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Charge correlation factor of the random binary chain determined by Monte Carlo simulation
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We present stationary-state Monte Carlo experiments evaluating the dc conductivity of the one-
dimensional lattice gas with binary energetic disorder. The resulting correlation factor is compared to

previous analytic calculations.

I. INTRODUCTION

Hopping transport in one-dimensional (1D) random
systems has been a subject of interest for many years. In
particular, the single-particle random walk was intensive-
ly studied (see Refs. 1 and 2 and references cited therein).
In the case of hopping with symmetric jump rates
W, =W, between sites i and j, Miller and Abrahams®
demonstrated the equivalence between the random-walk
problem (in any space dimension) and that of a resistor
network, with the same geometry. The conductances in-
volved, G, are proportional to W;. For nearest-
neighbor 1D hopping, this mapping leads to the well-
known result that the dc conductivity o is given, up to a
constant factor, by the harmonic mean value of the jump
rates [or the inverse of their (—1) moment]!
| -1
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o=m_l=

provided that the right-hand side of Eq. (1.1) exists and
has a finite value. Here P (W) is the distribution function
of the jump rates.

The case of many-particle hopping is a much more in-
tricate problem, due to the necessity of taking interac-
tions into account (see Ref. 4 and references cited
therein). Even in the most simplified case of only hard-
core repulsion the problem is not at all trivial. Except for
lattices with equivalent sites for which o is given exactly
by the (one-particle) mean-field approximation oy, the
site-blocking interaction gives rise to correlations which
make o lower than o> The effect is usually described
with the aid of the charge correlation factor, defined as*

g

f= . (1.2)
OMF

Richards® presented a model with inequivalent sites, the
only one known for which f can be calculated exactly.
This is the 1D system with two alternating types of sites
A and B, having different energies € , and €.

Disorder makes correlated hopping even more difficult
to deal with. The problem was considered by Tahir-
Kheli’ in connection with tracer diffusion. Chase and
Thouless® pointed out the equivalence between the
many-particle problem in real space (N sites) and the ran-
dom walk in configuration space (2% sites) and thus, by
analogy with the Miller-Abrahams treatment, they de-
vised a mapping on a resistor network. They discussed
the increase of the activation energy due to hard-core in-
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teraction, both for ordered and disordered chains.

In an earlier paper’ (Ref. 9 will be referred to as I in
what follows), Pitis and Gartner reported a stationary-
state calculation of o for random 1D systems, with nu-
merical illustration for the binary chain. In a subsequent
paper’ (Ref. 5 will be further referred to as II), the same
authors showed that the former result was the 1D version
of a new mapping of the correlated problem onto a resis-
tance network. As a consequence, the approximate
correlation factor of I was shown to be an upper bound
for the exact value, but up to now no possibility was
found to estimate the error analytically.

An obvious way to get a very close approximation to
the true value of the correlation factor is to measure it by
computer experiments. The Monte Carlo method was
used both for the one-particle problem on disordered lat-
tices (see, e.g., Ref. 10), and the site-blocking correlated
one in ordered systems (a review is found in Ref. 4).
There are few numerical experiments for the combined
correlated-disordered problem. Murch!! examined the
random cubic binary lattice with fixed concentration, so
that the number of particles equal that of traps (lower-
energy sites). The only Monte Carlo investigation of
correlation effects in the disordered binary chain was
presented by Pechenik, Susman, Whitmore, and Ratner.!?
Their model included hard-core but also nearest-neighbor
interaction. The coupling constant of the latter, €, was
equal to (e —e 4)/2, i.e., half the site-energy difference.
This constraint prevents the recovering of the hard-core-
only case from the simulation of Ref. 12; disorder would
also disappear when taking the e —0 limit.

This paper presents results for the charge correlation
factor f, Eq. (1.2), measured by Monte Carlo experi-
ments. The model is the 1D site-disordered binary lat-
tice. Because of the considerably long computer time
needed to obtain a reliable value for the mean value of f,
we have restricted our investigation to a single tempera-
ture value T =T%*, for which we made the same choice as
in I, namely, so that

€p €4

exp T 10 . (1.3)

In Sec. II the model is presented and the theoretical
background of the simulations is outlined. The simula-
tion method is described in Sec. III. The Monte Carlo
time needed to reach the stationary state is investigated.
Stationary-state averages of occupation numbers and of
nearest-neighbor pairs of occupation numbers are mea-
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sured and discussed. Experimental values of f are
presented. Section IV contains a short summary.

II. THE MODEL

We consider a chain of N equidistant sites with two
possible values for the site energy, € , and €5, randomly
distributed, in equal proportion. Thus, the numbers of
sites of each type are given by

N
N, =Np=-—.

4 BT 5
There are N, particles in the system so that concentra-

tion is given by

(2.1)

P

=— 2.2

c=y (2.2)

No interaction is considered except the hard-core

repulsion. The occupation number of site i, denoted by

n;, takes the values O or 1. The equilibrium average of n;
is given by the Fermi function (8=1/kT):

fi={n;)o={1+exp[Ble;,—p)]} ',

where u is the chemical potential. Let z denote the fuga-
city,

(2.3)

z=exp(Bu) (2.4)
and let

E, p=exp(Be4p) . (2.5)
The fugacity is determined from

c=3(f4tfp) (2.6
as’

T 4

(2c—1NE +Ep) |
4
172
+c(1—c)E (Ep ] . (2.7)
The Fermi functions are now given by
z
= 2.8
fan=3 +E,p @.8)

Particles move on the chain by nearest-neighbor (NN)
hops. The jump rates satisfy detailed balance

Wi it1fi(l=fix )= Wiy i (1= 11,

which allows for the following definition of symmetrized
jump rates:

Wiit1=W, ialfill—firq) .

The end jump rates Wy ., and W ; are also defined if
an infinite chain is constructed. This is achieved by
periodically repeating the above system and imposing
cyclic properties to all site-dependent quantities:

(2.9

(2.10)
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€;>n;, W, ;1. Except for Eq. (2.9) no restriction is im-
posed on the jump rates, which leaves some freedom in
choosing their energy dependence. We make the same
choice as in I:

B(Gi‘—sj)
W,»,j=Wexp———2‘—— , (2.11)
which gives
W =Wf,(1=f4),
Wep=Wfg(1—f3g), (2.12)

W, = \/WAAWBB .

A uniform dc electric field E parallel to the chain
modifies the jump rates as follows:

eEa
2kT

WE L =W, 1, [1£ =W, 1, (1+A) (2.13)

with e the elementary charge, a the NN distance, and A
an obvious shorthand notation. Equation (2.13) was writ-
ten so that detailed balance is satisfied up to first order in
E, since we are interested in the conductivity o, which is
the linear-response coefficient.

In the stationary state, o is calculated from

o= |

2.14
5 ( )
with the current density given by’
. ea X
J= NQ igl[I'Vi,i+l(1+A)<ni(l—ni+l)>

Wi (=D (1=n))],  (2.15)

Q being the volume per site. In Eq. (2.15), the notation
( ) indicates a stationary-state average. From Eq. (2.14)
the mean-field conductivity is calculated as’ [compare to
Eq. (1.1)]

—1

e%a? | .. N 1
IMF T OkT JE’LFE] W,
2.2
—€a —1yy—1
= w
QkT« »
—1
4e2q? 1 1 2
= + , 2.16
QkT |W,, Wz W, 2.16)

where {{ )) denotes theoretical configurational averaging.

III. SIMULATION

A. The method

We have used a stationary-state Monte Carlo method,
inspired from Refs. 6 and 11. A chain of N =10* sites is
considered, slightly larger than the 8000 sites chain used
by Richards.® Equal numbers of 4 and B sites are placed
at random on the lattice. At a given value of the concen-
tration, f 4, and fj are determined as in Sec. II and then
the A and B sites are randomly filled with f N /2 and
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fgN /2 particles, respectively, so that the system is ini-
tially at equilibrium. Occupied sites are memorized in a
special array. Particles are then allowed to jump, in the
presence of the electrical field E. After some tests of the
linearity of the response j with respect to the field, we
have taken 2A =0.05.

Cyclic conditions are imposed, and so the end jumps
occur really between sites 1 and N. The jump probabili-
ties are given by Eq. (2.11), where energies are chosen so
that Eg/E 4=10. This choice is that of I and it was
made in order to render comparison possible. For the
sake of efficiency, the value of W was chosen so that the
largest of all jump probabilities is equal to 1, i.e.,

Wea(1+A)=1. 3.1

Every step of the simulation follows three phases.
(i) An occupied site i is chosen at random and Monte
Carlo time (number of steps) N, is increased by 1.
(ii) One of the two NN sites i +8 (where §==1) is
chosen with probability
py=—=0.5,

z;

(3.2)

where z, =2 is the coordination number. If the site i +6
is found occupied, the whole operation is taken from the
beginning.

(iii) A jump is attempted to site i +8 with probability
W,F,-+5. If the jump is performed, the number of jumps to
the right N, (or to the left N,) is increased by 1, for §=1
(or 8= —1, respectively).

The current density is given by Eq. (2.15), which must
be written in terms of Monte Carlo quantities. First, it is
clear that j is proportional to

N; =N,—N,,

jumps

(3.3)

so that we only have to specify the correct factors. Due
to the fact that in phase (i) sites are considered at ran-
dom, rather than in increasing index order, and because
phase (i) is repeated N, times, the sum in Eq (2.15) is tak-
en over Monte Carlo steps and N is replaced by N,.
Moreover, due to the fact that in phase (i), occupied rath-
er than general sites are chosen, the result must be multi-
plied by a second factor, namely c. Finally, in phase (ii),
only one of the z, =2 jump directions is considered in
every Monte Carlo step [while they are both present in
Eq. (2.15)]; this gives a factor of 1/ps=2. In the end we
get

P ea
T7Na

2CNjumps . (3‘4)

The experimental value of the correlation factor is ob-
tained from Egs. (1.2), (2.14), (2.16), and (3.4) as

cN;

jumps

-———AN,((W_l))"l . (3.5)

fexp=

The method was successfully tested on two exactly
soluble models: the uniform chain (e ; =¢ep) and the or-
dered model of Richards,® in which the two types of sites
alternate.
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B. Onset of the stationary state

Because we start with equilibrium initial conditions,
the stationary state is reached, theoretically, at infinite
time. For practical purposes, after a long but finite time
7 has passed, the system can already be considered in the
steady state. The value of 7 can be estimated from the re-
laxation curve of the current density, which was deter-
mined as follows.

Preliminary simulations were performed at concentra-
tion ¢=0.5, where the largest statistical errors occur.
The current was measured and averaged over time inter-
vals of 4 MCS/particle, for ten different equilibrium con-
ditions on each sample out of a set of 100. In Fig. 1, we
have illustrated the resulting time dependence of the
configurational-averaged current density normalized by
its MF value. It can be seen that the stationary state is
established after a time N,/N,~50, which is similar to
the result obtained by Richards for the ordered AB
chain.®

C. Stationary-state averages

During the previously described experiment, at ¢ =0.5,
we also recorded the populations of the two types of sites,
in the stationary state. First we counted the total number
of particles N,, on A sites. After temporal and
configurational averaging, the value of ¢ , =N, ,/N 4 was
found not to be different from its equilibrium value f 4, at
least within statistical errors. A significant change was
observed in two particular NN pair-correlation functions,
namely the ones relating sites of different type. These are
defined as follows:

4 N

CaB= 2 MMt (3.62)
i=1
N
CBa~ D MiBNiv 4 s (3.6b)
i=1
where
1 if i is an occupied A4 site,
"i,47= |0 otherwise . Q.7
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FIG. 1. Time dependence of the normalized current density,
for ¢=0.5. The units of time are Monte Carlo steps per parti-
cle.
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The equilibrium values of Egs. (3.6a) and (3.6b) are equal.
For ¢ =0.5 they are given by

cqp=cpa=f4fp=0.1825 (3.8)
while the simulated stationary-state values are

¢, =0.1811+0.0001 , (3.92)

cp4=0.1871£0.0001 . (3.9b)

The difference is easy to understand by an argument simi-
lar to that of Richards.® Particles on A sites have a lower
average jump rate and are thus “slower” than those on B
sites. A particle sitting behind a slow one (with respect to
the direction of the flow) will have to spend more time
there than a particle which is preceded by a fast one.
Therefore cp 4 > ¢ 5. The 0.006 difference is of the same
order of magnitude as the exact value 0.0102 obtained by
Richards for the ordered chain, with the same choice of
parameters.

D. The correlation factor

The main experiment was performed for five values of
the concentrations: ¢=0.1, 0.2, 0.3, 0.4, and 0.5. We
considered 300 realizations of the binary chain for
configurational averaging. For each case the current was
averaged over 100 MCS/particle, in the stationary state,
for 100 different initial conditions. Each of the five ex-
perimental points thus obtained took about 40 h of com-
puter time. The result, fyc, wWhich was continued by
symmetry up to ¢ =1, is presented in Fig. 2, together
with the theoretical upper bound of I, f;, and with
Richards’ exact result f for the ordered chain, which is
a lower bound for all 1D binary models. The experimen-
tal error is lower than the size of the circles in Fig. 2.

As can be seen from the picture, the error of fy, is
maximal at ¢=0.5. At this concentration, f corrects
the MF result by 0.27 (and not 0.22 as was reported in I
due to a numerical error), while fc brings a 0.35 correc-
tion. As was mentioned in II, further corrections to f,
can also be calculated. We did this'3 for the second term
denoted in II by f‘?), and obtained an additional decrease
of 0.015 in f,. This, together with the present MC re-
sult, gives an overall image of the quality of the sequence
of upper bounds in II.

IV. SUMMARY AND CONCLUSIONS

The hopping conductivity of the one-dimensional lat-
tice gas with two randomly distributed site energies was
studied for concentrations ¢ €[0,0.5] by Monte Carlo
simulation. Starting from equilibrium initial configur-
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FIG. 2. The correlation factors of the random chain: theory
of Ref. 9 (f,,) and simulations ( fyc) and of the Richards model
(fr), vs concentration, for values of parameters chosen so that
exp(ep —e 4 /kT*)=10. Monte Carlo results are represented by
circles. The dashed line was drawn as a guide to the eye and
then continued by symmetry for ¢ >0.5. The experimental er-
ror is lower than the size of the circles.

ation, in the presence of an external uniform and constant
electric field E, a stationary state was reached after a time
7~50 MCS/particle. In the stationary state, correlation
functions of nearest-neighboring sites were studied, show-
ing similarities to the exact soluble ordered model of
Richards.®

The correlation factor of the dc conductivity, f, was
measured and compared to previous theoretical upper
bounds.” As was expected, the present computer experi-
ments showed no qualitatively new features of the prob-
lem, but were aimed merely at getting a good value for f
and, thus, an estimate for the approximation sequence of
II.

Note added in proof. After submitting the manuscript
we learned about a recent simulation study'* of similar
systems in one, two, and three dimensions, using a
different algorithm.
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