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Radiative correction to x-ray scattering and its relevance in condensed-matter experiments
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The radiative correction to the elastic scattering (Rayleigh) of a photon is calculated considering ap-

plications to high-precision condensed-matter experiments. It is found that the radiative correction can

be appreciable when the incoming photon energy exceeds 1000 keV and the experimental accuracy is

better than 0.1%.

The study of condensed matter using x rays is so well
established that the number of applications is exceedingly
large. In previous papers' the use of x-ray scattering
has been considered in condensed-rnatter physics, with
special emphasis on the proper relationship between the
cross section and relevant observables. As is well known,
there are two obvious applications of x-ray scattering
that have a special impact on basic solid-state physics.
These are the electron-density (Rayleigh scattering) and
momentum-density (Compton scattering) measurements
in crystals. In recent years it has been realized that the
use of photon energies in the standard x-ray range, i.e.,
from 10 to 20 keV, is extremely limiting for the correct
determination of these quantities. In fact in the case of
electron-density measurements the anomalous scattering
contributions contribute an appreciable fraction of the to-
tal scattering amplitude, so that one has to rely on more
or less accurate calculations. Moreover, experimental
problems, e.g. , extinction, are more severe in the x-ray
energy range. In the case of Compton scattering one has
to use the impulse approximation, which becomes better
and better as the photon energy is increased. Therefore,
in both cases the use of hard x-rays, i.e., from 100 to 1000
keV and above, can allow for a safe determination of both
number and momentum densities, if one neglects the fact
that this high energy is far from being negligible as com-
pared to the rest energy of the electron. In Ref. 2 the
effect of considering the relativistic correction to the x-
ray cross section, both elastic and inelastic, has been dis-
cussed. However, as already observed in Ref. 2, one has
also to consider the fact that the coupling constant be-
tween electron and photon, namely, the fine-structure
constant Q. =e /Ac=, 37 is not a very small parameter,
so that the lowest-order interpretation of the experimen-
tal cross section is expected to be good at about 1%. Re-
cently it has been shown ' that it is possible to perform
elastic (Rayleigh) photon-scattering experiments at rela-
tively high energy, with an accuracy largely exceeding
l%%uo, so that the corrections to the cross section might be-
come important.

In the case of Compton scattering it is now common
practice to use relatively high energy and it has been
recognized a long time ago that higher-order corrections
can play some role. In particular it is evident that the
correction to the Compton scattering is not negligible

and must be considered in analyzing the experimental
data.

Because of the above discussion and the fact that the
rough estimate of the third-order (radiative) correction to
the elastic cross section reported in Ref. 2 suggests an
effect of the order of a fraction of percent, considering
the possibility of performing very accurate experiments,
we calculated such a correction, having in mind the ap-
plication to the photon scattering off a many-electron sys-
tem. To perform the calculation we followed the nonre-
lativistic approach presented by Heitler, as a many-body
relativistic theory presents some difficulty. This pro-
cedure is somewhat contradictory because the radiative
correction is expected to be relevant at high photon ener-

gy, so that a nonrelativistic approach could be considered
doubtful. However, this procedure, when applied to the
Compton scattering from a single free electron, provides
the same result as the fully relativistic theory, so that
one can be confident that the approach is valid.

According to this discussion we split the total Hamil-
tonian into three contributions:
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where I,. and p; are position and momentum operators of
the ith electron and A(r) is the vector potential operator.
The elastic scattering cross section is written as
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where pF is the density of final states and Koz is the ap-
propriate matrix element, containing terms linear and
quadratic in a. One can write

KOF =K2+K4, (4)

H =H, +H„d+H;„, ,

where H, is the electron Hamiltonian in the absence of
the field, H„d is the free radiation Hamiltonian, and H;„,
represents the interaction between electron and field. In
the nonrelativistic limit H;„, can be written as
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where E2 is proportional to a and IC4 is proportional to
a . K2 is due to first-order contributions from H' ' and
second-order contributions from H" I (anomalous scatter-
ing). This lowest-order result is extensively considered in
the literature and does not need further analysis. E4 con-
tains several terms and its general form is reported in
Ref. 6. To the purpose of deriving a closed-form result
still employing approximations adequate for quantitative
comparison to the experimental data, we proceed as fol-
lows. Considering that the radiative corrections can be
nonnegligible only when the incoming photon has a high
energy, one can neglect the electron momentum matrix
element in the ground state as compared to the photon
momentum. This approximation considerably simplifies
the expression of K4. At the same time all electron inter-
mediate states can be approximated as states obtained
from the X-electron ground state by exciting one electron
only to an almost free-electron state having a well-defined
momentum. This approach, already employed in Ref. 2,
is particularly convenient to avoid an explicit description
of the ground state. Using this procedure we performed
all the sums on the intermediate states by integrating on
the intermediate photon wave vectors and by summing
on the relative polarizations. The calculation is very long
but similar to that of Ref. 6 for Compton scattering and
as in that case it contains two diverging terms. The first
one, which behaves as 1n(Pick'/mc ) as the intermediate
photon wave vector k' diverges, corresponds to charge
renormalization and consequently can be disregarded.
The second diverging term is due to the infrared catas-
trophe and deserves some care. In fact it is well known '

that such a divergence disappears if one takes into ac-
count a term containing two photons in the final state,
one of which has a vanishingly small energy. It is clear
that the process having a very low-energy photon other
than the main one is not experimentally distinguishable
from a normal process with one photon only in the final
state. However, one has to remember that in a scattering
experiment from a crystalline solid the presence of Bragg
diffraction allows for the identification of highly elastic
processes so that an extremely small energy is left for the
additional soft photon in the final state. In particular in
the limit of ideal elastic scattering no soft photon can be
present in the final state and one can show that the in-
frared divergence disappears proportionally to the max-
imum allowed inelasticity. The final form for the cross
section, accurate to the order a and for energy small as
compared to the electron rest energy is as follows:

=
—,'ro —~F(Q)~ (e eo)[(eo k)(e ko) —2(e eo)]

and n(r) being the electron number density in the ground
state. It is interesting to observe that both terms of the
cross section contain the scattering factor in the same
way, so that the well-known behavior of the cross section
is not affected by the radiative correction.

To identify the relevance of the correction we have de-
rived, the energy dependence of the ratio between the
scattering amplitude due to the correction and the
lowest-order term at zero scattering angle is reported in
Fig. 1. Actually an elastic process at zero angle is clearly
meaningless. Nevertheless it is useful to study this par-
ticular condition because the elastic scattering at high en-
ergy is confined to a small angle and the angular depen-
dence of the cross section is weak apart from that due to
the scattering factor. Of course one cannot establish a
proper energy range where Eq. (5) holds; however, one
can easily find that at zero scattering angle the ratio be-
tween a and a terms in Eq. (5) is exactly the same as
that obtained in Ref. 6 for Compton scattering in a limit
similar to the present one. This behavior confirms a
guess used in Ref. 2 to roughly evaluate the radiative
correction. Therefore, considering that, on increasing
the energy, the angular range where the elastic scattering
is appreciable decreases, it is quite reasonable to calculate
the radiative correction at any incoming energy confining
the calculation to the low angle, where there is
identification between Compton and Rayleigh processes.
Following the above discussion, we used the result de-
duced in Ref. 8 for Compton scattering to determine the
ratio between a and a contributions to the scattering
amplitude at zero scattering angle. A closer examination
of the kinematics of the elastic scattering allows us also
to establish that the identification of Rayleigh and Comp-
ton matrix elements is meaningful at any scattering angle
if one adapts the four-momentum in variance at the
scattering event and assumes the same energy for both in-
coming and outgoing photons. According to the previ-
ous discussion about the infrared catastrophe, we neglect-
ed all the contributions due to the additional soft photon
in the final state. To give an estimate of the higher-order
term at high energy we report in Fig. 1 also the fully rela-
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where ko, eo, k, and e are the incoming and outgoing pho-
ton wave vector ad polarization and F(Q) is the atomic
scattering factor:

F(Q)= I n(r)exp[iQ r]dr, . (6)
WS

the integral being performed over the Wigner-Seitz cell
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FIG. 1. Energy dependence of the ratio between a (F' ') and
a (F' ') contributions to the scattering amplitude. Solid line,
fully relativistic calculation; dashed line, nonrelativistic approx-
imation.
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tivistic result. As we can see the nonrelativistic calcula-
tion is good up to 100 keV, while the fully relativistic cal-
culation shows a rather monotonous trend. Although the
correction to the Rayleigh scattering amplitude is small,
we see that it can be experimentally observed when the
photon energy is higher than 1000 keV and the experi-
mental accuracy 0. 1%%uo or better. Actually such an exper-
iment devoted to the measurement of the radiative
correction is within the best experimental possibilities, '

so that a properly performed study could establish the va-

lidity of the results reported in Fig. 1. The data already
available at 1381 keV are in reasonable agreement with
present estimate, but a larger energy range should be
studied to give a definitive answer.

As a conclusion we can say that the radiative correc-
tion has a small but nonnegligible relevance in very accu-
rate condensed-matter experiments, but in view of the
basic role of such a correction for quantum theory of ra-
diation, an experiment devoted to this matter would be
extremely important.
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