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High Landau levels in a smooth random potential for two-dimensional electrons
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We study the density of two-dimensional electronic states for high Landau levels in a perpendicular
magnetic field and smooth random potential. The theory developed applies if the correlation radius
of a random potential is larger than the magnetic length. Under this condition the exact summation
of the diagram series for all the orders of perturbation theory is performed. The density of states
represents a system of Gaussian peaks with the width I' decreasing with energy E as E . The
magnetic-field dependence of the width is I' oc ~B, if the correlation radius is smaller than the
classical Larmour radius. In the opposite case I' does not depend on B. If the correlation radius is
smaller than the magnetic length, the self-consistent Born approximation, generalized to the case of
smooth potential, applies.

I. INTRODUCTION

The discovery of the quantum Hall eKect has stimu-
lated the study of the electronic states in two-dimensional
(2D) systems in a perpendicular magnetic field. One of
the principal questions being investigated is the disorder-
induced broadening of Landau levels. Theoretical papers
on this subject can be conventionally divided into three
groups: (i) exact solutions for some models of a short-
range random potential; (ii) calculation of "tails" of
the density of states in the vicinity of some Landau level
with the use of an instanton method;s io (iii) calculation
of the density of states in the frame of the self-consistent
Born approximation (SCBA). i

In the latter approach, introduced by Ando and
Uemura, the calculation of the self-energy reduces
to the summation of the subsequence of diagrams with-
out self-intersections. In the case of a b-correlated ran-
dom potential (white noise) SCBA gives the width of the
lowest Landau level of the same order of magnitude as
Wegner's exact solution. i However, SCBA, which results
in a semielliptic shape for the density of states, does not
reproduce the Gaussian tail of the exact solution. The
correct behavior of the density of states in the tail is
provided by the instanton approach. s ~

It should be mentioned that the accuracy of SCBA
increases with an increase in the number n of Landau
level so, x6,23 a4 Indeed, each self-intersection in the dia-
gram results in a phase factor which oscillates rapidly as
n becomes large. Therefore, for n &) 1, such diagrams
are small compared to those that are taken into account
within SCBA approach. This statement is also supported
by the calculation of the tails of high Landau levels car-
ried out in Ref. 8. It was shown that if the energy is
measured from the boundary of Ando's semiellipse, then
the characteristic width of the tail decreases with n as

—I
The consideration in Refs. 8, 10, and 16 refers to the

case of a short-range random potential. Modification of
the SCBA approach to the potential with a finite corre-

lation radius was developed in Refs. 13—15, 18—21, and
24.

It turns out, however, that the SCBA approach is not
applicable for large enough correlation radius R,. This
case is investigated in the present paper. As we will show,
the criteria for the SCBA to be justified is R, (& / where
t = (hc/eB) ~ is the magnetic length (B stands for mag-
netic field). For R, t the contribution to the density of
states from diagrams with self-intersections is of the same
order as from SCBA diagrams. However, for R, )& l an-
other simplification occurs: the phase factors caused by
self-intersections become small. We will show that for
high Landau levels this allows one to perform the summa-
tion of all the diagrams and to obtain a closed expression
for the density of states.

The relevant parameter, which determines the shape
of the density of states, as a function of energy E, is the
ratio R,/RL„where

1/2

Ri(s)=i ) t

is the Larmour radius and u, = eB/rnc is the cyclotron
frequency (m stands for the electron mass). Note that for
high Landau levels RL, )) t. When R, &( RL, our result
matches the SCBA extended to the finite values of R, . In
the opposite case R, )) RL, the result obtained describes
a simple quasiclassical picture, where the random poten-
tial modulates the bottom of the band and the staircase
of Landau levels just follows this modulation. 2s'zs

The paper is organized as follows. In Sec. II we in-
vestigate the condition of validity of the SCBA approach
in the case of a smooth random potential. In Sec. III
we derive an expression for the density of states using a
technique developed by Efros s for three-dimensional
systems at zero magnetic field. The analysis of the re-
sult obtained and the numerical examples are presented
in Sec. IV. Section V concludes the paper.
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II. SCBA APPROACH IN THE CASE
OF A SMOOTH RANDOM POTENTIAL

We start from the conventional expression for the den-
sity of states g(E),

1 . 1
'(E) = 2.2t2™)- E —E„-Z„(E)

2
Z('~(E) =):E E 2. .&(q)l( pl""I 'p')I'

~fyl

where S(q) is the Fourier transform of the correlator of
the random potential V(r):

where

2 2Im) G„(E),
1

(2)

where

d re '~'K(r),

8(E) = m . (E1+2) cos 2m. k
I

27rh

xexpI -2~k™(E)
I

.
)

In Eq. (4) we omitted the dependence of Z on n, assuming
that Z(E) = Z„(E), with n = E/h~, .

The first diagram for P„(E) is shown in Fig. 1(a).
The expression, corresponding to this diagram, reads

E„=(n + 2)h(u„

G„(E) and Z„(E) are, respectively, the averaged Green
function and the self-energy corresponding to nth Landau
level. We study the density of states at energies E )) hu,
corresponding to high Landau levels. For n )) 1 the
self-energy Z„(E) varies slowly with n. Therefore, it is
convinient to rewrite Eq. (2) using Poisson's formula,

K(lr —r'I) = (V(r)&(r'))

and ( ) denotes configurational averaging.
The matrix element (npIe' i'In'p') calculated from non-

perturbed wave functions has the following form:

(npIe'~'In'p') = b(p —p' —q„)Iy
iq (y+y')l /2+i(N N')(8'+m—/4) A

(8)

where

xlN N'
I

q—
)

is the associate Laguerre polinomial, L& is the
normalization length, and N, N', 8' are defined as

g
r///

/
/ n'

N = max(n, n'), N' = min(n, n'),

8' = 8 sgn(n —n'), 8 = arctan(qz/q~).
(10)

Since we are interested in high Landau levels n, n' )) 1,
expression (8) can be simplified using the asymptotics of
Laguerre polinomials, "

I'(n+ ir+ 1) / f n+ 11L„z e* n+ x

/ cr+ 1&z n+ )
where J~ is the Bessel function. Then we get for A„~l,

~ = ~~ — ~(qi&~+ n'+1) = J~ ~(qRi)

// /
m1 m,

where Rl, is the Larmour radius defined by Eq. (1) in
which we substituted E = E„.Note that the asymptotic
(ll) is valid if the argument of the Bessel function is less
then n Thus, one get.s the condition

FIG. 1. The Feynman diagrams for the self-energy Z„.
Solid line corresponds to the electron Green function, dashed
line corresponds to the correlator of random potential. (a)
The simplest diagram. (b) and (c) The second-order dia-
grams.

In Eq. (12) we have replaced n' by n in the argument
of the Bessel function. The corresponding correction to
the argument qRI. is of the order of (n —n')qRL, /n For.
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(n —n') 1 condition (13) guarantees that this correction
is much less than unity. In general, such a correction can
be neglected if the condition ~n —n'~ (( n/qRr, holds. Ac-
cording to (13), the value of n/qRI. is large. In the next
section we will show that the relevant n and n' satisfy
this condition.

Substituting (12) into (8) we get the final expression
for the matrix element in the limit of large n:

(np~e'~'[ n'p') = b(p —p' —q y)e' q~"+~ ' C„„(q),

(14)

Rl, l))
n n'/'2 ' (17)

2
d~q S(q)J„„,(qRI. ) =,

)
dq S(q). (18)

With (18) the solution of Eq. (16) for the imaginary part
of the self-energy can be written as

On the other hand, for large enough n we have B, &( Bl..
Then the argument of the Bessel function is large, so that
one can replace J„„byits asymptotic expression. We
have

where the coefFicients C„„(q)are given by

C„„(q)=i" "e'~" "l J„„(qRI,). Imz"'"(E) = 1

2' her, RL, (E)
dq S(q). (19)

Note that the matrix element depends now only on the
difference n —n'

In the frame of the SCBA aproach one should replace
E —E„I by E —En~ —Z„I in the denominator of Eq. (5).
Then the SCBA equation for the self-energy takes the
form

ZscBA(E) )
ni

d2q J~ „(qRI,)
(2~)2 (q)E —E„.—ZscB"(E)

(16)

Since the typical value of q in Eq. (16) is of the order of
1/R„condition (13) demands that

This solution is valid if ImZs+ )& hu„when a
large number of Landau levels contribute to the sum in
Eq. (16). If condition (17) is not fulfilled, then, according
to (13), the integral over q should be cut off at q n/Rl. .
Thus, we arrive at ImZsoBA = mS(0)/4+5, which is the
SCBA result for the "white-noise" random potential. ii i2

To investigate the validity of the SCBA approach, let
us consider the contribution of the second-order diagrams
to the self-energy. These diagrams are shown in Figs. 1(b)
and 1(c). Diagram (b) is taken into account by SCBA,
but diagram (c) is not. The expressions corresponding
to diagrams (b) and (c) have the following form:

g(2)
n, b

Q'
S(qi)

d'q2
S( ) )- Cn-m, (qi)Cm~ —mq(92)Cmq —ms( q2)Cmq —n( qi)

(2~)' ' (E —E )(E —E .)(E —E .)m] mgm3

(20)

g(2)
n, c

d2q
S(qi) ~ S(q2) exp[i (qlzq'2y qlyq2x)]'t2

Cn mq (ql)C—mq —mq (q2)Cm, -m. (—qi)Cm. -n( —q2)
(E —E,)(E —E,)(E —E,)m1mgm3

(21)

where the coefficients Cn n~ are defined by Eq. (15). As
was mentioned above, the additional phase factor in the
second diagram results from the intersection of broken
lines. The integration over qi and q2 in Eq. (20) can be
carried out separately. Using the relation

d q,S(q)C,—,(q)C .— .(—q)
27r 2

Z(2) ) ~ n —my ml —mg

(E E )2(E E )
' (24)

As follows from the previous consideration [see Eq. (18)],
the product I„m, Im, m, can be estimated as

S2(0) S2(0) l
m& ™& ~2~2 g2t2 c ] /2

where

= ~my —mq, m4 mqimq mg ~
—( )—

S (0)
~ 2 ~

forR, ((
/

( n i' S'(0)
&RI.)

(R, l
2 qS(q) J',-,(qR~)

Eq. (20) can be rewritten as

(23)
(25b)

To est~mate En, c let us first perform the integration over(2)

the angles in Eq. (21). Then the expression for Zn, lc takes
the form
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g(2) d q

(2 ), (q )
2d qz

(, )g (q2) ). ---,+-,--.(l eq2)
m] mgm3

Jn m1 —(qlRI )Jmg —m3 (ql RL) Jmg mg —(q2RL) Jms n(q—/RE)
(E E )(E E )(E E )

(26)

As in the previous case, the estimate of the integral in the
numerator (we denote it with Q) depends on the relation
between R, and l/n / If R. , « l/n~/2, then the upper
limits in the integrals over qq and q2 should be chosen
as l/n / . Since qqRI, q2RI, n &) 1, we get the
following estimate for Q:

g2 (0)
n'~'/t

dqg
0

S2(0) " dv
2

0 v

S2 (0) ln(n).
L

n'/'/t
dq2 Jn —my+my —mq (l qlq2)

du J„,p, , (u)

In the opposite case R, )& l/n / the integration over

qq and q2 is cut off at 1/R, . Then the estimate of the
numerator in Eq. (26) takes the form

S'(0)
R~~

Sz (0)
R2 lz

i/R.
dqg

X/R.
de Jn —m~+m~ —ms(l q] qz)

/ R~
g v

d»n-m, +m. -m. (u).
V 0

(28)

n —my ——m3 —m2 (30)

It is seen from Eq. (28), that the result depends strongly
on the ratio of the correlation radius R, to the magnetic
lenght l. Indeed, if R, « l (but still much greater then
l/n / ) we get

S~(0)Q- R,„»l R, I.c)
If R, )) l (but still much smaller then RL, ) the argument
of the Bessel function in Eq. (28) is small. Thus, only
the terms with

~(2) ln ~R

(zl ~, for
y/2 && Rg && l .

n, b
(32b)

III. DERIVATION OF THE EXPRESSION
FOR THE DENSITY OF STATES

The result (32a) agrees with that obtained in Ref. 16
for white-noise potential. Both estimates (32) match at
R, - l/n'/2.

Equations (32) show that the diagrams with self-
intersections are still suppressed if the correlation radius
is smaller than the magnetic length. Therefore, SCBA is
valid in this domain.

For R, )& l we have [see Eqs. (25) and (31)] Zn, ,
Z„b, i.e. , both diagrams (b) and (c) are of the same or-(2) ~

der. The latter conclusion can be drawn directly by com-
paring the expressions (20) and (21) for both diagrams.
Indeed, since the characteristic values of qq and qz in (21)
are 1/R„ the phase factor exp[il (qq q2„—qq„q2 )] = 1
when R, &) l. Moreover, it can be easily seen, after ne-
glecting the phase factor in Eq. (21), that both diagrams
(20) and (21) are just equal. The same holds for all the
orders of the perturbation theory The re.ason for this is
that under the condition R, )) l the "conservation rule"
(30) for the numbers of Landau levels applies to each bro-
ken line of a diagram, no matter whether it is crossed by
the other lines or not.

In the next section we will show that neglecting the
phase factors in the diagrams with self-intersections al-
lows one to perform the summation of all the terms in the
perturbation series for large n The exp. licit expression
for the density of states is derived in the region R, )& l,
where the SCBA approach fails.

contribute to the sum in Eq. (26). For these terms the
estimate (28) takes the form

To illustrate the main idea of the derivation, let us first
consider the simplest diagram for the trace of the Green
function G(E) = Q„Gn(E),

(31)

Z„,, ln(n)(2)

g(2)
n, b

l
for R, (( (32a)

To summarize the results, let us consider the ratio
Zn, ,/Z b in the different domains of the correlation ra-(2) (2)

dius R„

G, (2) @ - In —n'

E —E„) (E —E

where I„„is defined by Eq. (23). Since I„„is posi-
tive, the sign of each term in the sum (33) is determined
by the sign of E —E„.Let us show that in the limit of
large n the terms with n g n' cancel each other, so that
only the terms with n = n' contribute to the sum. Note
that Eq. (33) can be written in the following form:
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(2) . I„„( 1()—) (E E)

(E E,)(E E )2

r

/ +r
(o)

(E E )3' (34)

It should be emphasized that I„„depends only on the
absolute value of n n' [se—e Eq. (23)]. Then each term in
the first sum in Eq. (34) changes sign by the replacement
n ~ n'. Hence, the Erst sum is zero. The second sum in
Eq. (34) can be presented as

(35)

G.(2) (E) ) (36)

The cancelation, demonstrated above, takes place also in
the higher-order diagrams. This allows one to obtain an
explicit expression for the density of states.

To derive the expression for g(E), we extend the tech-
nique developed in Refs. 25 and 26 to the case of a
two-dimensional system in a magnetic field. The Dyson-
Schwinger equation for the self-energy Z„[Fig. 2(a)] can
be written as follows:

Let us show that this sum apears to be much less than
the third sum in Eq. (23). Indeed, according to the defi-
nition (23), Ii, contains the square of the Bessel function

Jjz(qRL, ). Note, that for large values of k the Bessel func-
tion is exponentially small if its order is larger than its
argument. According to (13), we have qRI, « n, so
that the ratio I„/Io is small. This allows us to extend
the lower limit in the sum over k in (35) to —oo. Then
the terms with k = k' and k = —k' cancel each other
(there is no term with k = 0).

The fact that only the terms with k ( qBL, contribute
to the sum (35) justifies neglecting the difFerence be-
tween n and n' in the argument of the Bessel function
in Eq. (12). Indeed, the corresponding condition can be
written as ~k~ && n/qRI, [see the discussion after Eq. (13)].
For the maximal relevant k ~ qBL, the condition de-
mands that (qRL, ) « n Note, t. hat since q R, and
RL, n / L, the latter condition is equivalent to B, && t-
the same condition that allows one to neglect the phase
factors in the diagrams.

Finally, we have

(b)

I

I

I
I
I

I
I
I

I

/ I

I/
/ I

FIG. 2. (a) The graphical representation of the Dyson-
Schwinger equation. (b) and (c) The simplest diagrams for

the vertex part I'„„.

and I'„~ is the vertex part. The simplest diagrams for
I'„.„are shown in Figs. 2(b) and 2(c). It should be em-
phasized that only neglecting the phase factors, which are
caused by self-intersections, makes it possible to perform
the momentum integration in each diagram. Then the
variables in the Dyson-Schwinger equation depend only
on the numbers of Landau levels. Taking into account
the phase factors would result in the appearence of the
momentum integration in the right-hand side (rhs) of the
Dyson-Schwinger equation. Therefore, Eq. (37) is valid
under the condition B, && t.

To complete the system (37), one should relate the
vertex part to the self-energy. In the case n = n' this
relation has the form

(39)

It can be considered as the discrete analogue of the Ward
identity. For n g n' it can be proved that the following
identity holds:

(37) (40)

where The proof is given in the Appendix. It extensively uses
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the fact that n and n' are large.
Substituting Eqs. (39) and (40) into (37), we get the

following system of linear equations:

Io „"+(E—E„)G„—1= ) ""' G„,

—) "" G„. (41)

where P(t) satisfies the equation

+ P(t) —' t+ ) —"e-'" ' = 0 (43)

with the boundary condition P(0) = 1. The solution of
Eq. (43) can be easily found to be

The second term in the rhs vanishes for the same reason
as (35). Then the solution of the system can be presented
as

Ip ~ 4 .II, . z Fk(u, t&P t =exp — t —sin
kz ( 2 )

(44)

G„(E) = —— dt P(t) exp
l (E ——E„)t l,

p (n (42)
Substituting (44) into (42) and performing the summa-
tion over n, we get

Io
dt exp l

E& — —
2&

~ ) exp —E„t——
2n' &

- n
" 4 ) .II, . z (kcu, t)(

(45)n'';k' (, 2

= 2m@/u„where p is an integer. For such t the

( Vz i
dtexp

l

— + —(E —E„—V)t
l

The sum over n in the rhs represents the system of sharp peaks at t
sum over k in the exponent in Eq. (45) vanishes. Finally we obtain

G(E) = ——) dt exp
l (E —E„—)t — tI.(E),i

p 2n'

i dV

/2' Ip (E) p

dV ( V ) . 1
exp l

—
l )~ +2mIp(E) ( 2Io(E) ) - E —E„—V

I'(E) = Io(E) = V~(e)Jp [CRI.(E)].

The analysis of this expression is performed in the next
section.

(48)

The corresponding expression for the density of states
takes the form

1 . 1 ( (E —E)z&
e( ) 2~t& ).~2~1,(E)

P
l& 2I2(E) )I ( )

with I'(E) given by

Vs(RI, ) = V(RL„Q), (5o)

represents a ring with the width Ag and the radius equal
to the Larmour radius RL, . Note that the condition
R, )) t/n ~, which was extensively used in our con-
sideration [Eqs. (17) and (32)], is nothing but the usual
quasiclassical condition R, )) A&. It guarantees that the
change of the potential across the ring is negligibly small.
In this case the effective potential, acting on the ring, can
be written as

IV. DISCUSSION AND NUMERICAL
RESULTS

Let us give a qualitative derivation of the main re-
sult obtained [Eqs. (47) and (48)]. In the absence of a
magnetic field the wave packet, corresponding to a two-
dimensional electron moving in a smooth potential, rep-
resents a strip with the width of the order of de Broglie
wavelength

Ad, (E) =
v'2~E

with its center following the classical trajectory. Corre-
spondingly, the quasiclassical state in a magnetic field

where integration is performed along the ring, P being
the polar angle. In the presence of the magnetic field
V,p plays essentially the same role as the potential V
at zero field. Namely, we can regard it as the potential
modulating the bottom of the band, so that the density
of states can be written in the following form

(51)

Let us demonstrate that Eq. (51) with Veg, defined by
Eq. (50), leads to the same result, Eq. (47), as was ob-
tained in the previous section. Since V,g is related lin-
early to the Gaussian potential V, its distribution func-
tion is also Gaussian
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1 ( V,zlzz I

where the width I',p is given by

I e=(Ve)

(52)

(53)

g(E) = m (E 111+2) cos 2vrk
i2~52

k i (h ~ 2)
2+2I'2 E

C

(59)

1
Ver=2 ~ d'«(r) b(lrl —&~). (54)

To connect I.',g to the correlation function of the poten-
tial V, let us rewrite Eq. (50) in the following form: It can be seen from Eqs. (58) and (59) that in the region

t « R, (& Bl, the amplitude of modulation increases
with energy. In the case I'(E) )) her, one should only
keep the term k = 1 in the sum of Eq. (59). Then we
have

Q

(2 ),S(g)
d2r 2

e'~'b((r~ —Ri, )2~RL,

Substituting Eq. (54) into Eq. (53) and averaging with
the use of Eqs. (6) and (7), we obtain (E—= 2cos 2n'

iE~, 2

1
xexp

~

—,O' 'R (E)
dq S(q) ~

. (60)

Since the integral over r is equal to JIi(qBL, ), we realize
that I',lr = I', where I' is defined by Eq. (48). Finally,
averaging Eq. (51) with the distribution function (52),
we arrive at Eq. (47).

If the correlation radius is much larger than the Lar-
mour radius, the difference between V,s and U vanishes.
The change of potential along the Larmour orbit is negli-
gibly small. In this case we have V,lr = V. The broaden-
ing of Landau levels is then independent of the number n.
Indeed, if B, )) Bl, the argument of the Bessel function
is small and can be replaced by unity. Then we get

)=(V)= dq

2
gS(g). (56)

Consider now the opposite limit R, « BI. In thi.s
case we can divide the Larmour orbit into the segments
with length B, Within .each segment the potential varies
slowly and has a random value. Then the mean square
potential can be estimated as

Note that the same expression for bg/g follows from the
SCBA approach in the region Ag (( B, (( t, if the condi-
tion ImZ CB+ )) her, is fulfilled [see Eqs. (4) and (19)].
The coincidence of the results can be explained as fol-
lows. The condition ImZ && hu„which guarantees
that the modulation in g(E) is weak, allows one to re-
place the sum over n' in the SCBA equation (16) by the
integral. Then it immediately follows that the imaginary
part of this integral does not depend on the actual value
of Zsc++ in the denominator. Therefore, despite the fact
that in the region l &( R, « Rr, the SCBA approach ne-
glects diagrams of the same order as those it takes into
account, it provides the correct amplitude of the first har-
monics of modulation in g(E). We should emphasize that
our result maps on the SCBA, only if the modulation is

(V')
(57)

0.8
where M Rl./R, is the typical number of segments.
It is seen from Eq. (57) that in this case the width I'

is proportional to Bz ~ E ~ . Such a decrease of
—1/2

the width with energy results from the effective averag-
ing out of the random potential by the electron, moving
along the Larmour orbit. The analytical expression for I'
emerges from the replacement of the Bessel function by
its asymptotics in Eq. (48),

u 0.6
3

k1
~ O.4

2 1'( ) =2. ~.(E)
dq S(q). (58) 0.2—

We see that l B& in agreement with the above qual-
itative arguments.

If the ratio I'/hw, is large, the Landau levels manifest
themselves as a weak modulation in the density of states
on the top of a constant background. In this case it is
convinient to rewrite Eq. (47) in a different form using
the Poisson summation formula,

I I I I I

10
E/m~,

I I I I

FIG. 3. The width I'(E) is shown with N = 2 x 10i i cm
B = 1 T for zo = 50 A (upper curve) and zo = 200 A.

20
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very weak. Indeed, it is seen that the terms with k = 2
in Eqs. (4) and (59) differ exponentially.

Below we present the results of numerical calculations
performed for a 2D electron gas, confined in a GaAs het-
erostructure with the impurity plane separated by a dis-
tance zo from the 2D electron plane. The random po-
tential results from the spacial fluctuations in the dis-
tribution of donors. The Fourier transform S(q) of the
correlation function of random potential is then given
b 12,28

I I I I I I I I I I I I I I I

—2gzp

S(q) = (4') (Na~)E~ ("—:.)
(61)

0. 1 p
1 2

I I I I I I I I I I

3 4
~(T)

FIG. 5. The width I'(B) is shown with N = 2 x loii cm
E = 10 MeV for zp = 50 A (upper curve) and zp = 200 A.
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where a~ and E~ are correspondingly the Bohr radius
and the Bohr energy in GaAs (a~ = 100 A. , E& = 6
meV). The concentration of donors was chosen to be
N = 2 x 101 cm ~. In Fig. 3 we plot the dependence
of I' on energy for zp = 50 and 200 A. . It is seen that
I' varies with E rather slowly at large E The sh. ape of
the density of states versus E is plotted in Fig. 4. Both
curves represent a system of peaks on the top of a con-
stant background with the amplitude slowly increasing
with energy. It is seen that the modulation of the den-
sity of states for zp = 50 A. is less pronounced than for
zp ——200 A, since the increase in zo supresses the short-
range harmonics of random potential. ~s si In Fig. 5 we
present a plot of I' as a function of magnetic field. With
a very good accuracy this dependence is I' ~B. The
magnitude of I' differs about two times for zp = 50 and
2OO A.

o.o
K=I

4D

—0.5—

I I I I I I I I I I I I I I I—1

0 5 1510
E/K~,

20

FIG. 4. Modulation of the density of states 6g(E)/g(0) is
shown with N = 2 x 10 cm, B = 1 T for (a) zp = 50 A,
(b) zp = 200 A.

V. CONCLUSION

In this paper we developed the theory for the density of
2D electronic states with high Landau levels in a smooth
random potential. We have shown that the SCBA ap-
proach can be extended to the case of Bnite correlation
radius of random potential, up to the values R, ( l. The
corresponding expressions for the density of states and
for the self-energy are given by Eqs. (4) and (19). If
R, )) l, the SCBA fails, but the quasiclassical approxi-
mation applies. The density of states represents a system
of Gaussian peaks [Eq. (47)] with the width I', given by
Eq. (48). In the region l (( R, (( Ri the width I' slowly
decreases as the energy increases [Eq. (58)]. In the case of
weak modulation, the expression for the density of states
is given by Eq. (59) and the amplitude of modulation
slowly increases with energy. The dependence of l on
magnetic field is I' ~B. If R, )) Rl. , the width I' does
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not depend on magnetic field or energy, and is given by
Eq. (56).

In our consideration we have assumed that the random
potential is Gaussian. If it is created by impurities with
the finite radius of the potential rp, then the Gaussian ap-
proach is valid only for high concentrations of impurities
N such that Nro && 1. In the opposite case, Nro && 1,
we have R, = rp, and the physical picture depends on the
relation between R, and RL, . For R, ) RL, the motion
of the Larmour circle in the potential of an individual
impurity should be considered.

The situation is difFerent, however, if impurities are
charged. Then the potential at each point represents
the sum of long-ranged Coloumb potentials of individ-
ual impurities. The condition of validity of the Gaussian
approach depends on whether impurities are located in
the plane or they are spaced from the plane by some dis-
tance zp. For zp ——0 one should take into account the
screening of the impurity potential by the electron gas.
Since the screening radius is equal to the Bohr radius
a~, i2 the condition of validity of the Gaussian approach
is N ~ a~ & 1. However, for typical experemental con-
centrations, N 10ii —10iz crn 2, the values N i~z and
a~ are of the same order. The situation improves with
the increase of zp, since more impurities contribute to the
potential at a given point. ~ It is seen that the cor-
relator (61) falls down exponentially as zp increases, i.e. ,
the potential becomes smoother. When zp is larger than
a~, the condition of validity of the Gaussian approach
takes the form Ni~zzp ) l. Under the latter condition
R, zp ) N i~2, i.e. , the electron "feels" the potential
of many impurities. In other words, the discreteness of
impurities is not important.

Let us briefiy discuss the connection between our
results and the experimental data. The 2D den-
sity of states has been investigated in a number of
experiments by different methods. They are the
mesurements of magnetization, sz heat capacity, ss s4

magnetocapacitance, ss and the spectra of radiative re-
combination of electrons. M In most experimentsss I the
width of the Landau levels was found to be an oscil-
lating function of magnetic field. The reason for such
a behavior is the change of the random potential with

I
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APPENDIX

In this appendix we give the proof of the Ward identity
(40). The self-vertex part A„„is defined by the equation

In'n = 1 + An'ni (A1)

and contains all the diagrams contributing into I'„,ex-
cept the simplest one, shown on Fig. 2(b). In the absence
of phase factors [see Eq. (21)] the contribution of all the
kth-order diagrams into A„I„can be written as

B .Indeed, by changing the filling factor of the Landau
levels the magnetic field alters the screening of external
potential. 2s si This effect can be taken into account in
our theory if we introduce the B dependence of screening
into the correlator S(q). In the experiments2 the width
I' did not oscillate with B. The best fit of the data was
achieved, assuming g(E) to be the sum of Gaussians with
the width I varying with B as ~B. Such a dependence
on magnetic field can be obtained in the frame of the
SCBA approach. ii'iz However, the semielliptic shape of
the density of states with a gap between Landau levels is
completely inconsistent with the experimental data. Our
expression for the density of states results in the Gaus-
sian broadening of Landau levels and provides the y B
dependence of I', as follows from Eq. (58). The decrease
of I' with energy is rather slow and becomes noticeable
only if a large numbers of Landau levels is considered.
For a spacer thickness zp = 200 A the magnitude of I',
as it is seen from Fig. 5, is I' 1 meV, in agreement with
the experimental value I' 1—3 meV, reported in Ref. 32.
Note, however, that the parameters of the sample, stud-
ied irl Ref. 32 (zp = 400 A. , N = 5.4 x 10 cm ), are
somewhat difFerent from those used in the numerical cal-
culations.

A(iv)
N —1

*+' (E —E,) (E —E,)(E —E,) .(E —E )
' (A2)

where N = 2k, C„„ is defined by Eq. (15) and the first sum in (A2) is performed over all internal indexes. The
brief notation Dq stands for the following expression:

N

Dq = ) ' (2n.) b(q;+ q;)S(q;),
diagrams i= 1 ij

(A3)

where the product of k 6 functions performs the contraction of k pairs of C„„forming the lines of a given diagram.
The analytical expression for each line is given by Eq. (22). Using the relation

1

(E E )(E E )

1 ( 1

E —E (E —E
1

E —E,
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one can rewrite Eq. (A2) in the following form:

N —1

E —E„(E—E,) (E —E, , )

( 1 &m.„-m.+. m~-n

,.) (E —E,+.) "(E—E ~)
(A5)

Performing summation over rn, +i in the first term, and over rn, in the second term in parentheses we get

N —1

~(
n' —mq ' ' ' m, m, +q—+n n' ' ' —' mpf jn—

—E E (E E) (E E„,)
—m 1 +m ' —1 m +'ll —n '+m N 1—

(E E ).. . (E E )
(A6)

where we used the notations m~ ——n, mo ——n . It is easy to see that only terms with i = N —1 in the erst sum, and
with i = 1 in the second sum of (A6) survive. All other terms cancel each other. The remaining expression reads

(E —E)A„,„=foq)
( ) (

"'
)

—(n' n)
(m}

The rhs of (A7) is nothing but Z„, —Z„.Thus, we arrive at the identity

( 7)

which with (38) and (Al) leads to Eq. (40). Note that the cancelation of the terms in (A6) is completely due to the
fact that coefBcients C„„~depend only on the difference n —n . Therefore, the condition of validity of the idendity
(A8) is n )) l.
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