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Spin folding in the two-dimensional Heisenberg kagome antiferromagnet
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Spin-folding modes in the two-dimensional Heisenberg kagome antiferromagnet favor coplanar spin
con6gurations with three-spin tensor order and non-Abelian homotopy. With weak xy anisotropy, bind-
ing of the associated disclinations yields a coplanar state whose spin configuration depends on the order
of pairing, The resulting metastable states exhibits a broad distribution of order parameters. Supporting
numerical studies are presented and the related system SrCr, „Ga4+„0» is discussed.

The spin- —,
' magnetoplumbite SrCr8 „Ga4+„O]9

(SCGO) is an enigmatic spin glass: the nonlinear suscep-
tibility' (g3) indicates Ts =3.5 K -6cw/100, where T
and ec~ are the glass transition and Curie-Weiss
[6cw= 4 JS(S+ 1)] temperatures, respectively, and the
low-temperature specific heat' is quadratic (c, —T ); by
contrast, the conventional spin glass has Tg-ecw and
c, —T. The magnetic properties of SCGO are attributed
to planes of antiferromagnetically coupled Cr + atoms on
a kagome lattice; each chromium is associated with an
isotropic S=—,

' moment. The two-dimensional (2D) na-
ture of the frozen spin correlations has been confirmed by
quasielastic neutron studies. " Inelastic measurements in-
dicate strong moment fluctuations at T & T and a
frequency-independent cross section at low-energy scales
(co(coo=c/g) consistent with a Goldstone mode in the
spin channel. Conventional spin glass behavior is associ-
ated with the formation of low-energy domain walls in a
randomly frustrated magnet; for the Heisenberg case, re-
normalization treatments yield a lower critical dimen-
sion dI ~4. Motivated by the SCGO experiments, we
propose a disorder-free mechanism for quasi-2D glassy
behavior; it relies on the unique homotopy associated
with spin nematic order that admits non-Abelian point
disclinations.

The simplest magnetic model of SCGO is the 2D
nearest-neighbor Heisenberg antiferromagnet (AFM)
H=Jg(;~)S; S on a kagome lattice (Fig. 1); classically,
the constraint on each plaquette g(;~z~S;=0 fails to
define a unique ground state. ' Like its triangular coun-
terpart, the kagome magnet admits a coplanar ground-
ground-state spin configuration; however, its unique
geometry also permits continuous spin folding zero-
energy modes that preserve the 120' spin orientation
through the introduction of "spin facets. " "Open" spin
folds [Fig. 1(a)] traversing the entire lattice are present in
a state of uniform spin chirality; a configuration of stag-
gered chirality has "closed" folds [Fig. 1(b)], where the
spins within the facet edges can rotate about the common
axis of their perimeter spins with no energy cost.

In a degenerate manifold, fluctuations select the states
with maximal Aexibility;" ' here it is the coplanar
configurations that minimize the associated free energy.
Physically, a fold through an angle P (PWm. ) "stiffens" all
intersecting ones increasing their frequencies; the kagome
magnet thus acquires a geometric spin rigidity similar to
that of a paper Origami structure. In a coplanar
configuration (P=m), the energy cost of infinite ~-folds is
negligible, but their creation involves overcoming exten-
sive energy barriers. The cooling of the kagome magnet
thus yields a 1ocally coplanar configuration with a
discrete set of 120' spin orientations. In this paper we
propose that in any such process, this "typical" state is
selected in an essentially unbiased way; at lower tempera-

(b)

FIG. 1. (a) Open and (b) closed folds in the states of uniform
and staggered spin chirality, respectively. Spin orientations in
the diagram denote orientations in the internal spin space. A
weak xy anisotropy aligns the z axis of the internal spin space
with the physical z axis.
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tures global annealing is inhibited by the necessary
creation of infinite ~-folds.

In the "typical" coplanar configuration there are
nematic spin correlations with planar threefold symme-

try; the corresponding tensor order parameters, de-
scribed by three unit vectors ei (A. =1,3), where hei =0,
are

(S (x)S~(y)Sr(z)) =t(x,y, z)f &~e, eze3r
(1)

(S (x)S~(y)) —
—,'& ~(S(x) S(y))

=q(x —y)(R' 6'~ —
—,'6 ~),

where 6' is the director normal to the spin plane and

f &r =!e &~! is the fully symmetric tensor. The order pa-
rameters in (1) have discrete hexagonal C&h symmetry;
the homotopy associated with their allowed point defects,
II,(R)=D3h, is non Abe-lian, where D3h is the double-
group' generated by the elements f g& I

= tiei, .o'
I . These

"point disclinations" correspond to ~ rotations of &

about the e&, and the 180' line singularities linking two
identical point defects are naturally identified with the
~-folds discussed above. Unlike their conventional U(1)
counterparts, non-Abelian defects affect the local spin
state; their presence leads to a large ground-state degen-
eracy and the possibility of glassy behavior.

Within Gaussian spin-wave theory, we have calculated
the energy barrier associated with the creation of a spin
fold. The addition of a spin facet at an angle P to the sur-
rounding spin plane modifies the magnon pairing field
h~e '~h within the facet; m-folds are thus invisible to
spin waves and all coplanar configurations exhibit an
identical Aat band of Gaussian zero modes. P-fold angles
(P (m) constitute a degenerate perturbation within this
manifold; for small P all intersecting folds have an in-
creased frequency 5co„—JS!5$!. The resulting energy
barrier appears in the simple illustrative example of ap-
plied uniform curvature; for the planar configuration
with uniform spin chirality a uniform phase gradient
P(x) =xP is introduced to the magnon pairing field along
the a crystal axis. By projecting the Hamiltonian into the
low-energy subspace of original Gaussian zero modes, the
leading-order perturbation in the zero-point energy of
this band is

V(P) =re! sing!, (2)

where g=0. 14JS and L is the number of spins per fold
line. At finite temperatures,

V(P) —TL in[2 sinh! Pi) sing! ] (3)

indicating an analogous entropic selection of coplanarity,
recently confirmed by numerical studies (2) and (3) are
valid for sin P) sin $0, where $0 —V'T/J and

—I/S'~ are the classical and quantum mechanical
root-mean-squared Iluctuations in P, respectively. The
height of the fluctuation-selected potential barrier (per
length of fold) is Vo-gJS and Vo —T In(r)JS/T) in the
quantum (S «JS /T) and classical (S))JS /T) re-
gimes, respectively.

Each configuration within this coplanar manifold can
be identified with a ground state of the three-state Potts
model on the same lattice; there are 8 states where
8 =1.1833. . . and 1V is the number of sites. ' Loops of

alternating spin orientations (ahab. . .) are identified in
all configurations; numerical studies reveal a power-
law probability distribution, p (L)-L ~ with
$-1.34(+0.02), for the loop length passing through any
given site in a typical coplanar state. ' ' Since the associ-
ated tunneling barrier has height V-L, the distribution
of barrier heights in this manifold is also self-similar
[P(V)—V ~]. Each triangular plaquette is character-
ized by its chirality r=(1/3 sin120')! g. kS XSk!, where
cross products are evaluated in a clockwise-sense around
plaquettes; ~, =~~ —~z, is the chirality difference on op-
posite triangular sublattices, the chiral analogue of the
staggered magnetization. The generalized Edwards-
Anderson order parameter, y,h=(1/N(g, rs), measures
the overlap of a given state with one of uniform staggered
spin chirality. This intensive quantity has an exponential
probability distribution' with a finite variance,

P(y,h)-e '" ' with y0-3. 29.+ h~&0

The development of a smooth, locally coplanar
configuration in the Heisenberg kagome spin system
demands the absence of topological defects that are stable
in any noncollinear 2D Heisenberg antiferromagnet. ' '
Here spin-wave interactions drive the spin stiffness to
zero at long length scales; the resulting finite spin corre-
lation length implies that a small density of these defects
will always exist in the low-temperature phase. Thus the
development of the coplanar spin state is a crossover
from a high-temperature defect-rich regime to a low-
temperature phase with an exponentially small density of
defects. ' ' In the real system infinitesmal xy anisotropy
is strongly relevant; ' it provides a new length scale lo
beyond which out-of-plane fluctuations develop a gap and
further renormalization of the stiffness is suppressed. Ex-
ponentially small amounts of xy anisotropy are thus
sufficient to convert the crossover to a true topological
phase transition; we will thus include such a term in our
discussion.

The simplest long-wavelength action with an
SU(2) X C3h symmetry

S= Jd x TrIAVgtVg+eo3gto3g},
12T

A, t,
= 1 +f b.e. 'tr

where y is the spin-wave stiffness; the order parameter
g(x) =g 1, an external product of an SU(2) and a unit
3 X 3 matrix, is an S=

—,
' representation of the rotation

group. A small xy anisotropy e about an axis perpendic-
ular to the triad e& has been introduced; e could originate
from site or bond anisotropy in the original model, or
from an applied external field. The discrete non-Abelian
symmetry appears as a right-invariance of the order pa-
rameter 9—+ 9' &. For @=0, there is a rapid crossover j9, 18

at T*—y from a defect-dominated regime (p —1) to one
of exponentially small defect density pD-e ' '; for
T & T*, spin waves determine the spin correlation
length g-ae i'~, where a is the lattice spacing.

A finite anisotropy (e&0) yields a length scale
lo-a/&e (lorna for e) 1); for distances l ) lo the sys-
tem is effectively an xy magnet. If lo (g, this anisotropy
results in the linear confinement of the 180 point defects;
they bind in pairs to generate 120 point disclinations
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FIG. 2. (a) Formation of a 120' defect from a combination of
m disclinations that nominally cancel one another, illustrating
the dependence of configuration on the order in which disclina-
tion pairs are separated to infinity. (b) Phase diagram for the
anisotropic kagome antiferromagnet; numerical data points for
the Kosterlitz-Thouless temperature TKz as a function of an-
isotropy (e) are superimposed.

thus avoiding anisotropic energy costs (g, g& =h, 2b for
i(m 13)o3aWb, where h, zo =e '). Furthermore, if lo (g(T*),

i.e., e)eo=e «1, 120' defects will bind at a
Kosterlitz-Thouless (KT) temperature T~r —T". Figure
2 illustrates the three important regimes of this model: (i)
T) T (g(lo) all defects are free; (ii) T )T) Tier
(g) lb) free 120' defects (bound pairs of 180 disclina-
tions); and (iii) T (TKr (g~ ~ ) all defects are bound. In
the limit E'~6'p T TKy' T is always a crossover due
to the possible exchange of 180' disclinations by two 120'
defects. For @~0 the transition temperature scales
weakly with anisotropy IT-I/ln(1/e)], and thus the
phase boundary has a sharp downward turn to the origin
in the pure Heisenberg limit (e=O).

The realization of Fig. 2 requires the entropic selection
of the coplanar manifold; this must occur at a tempera-
ture where its free energy is lower than that of its rival
ordered states. Higher-order fluctuations tend to break
this coplanar degeneracy, favoring an ordered
configuration with an energy hE ——J —(per site) rela
tive to that of the typical state. The latter has an entro-

py ln8' at T= TK~-my/18 it is selected if

Tzr ) TO=DE/InW . (5)

For T & To, the typical state is thermodynamically unsta-
ble to the magnet; however, infinite ~-folds inhibit global
annealing, thus ensuring the kinetic stability of the typi-
cal configuration. Higher-order quantum fluctuations
generate a chirality coupling E = —ag (z v) ( ~z v v ) & g,„

between neighboring plaquettes; the energy per site thus
acquires an exponential distribution similar to that of the
chiral susceptibility P(E)-P (

—ay, „). Since y scales
with the intervalley energy fiuctuations (y3- XE—), the
freezing of the typical state results in a negative diver-
gence of the nonlinear susceptibility.

Several features of the proposed binding transition dis-
tinguish it from the conventional Kosterlitz-Thouless
(KT) case. First, it is a true second-order phase transi-
tion; the three-state Potts order breaks the lattice symme-
try, resulting in a specific heat divergence. Next, the gra-
dient field associated with a 120' defect is o, = —,

' times that
of a 360' vortex; the attractive energy between two vor-
tices, and thus TKz, is reduced by a factor q =

—,'. The
standard KT estimate then yields TK& =q m y /2
=my/18. An upper limit for y in the extreme xy limit of
the kagome magnet is y =JS /2; the resulting
TKz =JS ~/36= Tcw/48 demonstrates that an essential
consequence of 120' defect binding is the large reduction
in the transition temperature. Finally, we also note that
the ground-state manifold has a "memory" of past defect
motion. As in the KT problem, transitions between
different "ground states" occur through the separation to
infinity of two bound defects; there, the final state does
not depend on the details of the process, and
configurations are characterized by two winding num-
bers. This simple classification scheme is not possible
for non-Abelian disclinations where the resulting
configurations are determined by the detailed braiding of
the textures formed by the defect paths (see Fig. 2).

To test these ideas, we have performed Monte Carlo
simulations on the classical Heisenberg kagome antifer-
romagnet with a weak bond xy anisotropy 5J, = —eJ
which is easy to implement within a heat bath algorithm.
The anisotropy was varied in the range 0.01 & e& 1.0, to
avoid the first-order phase transition into a ferromagnet
at @=1.5. Arrays of 108, 432, and 864 spins were sequen-
tially cooled from a random configuration, with
1.25X10 spin flips per site per temperature. Thermal
averages were also performed over short periods of
1.25X10 updates; they provided 10 approximately in-
dependent samples where the distribution of thermo-
dynamic variables was examined. The KT transition was
identified from a jump in the spin-wave stiffness (Fig. 3)
which vanishes for e=O; numerical values of TK~(e) are
indicated in Fig. 2. For @&0,C„displays a divergence at
the transition (Fig. 3). As in the J, —Jz Heisenberg prob-
lem, ' ' the lattice-symmetry breaking crossover is
transformed to a true phase transition by xy anisotropy
(@&0); extrapolation of TKr to E=O yields a crossover
temperature T*(0)—0.01 J.

The antisymmetric part of the nematic spin susceptibil-
ity y, I, remains finite at low temperatures indicating the
absence of V'3X&3 ordering. By contrast, y,„jumps
rapidly at a temperature T ~ T, suggesting the develop-
ment of glassy behavior. At TK~, only the long folds
drop out of equilibrium, and at lower temperature, single
star transitions still persist. In our simulations, single
star flips freeze out at a temperature —TK~/2, where a
cusp in yd, is observed. Longer simulations are required
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FIG. 3. (top) Spin stiffness about z axis for 108, 432, and 864
spins at @=0.002 and 0.02 (inset: C for a=0.02). {bottom)
Divergence in g, q for @=0.02, 4.32, and 864 spins (inset: distri-
bution of y, h for @=0.02 and T/J=0. 010 for 864 spins).

to examine dynamical aspects associated with the freez-
ing of longer folds. Figure 3 displays the distribution of
y,h at low temperatures where single star Hips are still
dynamically equilibrated, displaying a distribution simi-
lar to the typical Potts state on the same lattice.

These results clearly indicate that the low-temperature
phase of the anisotropic kagome system is not a conven-
tional magnet. A careful study of the relaxation time
scales must be performed to probe the glassy nature of

the low-temperature phase. In particular, details of the
noise spectrum would provide information about the na-
ture of the barriers, distinguishing between droplet and
hierarchical glassiness. Experimentally, many of the
SCGO measurements can be reconciled within such a
quasi-two-dimensional picture. Within any given copla-
nar state, the kagome spin system has a frozen moment,
and thus a Goldstone mode in the spin channel, con-
sistent with a T specific heat and a Bat inelastic neutron
scattering cross section. Future susceptibility and neu-
tron measurements on both single crystals and epitaxial
films of SCGO will provide further evidence of its 2D na-
ture. A definite test of our theory is the field dependence
of the glass transition temperature ( Ts): In a convention-
al spin glass an external field suppresses T; by contrast,
the topological freezing picture predicts an enhancement
of the glass temperature as the anisotropy is increased
with applied field.

In conclusion, we have presented a model for glassy
behavior in the absence of extrinsic disorder; here the
glass transition is associated with the binding of non-
Abelian textures. Provisional numerical studies support
this picture, and specific application to SCGO may recon-
cile the absence of several conventional spin glass
features with the observed divergence of the nonlinear
susceptibility.
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