electron contribution [cf., Eq. (3.1)] leads to
sample-specific fluctuations around this average current.
The relative size of single-electron and interaction-
induced contributions to the second harmonic is deter-
mined by the coupling constant A (cf., Sec. I). According
to one estimate for A,3® one expects the single-electron
contribution to be larger than the interaction-induced
current. The signs of the first and the second harmonics
of the current are uncorrelated.

Recently, a single-ring experiment has been performed
by Chandrasekhar et al.'> Whereas the measured tem-
perature dependence of the first harmonic is consistent
with the theoretical prediction of the model discussed in
this paper, the amplitude appears to be larger than
theoretically expected by one to two orders of magnitude.
At this time the experiment does not make a definite
statement about the sign of the effect. Two sign measure-
ments on different samples yielded paramagnetic
behavior at small flux values. The sign did not change
upon thermal cycling to room temperature, which was
performed once.*® Accepting the sign measurements
upon different cool downs from room temperature as sta-
tistically independent, a positive sign has been found
three times. This cannot yet exclude the possibility that
the measured current has a random sign as expected ac-
cording to current theory.

The experiment'? was performed on two gold rings of
diameters 2.4 and 4 um and a gold square loop of dimen-
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sions 1.4X2.6 um. All loops had a linewidth of approxi-
mately 90 nm and a thickness of 60 nm. In Ref. 12 the
elastic mean free path /, was estimated by measuring the
resistance per square R of gold films fabricated by the
same procedure as the loops. We note that via the Ein-
stein relation for conductivity, one can directly express
the diffusion constant in terms of Ry,
D=[e*N(0)R;L,]™'. Here L,=60 nm is the thickness
of the film. Using the measured value R;=0.2 Q one
finds D=3.25X10"2 m?/s. There has been some con-
fusion about which dimensionality d should enter the
diffusion constant D =vpl,/d. Determining D directly
circumvents that problem. (One should use d =3.) Thus,
Eq. (3.8) for T=0 predicts 0.28, 0.12, and 0.25 nA, re-
spectively, for the typical magnitude of the ¢,-periodic
contribution to the currents of the three loops. The cor-
responding experimental values'? are 30+15, 3+2, and
612 nA, measured at the lowest experimental tempera-
ture of T=4.5 mK. These are larger than the theoretical
predictions by factors between 25 and 100. One may note
that for the multiring experiment of Lévy et al.,* it was
also found that theoretical estimates for the interaction-
induced contribution to the average current were smaller
by an order of magnitude than the experimental result;
however the latter theoretical estimate appears less
definitive because of the difficulties in determining the
effective coupling constant A accurately.

IV. SUMMARY

We have presented a model for mesoscopic persistent
currents carried by small normal-metal rings threaded by
a constant magnetic flux. The theory applies to single-
ring experiments. The approach applies to the quantum
diffusive regime and utilizes the diffusion and Cooperon
approximation. We have focused on the case of nonin-
teracting electrons in disordered rings.

Assuming a Gaussian current distribution in the
diffusive regime, we have characterized the magnitude of
the effect by three quantities, the average and typical to-
tal currents {I)p, and {I?)}?, which are of experimental
relevance, and the typical single-level current {i?)}/?
which is of theoretical interest. In this paper we con-
sidered the latter two quantities. We have also studied
those current-current correlation functions which de-
scribe the dependences of the persistent current on flux,
filling, and disorder configuration. We infer that before
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disorder averaging the total current as function of filling
p (number of electrons N) exhibits sign changes with an
average period E,x<M4A;, (M. ) versus period
A, <MA,, (M) in the ballistic regime. This implies that
the persistent current is effectively a few-electron effect to
which of the order of M4 electrons contribute. The sign
of the total current becomes uncorrelated for differences
in filling larger than E.. The flux dependence in a single-
ring experiment is dominated by the ¢y-periodic first har-
monic. The signs of the single-electron persistent
currents for two disorder configurations that differ by
displacing a few impurities by a distance of order of the
Fermi wavelength are essentially uncorrelated.

The results are relevant to persistent-current experi-
ments on single mesoscopic metal rings. Within our
model the first ¢y-periodic harmonic of the persistent
current in a single ring is solely due to the single-electron
effect. Both the collective and the single-electron effect
contribute to the second harmonic of the current. Thus,
whereas the first harmonic is a pure fluctuation effect, the
second harmonic contains a component that survives the
disorder average. The discrepancies between the theoret-
ical predictions of the model presented in this paper and
the experimental results of the single-ring experiment by
Chandrasekhar et al. emphasize the need for further ex-
perimental and theoretical work. It would be important
to establish whether the sign of the experimental current
is indeed sensitive to minute changes in the impurity
configuration. Theoretically the influence of electron-
electron interactions on the variance of the current needs
to be understood.
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