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Nonlinear response of type-II superconductors in the mixed state in slab geometry
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The nonlinear response of a type-II superconductor of finite thickness arising from vortex motion is
investigated. The results of the phenomenological theory extend the complex rf magnetic permeability
and conductivity to a specific regime of nonlinear response. Explicit expressions for the complex
penetration depths, amplitudes, fields, and densities for the second-harmonic response with various
boundary conditions are presented.

I. INTRODUCTION

Moving vortices are well known to influence the elec-
trodynamic response functions describing the behavior of
type-II superconductors. ' These complex-valued
response functions include the magnetic permeability,
surface impedance, and self- and mutual inductance. '

The vortex motion generally influences both the real and
imaginary parts of the response function. In this work a
generalization of the complex rf magnetic permeability
and conductivity are considered for a specific regime of
nonlinear response. In the limit of linear response, the
usual permeability is recovered, whose real part charac-
terizes the superconductor screening and whose imagi-
nary, part characterizes the dissipation in the supercon-
ductor.

We rely on the description of the coupled nonlinear
electrodynamics of type-II superconductors in the mixed
state presented in Ref. 8. In the framework of this
theory, the vortex lattice is effectively treated as an invis-
cid fiuid. (In the vortex continuity equation the vortex
areal density is the analog of a fluid mass density per unit
volume. ) In this context, the wave-vector-dependent tilt
and compressional moduli of the flux-line lattice are ap-
proximately equal, while the shear modulus is assumed to
be negligible. Such an approximation breaks down for
large enough wave numbers. The key elements of the
theory of Ref. 8 required here are first recalled and then
applied to finite-thickness superconductor geometry. We
concentrate on that of a superconducting slab of thick-
ness d with various boundary conditions.

The semi-infinite geometry treated in Ref. 8 is probably
best suited to comparison with surface impedance experi-
ments. In particular, the results of Ref. 8 may apply to
experiments similar to those described in Ref. 10 when
vortices have entered the sample. This description would
hold in an intermediate-field region, below a high-field re-
gion where hysteresis losses dominate.

By extending the theory to slab geometry it may be
easier to relate the results to those of vibrating reed and
magnetic permeability experiments. As before, key
features of our theory of nonlinear response include the
appearance of higher-order harmonics in the time depen-
dence of the electrodynamic fields and of additional com-
plex penetration depths in the spatial dependence of these
fields. We recall that the response functions are given in
terms of complex penetration depths.

Our theory, which has been shown to be useful for

penetration problems (e.g., Refs. 14 and 15), has recently
been applied to transmission problems in linear
response. ' ' In this context the complex response func-
tions include the rf conductivity and transmission and
reflection coefficients.

The results of our theory of nonlinear response should
be valid in a certain range of microwave field. The driv-
ing field should be large enough that a higher harmonic is
detectable, yet small enough that the critical state is
avoided. Presumably then the driving current density
should be well below the critical current density J, .

In this paper we concentrate on results for the second
harmonic, obtained from a perturbation analysis, in slab
geometry. The reasons for this are twofold. Nonlineari-
ties occur in the vortex equation of motion, including the
viscous drag coefficient and pinning potential (making the
dynamic mobility nonlinear). At higher values of the
fields, such nonlinearities can be expected to significantly
alter the results. In addition, the amplitudes of the
higher-order harmonics are expected to decrease rapidly
with both the driving and static field strengths. Because
of this dependence, the detection of high-order harmonics
can be expected to be dificult.

In our theory the governing equations include
Maxwell's equations, electric and magnetic constitutive
relations, the London equation in the presence of vor-
tices, the two-fluid equation for the total current density,
and a vortex equation of motion. ' The latter equa-
tion takes the form v=p„f where p, , is the complex-
valued dynamic vortex mobility ' and f is the
Lorentz force per unit length. We recall that the use of
the dynamic mobility allows for pinning, flux flow, and
therm'al activation of vortices to be included all at
once. ' ' As an example, in the presence of a viscous
drag and a linear pinning restoring force, the expression
far the dynamic mobility is ' p, (co,8, T)
=(1+irt /sico) lg, where g is the viscous drag coefficient
and v the pinning force constant.

In Ref. 12 it was shown that not only do the governing
equations in our model for linear response close, but that
they may be combined into a single governing vector par-
tial differential equation for one of the coupled electro-
dynamic fields. The closure feature is connected with the
self-consistent inclusion of the coupling of the vortex dis-
placement and current density. ' In Ref. 8 a similar
result was reached for nonlinear response. There, retain-
ing bilinear field nonlinearity in the vortex continuity
equation, it was possible to again combine the governing
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II. SYMMETRIC TWO-SIDED NONZERO
BOUNDARY CONDITION

We consider the superconducting slab to occupy the
region ~x ~

d /2, with vortices along the z direction,
Bp=z, and B=B(x,t)z. Then Eq. (1) reduces to

B —A, D„'B—B
= —(y~, /i. ,)a„I[B—x'a.„B+D„-,'x'B]a„Bj, (2)

where a =—a/ax. The solution of this equation can be
developed in infinite-order perturbation theory, but we
truncate the corresponding expansion at the second har-
monic, as discussed above. With a driving field of equal
magnitude applied at both surfaces,

Bi (+d l2, t )=bpexp( —i cot ),
we take

B(x,t) =Bp+B,(x, t)+B2(x, t),
where Bo=constant,

( ) b /~t cos11(x /A )B( x t = oe '7

cosh(d /2X)

(3)

and the complex penetration depth in linear response
1S5 7, 12

[A, +(i/2)5 ]'
(1 2i i5)'~— ,

difFerential equations. The resulting vector partial
differential equation for the total magnetic induction
B(x,t), given below, has only bilinear nonlinearity. In
writing this equation we neglect the field dependence of
the London penetration depth A, and normal-Quid con-
ductivity o.„f=1/p„f. The latter quantity provides the
connection between the total electric field and normal
current density: J„=cr„&E. We further restrict attention
to an isotropic superconductor, although the linear rf
response of an anisotropic superconductor has recently
been treated with our theory. ' The single governing
equation for 8 in nonlinear response is then

A, V 8 A, D„&'—8 B=—(gys, /pp)

XVX(IB A, V 8+D„—t'A, Bj

X[(VXB)XB]), (1)

where Bp is the local vortex direction, D„t= 1/ppo„t is
the normal-fiuid difFusion constant, and Pp is the flux
quantum. The bilinear terms on the right-hand side of
Eq. (1) are due to the motion of the vortices, the right-
most factors coming from the Lorentz force.

Due to the inclusion of a normal current-density con-
tribution, our results hold continuously through the tran-
sition temperature. When T, is reached, the right-hand
side of Eq. (1) is no longer present, the London penetra-
tion depth diverges, and integrating the left-hand side
once with respect to time yields the normal-state difFusion
equation. After solving Eq. (1) subject to various bound-
ary conditions we discuss a special case where we expect
the nonlinear effect considered here to be most pro-
nounced.

The solution is sought in the form

B2(x, t) =B2pexp( 2i pit—)Bz(x),

where

cosh(2x /X )B2x=
cosh(d /X)

cosh(x /X2)

cosh(d /2X2)

satisfies Bz(x =+d/2) =0. In (8) the first term is a par-
ticular solution of (6) and the second term is a solution of
the homogeneous part of this equation. We then find

A, +(i l4)5„,
1 —4iA, 6

for the square of the second complex penetration depth
and

bp cosh(d/X) X 28 ( 1 21 A, 5 t )'
B2o =—

gBp cosh (d/2X) [3A. +(i/2)8„, 4iA5„t—],
(10)

for the second-harmonic amplitude. The ratio of cosh's
in Eq. (10) shows the effect of finite superconductor thick-
ness.

Now, via Eq. (3), B is known, and the current density
follows from Ampere's law, J= (y lpp)aB /a—x, where

bp;, sinh(x/X)J(x, t = — e
ppX cosh(d /2X, )

B20 2l &te
Po

2 sinh(2x/X)
X cosh(d /X)

sinh(x /A, 2)
(11)

X2 cosh(d/2X2)

By use of Faraday's law for this geometry, we obtain the
electric field,

( )
. Xb, ~g slilll(x /A, )

cosh(d /2X)

A, sinh(2x /k) sinh(x/A, ~)
X —

A2
cosh(d/X, ) cosh(d/2X2)

(12)

Equations (11) and (12) show that the relation'
o. =i/poco' for the rf complex conductivity no longer
holds in nonlinear response.

The average rf magnetic induction in the superconduc-
tor is

d/2
(b ) =—I b(x, t)dx, b =B —Bp .—d/2

We find

(13)

In Eq. (5), 5„,=2Bpg&P„/PpP1 is the square of the com-
plex effective skin depth associated with vortex motion
and creep and 5„t=2p„t/ppco is the square of the normal-
fIuid skin depth. ' The second harmonic is found
from the equation

x'a.„B,—x'D„-,'B,—B,+(~/2)8„',a„.B,
(y~—„/i, )a. [[B,—x'a, B,+D„,'x'-B, ]a„B,j .

(6)
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(b ) =boe ' '(2X/d )tanh(d/2X}+8@pe

2x2
X —tanh(d /X) — tanh(d /2X ), (14)

d 2 7

generalizing the result for the linear response magnetic
permeability P. Alternatively, Eqs. (11) and (12) can be

I

used to compute E J losses in the superconductor, there-
by generalizing the calculation of p"=Im(P, ) to a non-
linear regime.

The vortex velocity field can be found from the relation
v=P~„JXBo. Upon integration, the vortex displace-
rnent field is

i vc o;, sinh(x/X, )5 2

u x,t= —— e
X cosh(d /2X)

Bzo z;„, 2 sinh(2x/A, )I Alt

X cosh(d /X)

sinh(x /Xz)

X2 cosh(d/2X2)
(15)

corresponding vortex magnetic field B„(x,t) and areal density n (x, t) can be found from the relation
B„=ngo=B—

A, i}„8+D„t'A,B. The result is

$ 2

8 (,t )=8 + b
i vc —icgt cosll(x /X) +8 —2imt

( 1 4g2X
—2 4 ~ g25 —2) cosll(2x /k)

X cosh(d /2X, ) cosh(d /X)
; 5„, cosh(x /A, 2)

4 Xz cosh(d/2X2)

(16)

The vortex motion induced electric field E, =8, Xv is
givenby E, =v B,.

8, (x) =bpsinh(x IX) /sinh(d /X ) . (17)

Seeking a solution as before in the form of Eqs. (3) and (7)
gives for the spatial dependence of the second harmonic

cosh(2x /1 ) cosh(x /kz)
82(x) =

cosh(2d /X, ) cosh(2d /X)

III. ONE-SIDED NONZERO BOUNDARY CONDITION

We now turn to the situation where the superconduct-
ing slab occupies the region 0«x «d and the applied rf
field 8,(x, t) =8, (x)exp(

iieet

) s—atisfies 8, (x =0)=0
and B,(x =d) =ho. Then we have for the linear response
term

I

trodynamic fields can be computed and then various de-
rived quantities can be found.

IV. ASYMMETRIC TWO-SIDED NONZERO
BOUNDARY CONDITION

Lastly, we consider a more general boundary condition
for the driving field,

Bi(x =0)=ybp, Bi(x =d)=(1 —y)bp,

where 0 & y «1. This extends the previous results to less
symmetric situations. Here we Gnd for
8, (x, t) =exp( i rot )B—, (x)

8, (x ) =b, cosh( x /X ) +b, sinh(x /X, ), (20)

where the coefticients are given in terms of y, bp, and d as

sinh(x /Xz)+
sinh(d /X2)

cosh(d /X2) —1
cosh(2d /X)

(18)

where now in the amplitude B2p the ratio of cosh's in Eq.
(10) is replaced by the ratio cosh (2d/X)/sinh (d /X, ). It
is seen that Eq. (18) satisfies 82(x =0)=82(x =d)=0.
The full solution for the magnetic induction is provided
by Eqs. (3), (7), (17), and (18). As before, the other elec-

b, =ybp, b, =ho[1 —y(1+cosh(d/X) }]/sinh(d/X) .

The solution for the second harmonic, Eq. (7), is

8z (x ) = ( b, +b, )cosh( 2x /A, ) +2b, b, sinh( 2x /X )

—(b, +b, )cosh(x/X2)+ A2sinh(x/X2),

where

(21)

(22)

3 z
= —[2b, b, sinh(2d /X)+(b, +b, ) [cosh(2d /X) —cosh(d/X2)]] /sinh(d /Xz) . (23)

The amplitude Bzo differs from Eq. (10) in the replace-
ment of the ratio of cosh's by 2. With this convention for
B2p it can be checked, for instance, that the results for
the one-sided nonzero boundary condition are recovered
when y =0. Given the solution, Eqs. (3), (7), and
(20)—(23), the other fields and densities can be found from
various electrodynamic relations.

V. FLUX-FLOW LIMIT

In order to make some of the above results more trans-
parent, we now consider a special case of the vortex dy-
namics, the flux-flow dominated limit. We consider tern-
peratures low enough that the response of the normal

fluid and the effect of flux creep can be ignored but the
system is driven into the flux-flow regime due to a
sufficiently high frequency. (Numerical estimates suited
to this regime are given below. ) Flux-flow effects can
dominate pinning effects when the angular frequency
co )Kp /g. In this arena the vortex displacements wil l be
reduced and we can expect the vortex convection non-
linearity effects to dominate hysteretic effects.

We present the corresponding reductions of the results
for the symmetric two-sided boundary condition for the
slab geometry. In the absence of flux creep, the complex
effective skin depth associated with the vortex motion is
5„=[5f +(i/2)kc ] ', where 5f =28pgp/portico is the
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square of the Aux-How skin depth and
A, c = (Bo$o/pic~ )

' is the Campbell (or pinning)
penetration depth. Accordingly, in the Aux-Aow limit,
5„~5f, the complex penetration depths given by Eqs. (5)
and (9) become

(24)

In this limit the amplitude of the second harmonic, Eq.
(10), becomes

bo cosh(d/1, )

g&0 cosh (d/2X) A,

[1+(i/2)5f/A, ] [3+(i/2)5f IA],
Aside from the geometric (cosh) factor, this amplitude
can be appreciable either when 5f -&2A, , in which case

has equal real and imaginary parts, or when 5f ))
Suppose we consider parameters suitable for the high-

T, superconductor Y1:2:3 at a temperature of 10 K.'
Here we have a pinning force constant in the range
10 —10 N/m and a drag coefficient of approximately
10 Ns/m . We then expect the Aux-How regime to
occur for frequencies greater than 10—100 GHz, con-
sistent with recent experiments. ' An increase of the
static magnetic field has competing influences in observ-
ing the effect of convective nonlinearity. A higher field
(increase in 5f ) will cause flux-Sow sooner, but decrease
the intervortex spacing. Fields of the order of 0.1 —1 T
may be suitable in practice.

VI. SUMMARY

In this paper we considered the nonlinear response of a
type-II superconductor of finite thickness in the mixed
state. This geometry introduces a new length d in the
problem. Specific results for complex penetration depths,
amplitudes, fields, and densities were given for the second
harmonic response. The results are expected to be valid
when d is sufficiently large. In the presence of a parallel
static field, as considered in this paper, d should be larger
than several intervortex spacings, making our continuum
description with density n valid. In the limit of very
large thickness, previous results for both linear and non-

linear response are recovered.
It is possible that the techniques presented here can be

modified to provide results relevant to microwave har-
monic mixing' as applied to type-II superconductors.
With this technique, radiation is applied at both the fun-
damental and second-harmonic frequency. This experi-
mental approach has now been applied to high-
temperature superconductors and may give information
on the superconducting order parameter.

We considered the London limit of Abrikosov vortices.
A possible extension to include variation of the magni-
tude f of the order parameter in our theory would be to
replace the London equation with vortex term with the
Ginzburg-Landau (GL) equations. This extension would
have f appearing in the supercurrent source equation'
and the first GL equation. Not only would it probably be
more difficult to obtain analytical solutions in this aug-
mented theory but the results would be expected to be
rigorous only near the transition temperature. Another
extension of the theory would be to include the dynamics
of Josephson vortices. Presumably in such a treatment
the coefficients in the equation of motion would need to
be taken as those appropriate to Josephson vortices and
the intrinsic penetration depth would need to be replaced
with a combination including the Josephson penetration
depth.

The theory of nonlinear response continues to include
the nonlocality of vortex interaction, wherein the elastic
response of the vortex lattice depends on the length scale
of the strain. At the transition temperature, quantities
such as the effective complex skin depth 5„, associated
with vortex motion and Aux creep and the second-
harmonic amplitude 820 vanish, leading to results ap-
propriate to the normal state. At T„ the governing vec-
tor Eq. (1) itself becomes the normal-state diffusion equa-
tion. Our results give the possibility of further analyzing
measurements of the complex permeability or conductivi-
ty in a restricted regime of nonlinear vortex response.
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