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Calculation of the self-energy in a layered two-dimensional electron gas
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The self-energy of a layered two-dimensional (2D) electron gas has been investigated using the Fermi-
liquid approach. The zero- and finite-temperature calculations including both single-particle and
plasmon excitations have been carried out. It is found that when the interlayer distance is large com-
pared to twice the effective Bohr radius a~, the interlayer-coupling effects are small and the results corre-
spond to those of a pure 2D electron gas. When the interlayer distance is smaller than 2a&, the results
are similar to those of a three-dimensional (3D) system. At intermediate interlayer distances, the results
show an interesting mixture of 2D and 3D behaviors. The linear temperature dependence of the
plasmon contribution to the quasiparticle damping at high temperatures in a layered 2D electron gas,
obtained in this paper, may have some relevance to the explanation of the normal-state properties of the
high- T, superconductors.

I. INTRODUCTION

It has been suggested that some normal-state features
of a high-T, superconductor, such as a linear tempera-
ture dependence of the inverse lifetime, may be attributed
to the collective excitations of the charge or spin density. '

In a pure two-dimensional (2D) material the inverse life-
time has been shown to have a ( T /E~ ) ln( T/e~ )

behavior which obviously cannot explain a linear tern-
perature dependence of the resistivity in the normal state
of the cuprate superconductors. However, our calcula-
tion of the plasmon contribution to the imaginary part of
the self-energy for a layered 2D electron gas shows that
at high temperature the inverse lifetime of the quasiparti-
cles can indeed have a linear temperature dependence.

In the case of a material in which 3D behavior dom-
inates the energy-exchange mechanism, the possibility of
the decay of the low-energy or thermal quasiparticles by
plasmon excitations is inhibited because the bulk plasmon
frequency is so high that conservation of energy and
momentum cannot be satisfied. In a material in which
2D properties are exhibited, plasmons can be excited
with very low energy, and the decay of these quasiparti-
cles by plasmon excitations is permitted. Furthermore, in
a layered 2D electron gas which has properties which, in
part, simulate the layered cuprate superconductors, the
plasmon dispersion relation has been found to have both
a quasiacoustic and a quasioptical nature. In this paper
we calculate the quasiparticle damping for this situation
and show that the linear temperature dependence of the
inverse inelastic lifetime can be explained in terms of
plasmon-mediated electron-electron scattering. We spe-
cialize to the three different cases of the dimensionality
related properties and show that when the interlayer sep-
aration is larger than twice the effective Bohr radius a~,
the results basically agree with those of a strictly 2D sam-
ple. This is in accord with results obtained by Giuliani

and Quinn (GQ). When the interlayer distance is less
than 2az the results are similar to those of a 3D system.
In the intermediate range of interlayer distances an in-
teresting mixture of 2D and 3D behaviors is shown to be
exhibited by the model.

In Sec. II, we develop the expressions for the real and
imaginary parts of the self-energy of the quasiparticles
due to electron-electron interactions on the basis of the
Fermi-liquid theory. In Sec. III the assumptions used
here are applied to a layered 2D electron gas. Results in
various limits for both zero and finite temperatures are
then presented. Section IV provides some discussion and
the possible connection between our results and the
normal-state behavior of the high- T, superconductors. '

II. MODEL

The calculations are performed using the standard
Fermi-liquid approach in a layered metal with a cylin-
drical topology of the Fermi surface. The effective in-
teraction between particles, including retardation effects
associated with virtual single-particle and plasmon exci-
tations, is taken as the screened Coulomb interaction in
random-phase approximation (RPA). In order to de-
scribe this retarded electron-electron interaction we in-
troduce the boson Green's function

D(k, co) =v (k) —1
1

(1)

which includes both the single-particle and plasmon exci-
tations. Here v(k) is the bare Coulomb interaction in a
layered crystal and can be written as

v (k) vo(klan) f(k)
where

SillhC kI~f (k)=
coshckii —cosck,
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Here k~~(k„k~ ) and k, are the momentum components in
the plane and normal to the plane, respectively. c is the
separation between successive layers of the layered 2D
sample, and uo(k~~~)=2me /k~~~c, , is the Coulomb interac-
tion in a pure 2D case where c; is the dielectric constant
of the background lattice. The quantity e(k, co) in (1) is
the Fourier wave vector (k) and frequency (co) com-
ponent of the dielectric function of the layered 2D elec-
tron gas and is given by

s(k, co) =1+V (k)II(k~~, co),

where II(k~~, co) is the polarization propagator for the 2D
I

electron spectrum.
Since the Kramers-Kronig relation is valid for the

response function e '(k, co) for any k and co, the boson
Green's function also satisfies the dispersion relation

D(ken)= —J, ' . dao' (5~+0) .
CO CO l 6

The self-energy X of a quasiparticle, associated with re-
tarded electron-electron interaction, can be written at the
absolute temperature T in the following form
(6=k~ =1):

de' ~ dao" ImG(p+k, co") ImD (k, co') co" + co'
X p~co = 2 tanh +coth—co 27r —oo 277 CO +CO CO l6 "2T+ h2T (6)

Replacing the imaginary part of the electron Green's function

G (k, co) = [co—g„—X(k, co)]

(here energies gz=sj, —p are measured relative to the chemical potential p, and Ez=k /2m* is the 2D single-particle
energy) by an approximate 5 function and carrying out the angular integration in (6), one obtains the self-energy for a
layered system as

k + + II

, ImD k, co' co"+co co'
+cothco'+co" -+i 5 2T 2T

(7)

where
2

F~(k, co) = 1 — 1+
k

II 2m *co
+ II' 4 2 k2

II

and

k~(co)=p [I++1+co/E ] .

2 —1 /2

and the even part being

Here k, =k, c, U =p /m * is the velocity of the quasiparti-
cle, and co =g = c, —p, s being the 2D single-particle
energy defined above.

We divide X(p, co) into an odd part and an even part in
the dependence on co, the odd part being

X'(p, co)= —,'[X(p, co) —X(p, —~)]

X(p, co)+iX"(p,co) = —,'[X(p, co)+&(p, —co)] .

Here 2'(p, co) and 2"(p, co) describe the renormalization
of the quasiparticle energy and the damping of the quasi-
particle, respectively, and X(p, co) gives a correction to
the chemical potential p due to the electron-electron in-
teraction.

Since all quantities in (7) other than the Green's func-
tion D (k, co ) are independent of k„we introduce an aver-
age over k, as

D(k„,co)= J D( „k,k„)cokd
2m

Using (9) in (7) and (8) and the condition that co (s and

p =pF, we obtain the real and imaginary parts of the
self-energy as

and

2PF Ij"d~'f, " [+ (k„,~')++ (k„,~')]ReD(k,
~

~)dk„ tanh +tanh
2(2') UF 2T 2T

[ +("ii
1 ~F CO CO +CO CO CO

2(2m ) vz 0 "~"F II' ll 2T 2T 2T
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r,, '= —2X"(p~, co) . (12)

The real part of the self-energy X'(p~, co) defines the re-
normalizations of the effective mass m and the Fermi
velocity uF by

An analysis of (7) indicates that expressions (10) and (11)
are valid for both T and co less than cF.

Equation (11) is connected with the inelastic lifetime
~„ofa quasiparticle near the Fermi surface by the rela-
tion '

represented as

Dpi(kii, co)

uo(kii )co (kii ) ) f (k, )dk,
(17)

co —co (kii)f(k )+i5
where co~(kii) is the plasmon frequency for a pure 2D sys-
tem with the approximate dispersion relation

2

co (kii )= pFupkii
2

l

ar'm*=m* 1—
BCO

BX'
vF =py Im 1

BCO

III. SELF-ENERGY IN A LAYERED 2D METAL

(13)

After integrating (17) over k, we obtain for the real part
of the average boson Green's function as

ReD~i(k ii, co = —uo(k
ii

)

vo(kii )co
+

CO CO+ CO CO

In this section we present the calculation of the self-
energy in a layered 2D metal using (10) and (11). The
average boson Green's function appearing in (10) and (11)
is first obtained by inserting (1) in (9) and using (2)—(4) as

D(kil, co)= I dk, f(k, )
VT' 0

1
X —1

1+v, (k„)f(k, )II(kii, co)

(14)

ReII(kii, co) -=m *le,
m* coImII(k

II

(15)

In the plasmon region, that is in the high-frequency limit
co) u~k, the polarization propagator II(kii, co) has the
form

In the region of single-particle excitations defined by
co (v~k (v~ =palm" is the Fermi velocity) and k & 2pz
[where p~=(2nn, )'i is t. he Fermi momentum, and n, is
the 2D density of quasiparticles] the polarization propa-
gator takes a form in which the real and imaginary parts
are

X [8(co—co+ )—8(co —co)], (18)

where O(x) is the step function, co+
=co (kii )(cothckii /2)' is the purely optical plasmon fre-
quency, »d co =co~ ki~) tanhckiil2)' ' is the proper
acoustic plasmon frequency. Considerations similar to
(18) give the imaginary part of the average Green's func-
tion as

up( k
ii

)co

CO+ CO CO CO

CO CO CO+ (19)

The region of excitation of plasmons for the layered sys-
tem is shown in Fig. 1, where the optical (co+ ) and acous-
tic (co ) limits are shown by solid curves (1) and (2), re-
spectively. The dashed curve [co, =co (kii)(tanhckii)'i ]
in Fig. 1 represents the curve which distinguishes be-
tween the optical and acoustic nature of the plasmon
band.

Inserting expressions (15) for the polarization propaga-
tor into (14), the real and imaginary parts of the single-
particle contribution to the average boson Green's func-
tion can be obtained as

p2I 2

ReII(k, co) =-— (16)

with ImII(kti, co) =0.
Using (16) in (14), the plasmon contribution to the

average Green's function for a layered 2D system can be

ReD,~(kii )

X 2X,= —u (k ) 1 — 1+ + cothck
II k2 k

II

and

—1/2

(20)

B A (3+2B )ImD, i, (kii, co)-=—uo(kii) ™1(kii,co) sinh
cking z 3&&

1 —
z z(B 1) 2(B ——1)

(21)
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and

%(z,x)

—x (x —z tanhz/g)
tanh z/g

(23)

0.5

0.2 0.4

k/2PF

0.6 0.8

where

A =vo(k~~ ) Imil(k~~~, co) sinhck~~,

FIG. 1. Representation of the pseudo-optical plasmon band
(vertically hatched region) because of the plasmon-mediated
effective electron-electron interaction in a layered 2D electron
gas. The upper solid curve (1) is the pure optical limit and the
lower solid curve (2) represents the pure acoustic limit. The
dashed curve represents the frequency above (below) which the
plasmon has optical (acoustic) nature. The region of the low-

frequency single-particle excitations is shown by the slanted
hatched lines.

Here x, =k, a~ ) 1 and g =2 a~/c, while a~ =E;/e m* is
the eff'ective Bohr radius, a=e /vFE; is the electron-
electron interaction constant, co, =co (I/as )=e pz/E; is
the plasmon frequency for a pure 2D case with wave vec-
tor k = I/a~. Also k, is the critical wave vector above
which the plasmon production is precluded in a pure 2D
system. It can be shown to be k, =2pFa for o;«1
(high density limit) and k, =p~(2a)'~ for 0&&a&1 (in-
termediate density limit). Unless otherwise stated, the re-
sults presented in this paper are valid in the high density
limit where the Fermi-liquid theory is most valid. Pa-
rameter g in (23) characterizes the strength of the inter-
layer plasmon coupling. In the remainder of this subsec-
tion we consider X"~(co) for three different cases: (1) large
interlayer separation, (2) short interlayer separation, and
(3) intermediate interlayer separation.

1. Large interlayer separation
or weak interlayer coupling (g « 1)

At large interlayer distance co+ goes to co and we
have the case of the weak interlayer plasmon coupling.
In this case the function %(z,x ) takes the form

(24)

In the high density limit (a « 1), we insert (24) into (22)
to obtain

XeB =coshck~~ 1+ tanhck~~

X"(co)= ctf — H(co, co'),
CO CO C

(25)

and y, =2/az =2e m */c., is the screening parameter.

A. Imaginary part of the self-energy:
Plasmon contribution

In this subsection we calculate the plasmon contribu-
tion to the imaginary part of the self-energy. Inserting
(19) into (11)we get

I

X"(co)= — f co'2dco'F H (co, co'), (22)
2&co CO

where

where co,„ is the maximum plasmon excitation energy
and is given by co,„=co~(k, ) for k, & 2pF.

(a) Zero temperature (T-=O) case At T=0. we have
H (co, co') = 1 and in the high density limit we obtain from
(25) the form

2"(co) = —a+co —co, , co, & co & co (26)

Here co, plays the role of the finite threshold for damping
due to plasmon excitation. Note that for co slightly larger
than co, (co )co, ), Eq. (26) yields the result previously ob-
tained by GQ:

1/2

CO 1 CO +CO 1 CO COH ( co, co' ) =coth ——tanh ——tanh
2T 2 2T 2 2T

X"(m) =——&2aco,
toe

(27)

and
min I x,2/a IF (x)= f '

[0&+(x,z)+ @ (x,z) ]V(x,z)dz

with

Thus, it appears that our result for electron damping due
to virtual plasmon excitation in a pure 2D sample is more
general than that of GQ, who calculate X" for co-co, .
However, as cu becomes much larger than
(ro, « co & co,„),Eq. (26) gives

a@+{x,z)= z — —z +x
2

2 —1/2 2"(co)—= —aco(1 —co, /2' ) . (28)

Thus, the plasmon contribution to the quasiparticle
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damping has a linear frequency dependence when co is
larger than excitation energy threshold co, . As co be-
comes greater than co,„, we find that X" assumes the
constant value

~+~max ~c &
~)~max

Next we consider the intermediate density limit
(0 «a & 1). In this case at T =0 we obtain from (22)

where K, (x) is MacDonald's function and the asymptotic
limit has been used. Figure 2 shows the temperature
dependence of the plasmon contribution to the quasipar-
ticle damping in the high density limit (a &(1) given by
(31)—(33).

In the intermediate density limit when (0 (&a (1) the
plasmon contribution to the quasiparticle damping as-
sumes the form

2"(co) —= —a(co —co, ), (29)
X"-—4a T exp( to, /T—) .

which also has a linear dependence on the frequency.
(b) Finite temp-erature (TAO) case We. now turn to

the analysis of quasiparticle damping at finite tempera-
ture. At finite temperature (to«T) and high density
(a « 1) from Eq. (22) we obtain the imaginary part of the
self-energy as

(30)

From (30) it follows that at high temperature
(co„to,„«T) one has the limiting form

2~max2"( T)—= —2a T ln = aT 1n4a—ii k, .
CO~

(31)

X"(T)—= —2aT ln(2T/co, ) .

At low temperature (co,„,co, ))T), Eq. (30) gives

(32)

~c2"( T)= —4aco, K,

Thus, at high temperature the plasmon contribution to
the quasiparticle damping takes a linear temperature
dependence.

For the intermediate values of T (co, « T &(co,„), we
have

In this subsection we conclude that when the interlayer
distance c is much larger than twice the effective Bohr ra-
dius, the imaginary part of the self-energy takes the same
form as in a pure 2D case in the T =0 limit. Since GQ
did not consider the temperature dependence of the
plasmon contribution to the self-energy we do not have a
basis for comparison of our finite-temperature results.

2. Short interlayer separation
or strong interlayer coupling (g ) l)

When the interlayer distance c is smaller than 2a~ (i.e.,
g ) 1), from (23) and (22) we obtain

=———K(+I —g ') H(co, co'),
~v ~

(34)
where to,„-co,/g', K(x) is the elliptic integral of the
first kind, and co i=(4vre n, /E;m c )' is the bulk
plasmon frequency for a layered 2D system.

(a) Zero temperature -(T =0) case At very. small inter-
layer separation (g ))1) we can make the further approx-
imation

K[(1—g ')'~ ]-—,
' ln(16g)= —,

' ln(32a~/c) .

At T =0 from (34) we obtain
= —2a+2mco, T exp( —co, /T), (33)

2"(ri)) —= — ln2'
32QB

2 2

If co i ))co, Eq. (33) gives

~+max ' (35)

2"(co)—=—cx 32QB
ln

4m c
CO

COp)
COp)

2

co & oi,„. (36)

2)
If co is larger than co,„(«co,), X"(co) assumes the con-
stant value

FIG. 2. The temperature dependence of the quasiparticle
damping due to the inelastic electron-plasmon interaction.
Curve (1) represents the result for the case where the interlayer
separation is large (c »az). The critical frequency co, corre-
sponds to the threshold for plasmon excitation in a pure 2D
case. Curve (2) corresponds to the result for the intermediate
values of the interlayer separation (c =2a&).

2"(co)-=— ln
4m.

32QB ~max
COp)

COp)

2

Thus, for a very small interlayer distance (g ))1) at
T =0, the quasiparticle damping has a quadratic depen-
dence on the frequency, i.e., X"-m /cu

&
for small co, but

it assumes a constant value at large frequencies co &&S,„.
(b) Finite temperature (TW-O) case. At finite tempera-
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tures (co « T},X" given by (34) takes the form

X"( T)= —— ln
2

32Qg
COp)

COp)

T & io,„, (37)

X"(T)=———ln
7T COp)

which obviously has a T dependence. Thus, at short in-
terlayer distances, the system simulates the three-
dimensional case, and we get X"-co jco, at T =0, and
X"—T /co

&
at finite temperatures.

At high temperatures (io,„«T«E~), however, the
plasmon contribution to the quasiparticle damping has a
linear temperature dependence

(1) large interlayer separation and (2) short interlayer sep-
aration.

2
CF

ln
CO

~F CO

X,"(co)—=—
8m CF

2
T F

ln
KF T

&"(T)-=——esp 4 F

(40)

1. Large interlayer separation (g « 1)

For large interlayer separation (c ))2as), expression
(11) takes the form of a strict 2D case (GQ) and the imag-
inary part of the self-energy at T =0 and at finite temper-
atures ( T ))co) assumes the following well-known forms:

3. Intermediate interlayer separation (g = 1)

Let us now consider the case where the interlayer dis-
tance has an intermediate value (c =2a~) corresponding
to an intermediate value for the interlayer plasmon cou-
pling strength. In this case we see a transition from the
quadratic dependence to a linear dependence on both co

and T for the quasiparticle damping.
(a) Zero temperatu-re (T =0) case. At T =0 some

straightforward manipulation of Eqs. (23) and (22) yields

We can see from (40) that for large interlayer distances
the single-particle contribution to the quasiparticle
damping X,'„' does not depend on a and agrees with the
familiar results for a 2D case, i.e., it has the form
(to IE+) ln(co/E+) or (T /ez) ln(TIFF) which is in agree-
ment with the familiar result of GQ.

2. Short interlayer separation (g » 1)

X"(co)=X", (co)+X~ (co), (38)
In the case of a small interlayer distance (c «2as),

(21) takes the simple form

where

X','(co)-=——[co, —Re+co, —co ],

2"( T)=X"( T & co, )+X"( T & co, ), (39)

Xq'(co) =- —a Re+co —co, , co & m

However, for to )co,„, X"(co) assumes the same constant
value as shown by the equation below (28).

(b) Finite temperatu-re (TAO) case. At finite tempera-
tures, from Eqs. (22) and (23) we get

2

I D,„(k„, ) =-—
2kll &pl

and at T=0 we obtain

X,
"

(co)—=—,— co,4~ 2' ~p)

2
EF

ln

'IT& T
2V 2 topi

At finite temperatures (co « T) we get
2

CF&"(T)—=-
sp ln

T

(41)

(42)

(43)

where Note that (42) and (43) show that the single-particle con-
tribution to X" of the layered sample has a combination
of the two- and three-dimensional natures.

2~max
C. Real part of the self-energy

Thus, we see that while at low temperatures (T & co, ) X"
has a quadratic dependence on T, at high temperatures
(T &co, ) it again assumes a linear T dependence. This
temperature dependence of X"(T) is shown by curve (2)
in Fig. 2.

B. Imaginary part of the self-energy:
Single-particle contribution

Now we consider single-particle contribution to the
imaginary part of the self-energy. It can be obtained by
first inserting (21) into (11) and then carrying out the in-
tegrations in (11). Here we consider two different cases:

Now we consider the real part of the self-energy X' of a
quasiparticle in a layered 2D system. First we calculate
the contribution of the unscreened Coulomb interaction
to X' which represents a shift of the excitation energy of
the quasiparticle in a layered 2D system. This contribu-
tion is given by

Xo(p) = —gv(p —k)nF(k),
k

where v (k) is given by (2) and nF(k) represents the Fermi
distribution function. Since the single-particle energy ck
does not depend on k„ the expression for Xo(g, T) does
not depend on the layered nature of the system and has
the same form as that of a strict 2D sample
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2 cx 16',F
Xo =———co, +—g ln —1 —TI

T T

(44)

where

I (x)= —f lnz dz tanh —tanh
z+x z —x

2 0 2 2

CO +CO CO CO
X tanh —tanh

2T 2T

From this expression we obtain the following limiting re-
sults:

CX ~F
X'&(co) ~ ——ai ln (T =0),

7T N

czX' ( T) ~ ——co ln ( T &)co ) .
pl

7T T

(45)

We now consider the single-particle contribution to X
which can be obtained by using (20) in (10) and then car-
rying out the integrations in (10). We obtain the limiting
values

X,'p(co )
-=——co ln

16',F +1 (T =0),

e 32VE F
X,' (T)= ——coin (T )&co),

HATT

(46)

where yE=1.78 is the Euler constant. Our analysis
shows that X defined by (8) does not affect the renormal-
izations of the effective mass and the Fermi velocity (13),
since it is an even function of cu.

Using the total X', obtained by summing (44) —(46), in
(13) we get

m*=m* 1+——
7T BCO

a Bcpl
U~ p~ /)re 1+-

'IT 8CO

(47)

Using (45), the expression for the plasmon contribution to
the real part of the self-energy, in (47) we find that the
electron-plasmon interaction introduces a logarithmic
divergence, in both frequency and temperature, in the re-
normalized effective mass and Fermi velocity. This im-
plies that inclusion of the plasmon contribution to the
quasiparticle self-energy for a layered 2D system may
lead to a behavior which is similar to that of the marginal
Fermi-liquid theory proposed by Varma et al. ' for ex-
plaining the anomalous normal-state behavior of the
high- T, superconductors.

Next we calculate the plasmon contribution to X' sub-
stituting (18) into (10) and integrating over k~~. For short
interlayer separation (g ))1) we find

max 16m,
X')(co)—= — f dc@' ln, + IC (&g )2' 0 CO CO pl

IV. DISCUSSION

In this paper we have calculated, within the Fermi-
liquid approach, the frequency and temperature depen-
dence of the self-energy of a quasiparticle in a layered 2D
electron gas. We have shown that in a layered 2D system
interlayer plasmon exchange fundamentally changes the
frequency and temperature dependence of the quasiparti-
cle damping.

In the case where the interlayer distance is large
(c &)2a~) and the strength of the interlayer plasmon
coupling is small, we obtain the results similar to those of
the strict 2D case. Our finding complements the earlier
results of GQ on the single-particle contribution to the
quasiparticle damping and leads to new results for the
plasmon contribution to the quasiparticle damping of a
strict 2D electron gas. We find that at T=0 the quasi-
particle damping has linear frequency dependence
beyond a finite threshold energy co, . Very close to this
threshold our result has a square-root dependence on the
frequency which is in agreement with the GQ result. At
finite temperature, X"&( T) has a linear temperature depen-
dence with a threshold energy of co, . Near the threshold
energy, X„"&(T) has an exponential dependence on temper-
ature [see (33)]. Thus, we can consider that the threshold
energy co, acts as the activation energy for the quasiparti-
cle damping.

In the opposite limit, when the interlayer plasrnon ex-
change is strong and g is much larger than one
(c «2a~), our results are similar to those of the three-
dimensiona1 case, i.e., quasiparticle damping is given by
Xpl cx T /topi or ——+co /co„l for sma I1 co or T, respec-
tively. However, as T increases (T )co,„) X~&(T) again
assumes a linear dependence on T.

For intermediate values of the interlayer distance
(c =2a~ ), the quasiparticle damping X„", has a similar
behavior, i.e., at low frequencies or temperatures it has a
quadratic dependence on both co and T. When the fre-
quency or the temperature becomes comparable with the
threshold energy co„ the quasiparticle damping under-
goes a transition from the quadratic to linear dependence
on frequency or temperature. The point to emphasize
here is that for all values of the interlayer distance, the
plasmon contribution to the quasiparticle damping as-
sumes a linear dependence on T, when T is greater than a
certain threshold value.

As expected the single-particle contribution to the
quasiparticle damping has the behavior of a strict 2D sys-
tem when interlayer distance is large compared to 2az
and it has a behavior similar to that of a 3D system for
c «2az. The transition from the 3D to 2D behavior
takes place near c =2az.

Finally let us now briefly discuss our results with re-
gard to their applicability to the normal-state properties
of the high-T, superconductors. First, the linear temper-
ature dependence of the resistivity in the normal state of
these superconductors can be explained if we consider
that the main contribution to the damping process re-
sponsible for the resistivity is connected with the inelastic
electron-plasmon interaction in a layered 2D system.
Combining Eqs. (12), (32), and (37), an estimate of the
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Im
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resistivity is obtained as

p~4rr/r, co, ~ T for T &co, /V'g

~ T for T )co, /v'g

Second, we wish to point out that from (47) it follows
that the renormalized effective mass of the quasiparticle
due to electron-plasmon interaction has a logarithmic
divergence in both frequency and temperature, which is
similar to the marginal Fermi-liquid behavior as dis-
cussed by Varma et al. '

Our theory can also explain some peculiarities ob-
served in the optical properties of high-temperature su-

perconductors in the normal state. For example, it fol-
lows from expression (19) that for a layered 2D system

Here o D(co) =(co/4') ImED(co) is the Drude contribution
to the optical conductivity with

26)pi
E(co)=s; 1—

co m /mo+ico/r
(50)

where m * is the renormalized mass defined by (47) and r
is the total inelastic lifetime of a quasiparticle defined by
(12). In (49), cr~&(co)=(co/4n)lm. E~~(co) is the plasmon
contribution to the optical conductivity with E~&(co) ob-

tained from (48). Thus, the total optical conductivity ob-
tained by using (48)—(50) will have a tail due to the
plasmon contribution for a wide range of values of the
frequency (0&co&co~). This conclusion agrees with the
results reported by Timusk et al. " and Schlessinger
et al. ' Finally, we remark that our theory can also be
used to calculate the transport and optical properties of
semiconductor superlattices (InAs-GaSb, GaAs-AlAs,
etc.)."

1/ co&~ co

(48)
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o.(co) =o.D(co)+cr~&(co) . (49)

i.e., Im(1/c. ) is a linear function of co for co & co,.
Expression (48) combined with the Drude contribution,

in our opinion, can explain the smooth line shape of the
Raman scattering' and the optical conductivity"' of
the high-T, superconductors. One can represent the total
optical conductivity as'
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