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It is found that the one-band Hubbard model, in the weak- to intermediate-coupling regime, can ac-
count qualitatively for magnetic-neutron-scattering experiments in the paramagnetic phase of
La,_,Sr,CuO, when second-neighbor hopping is included. However, the peak positions, which in two
dimensions are determined mostly by the band structure, cannot agree quantitatively with the experi-
mental results when concentration-independent band parameters are used. More importantly, while the
energy scale of roughly 150 K seen in the experiments can come from second-neighbor hopping, it arises
most naturally if one is very close to a magnetic instability. The proximity to a magnetic instability can
be checked experimentally by measuring the relative size of the lattice equivalent of 2k anomalies that
appear closer to the origin in wave-vector space. Such lattice-2kr anomalies would allow magnetic neu-
tron scattering to become a spectroscopic tool for the two-dimensional Fermi surface. Finally, exact re-
sults are also given for the imaginary part of the Lindhard function on the square lattice.

I. INTRODUCTION

High-energy experimental probes of high-temperature
superconductors, such as x-ray-absorption spectroscopy
(XAS), electron-energy-loss spectroscopy (EELS), and
. photoemission spectroscopy all seem to be consistent
with an effective one-band Hubbard Hamiltonian! which
in the electron picture takes the form

H= |-t 3 clicaj—t’ > ch(,j-i-H.c.
G, i,

+U3 nin;, . (1)

Various estimates of the parameters, based both on
band-structure calculations? and comparisons of experi-
ments with cluster calculations,! usually yield sizable
values for the next-nearest-neighbor hopping ¢’, as well as
strong on-site repulsion U: For La,_ Sr,CuO,, t=0.43
eV, t'=—0.16t, and U=9.5¢ are typical values.

It is still an open question whether this Hamiltonian
correctly describes the low-energy physics of high-
temperature superconductors, even normal-state proper-
ties, let alone superconductivity. However, it is certainly
a more generic model than the #'=0 model where Van
Hove singularity and nesting all coincide at exactly half
filling. More importantly, from a perturbative point of
view the ¢'#0 model is at least a better starting point for
low-energy properties than the usual #'=0 model.
Indeed, the sign and doping dependence of the Hall
coefficient, thermopower, as well as the qualitative depen-
dence of the uniform magnetic susceptibility on tempera-
ture and doping are all correct when ¢’ differs from zero,
contrary to the ¢'=0 case where it is hoped that all these
properties will acquire the correct behavior in the
strong-coupling limit. There have been several theoreti-

cal studies of this model wusing slave-boson ap-
proaches.’ ™
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For quantitative comparisons between low-energy ex-
periments and theory, we believe that the magnetic struc-
ture factor is an ideal quantity to study. Indeed, it can
both be computed reliably and measured in detail as a
function of wave vector and frequency. On the experi-
mental side, there have been several detailed neutron-
scattering measurements of this quantity in the new su-
perconductors.®”!!  Nuclear magnetic resonance'>”'*
(NMR) is also a zero-frequency probe of the magnetic
fluctuations but we concentrate on the neutron-scattering
results whose interpretation does not require extra pa-
rameters such as hyperfine couplings. On the theoretical
side, Monte Carlo calculations have shown that up to the
intermediate-coupling regime, standard generalized
random-phase approximation (GRPA) calculations give
extremely accurate results for the magnetic structure fac-
tor as long as one accounts for a renormalization of the
interaction U which comes from maximally crossed dia-
grams.!>!¢ Physically this Kanamori-Brueckner renor-
malization comes about because of two-body correlations
which reduce the amplitude of the two-body wave func-
tion for two antiparallel spins on the same site. This
means that even in the intermediate-coupling regime,
which is generally believed to be relevant for high-
temperature superconductors.'?!*!7 723 spin-spin correla-
tions can be accurately calculated from the weak-
coupling approach with a renormalized value of U. The
renormalized value of U can be estimated as shown in
Ref. 15. Too close to half filling, however, large critical
fluctuations in two dimensions should lead to the failure
of the above approach.

Since our calculation should be valid up to the
intermediate-coupling regime, disagreement with experi-
ment would suggest either that it is fundamental to in-
clude the fluctuations responsible for the absence of
finite-temperature long-range order in two dimen-
sions,'*232* or that only the very strong-coupling regime
is relevant.”> 2% The only possibility left outside of these
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two is that the one-band Hubbard model does not pro-
vide an accurate description of high-temperature super-
conductors. The calculations will be confined to the me-
tallic phase.

In YBa,Cu;0,_,, where numerous experiments have
been performed,” ™ !"'?° the theoretical analysis is compli-
cated by the presence of chains which lead to a more
complex band structure.” Furthermore, the effective
one-band Hamiltonian for this material has |¢'|=0.5¢,
leading to a 45° rotation of the Fermi surface and to a
different class of problems. We thus concentrate instead
on the simpler La, _,Sr, CuO, compound with |¢'| <0.5¢.
The main features of the experiment which we try to ex-
plain are illustrated in Fig. 1, taken from Ref. 6. One can
see clear incommensurate peaks whose intensity, relative
to the intensity at (m,7), has decreased by a factor of
about 2 when the energy transfer is around 15 meV. The
peaks are located at {(t#F 8w, L+m),(t7, £7F8m)}, in
units where the lattice spacing is unity. (In the scan of
Fig. 1, only two peaks show up.) The questions are the
following: (a) Why do the peaks appear further away
from (m,7) than one would expect from the simplest
t’=0 model? (b) Where does the small energy scale of 15
meV come from? In Refs. 30 and 31 the position of the
peaks was explained by a three-band model fit to the true
band structure, while the energy dependence was as-
cribed purely to self-energy effects which arise in the
marginal Fermi-liquid (MFL) approach.39732

In Sec. II, we discuss the noninteracting limit of the
model to remind the reader that from a perturbative
point of view, the t'70 is a better starting point for the
description of high-temperature superconductors than
the conventional nearest-neighbor model. We also ex-
plain that, in two dimensions, it is mostly the shape of the
Fermi surface in the noninteracting limit which deter-
mines the location of the intensity maxima in low-energy
neutron scattering. This is why in Sec. IIl we examine
the structure factor of the system with no interaction
both in the case of vanishing (¢'=0), and in the case of
finite next-nearest-neighbor hopping ¢’. We call the max-
ima in the noninteracting limit, lattice-2k; anomalies.

Laq,ggS70.14CU04
Q= Qy (m, 7) + (¥2) (x, %)
T=35K

RIS TASE

(2x, 2n)

b (2x. 0)

INTENSITY (cts/40 min)

0,0)

FIG. 1. Wave-vector scan of the magnetic structure factor
for various energies, as measured experimentally (from Mason
et al., Ref. 6).
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The largest of these is determined by what we call pseu-
donesting. The various energy scales appearing in this
noninteracting limit are discussed and argued to be gen-
erally too large, except for special values of ¢’ and filling.
In Sec. IV, we examine the effects of the Hubbard in-
teraction, paying special attention to the spin-density-
wave paramagnon that appears because of the on-site
Coulomb repulsion. The proximity to zero frequency of
an overdamped collective mode which softens at the in-
commensurate transition may give the small energy scale
found in experiment. If this explanation is incorrect, as
suggested, for example, in the MFL approach,®
neutron-scattering experiments should clearly show con-
comitant incommensurate features nearer to the origin in
reciprocal space.?? Finally, in the last section, we make
detailed comparisons with experimental data and suggest
further key experiments. The first appendix contains the
exact result for the imaginary part of the Lindhard func-
tion on the square lattice in the case of nearest-neighbor
hopping, while the two other appendices contain various
other analytical results in the case of finite ¢'.

II. BAND-STRUCTURE EFFECTS
AND PSEUDONESTING

In the noninteracting limit, with unit lattice spacing,
the dispersion relation is given by

e(k)=—2t[cos(k, )+ cos(k,)]
—2t'[cos(k, +ky)+ cos(k, —k,)]
= —2t[costk, )+ cos(k, )] —4t’ cos(k, ) cos(k, ) .
@

The corresponding Fermi surface is plotted in Fig. 2 for
various fillings. We restrict ourselves to |¢'| <|—0.5¢|
appropriate for La,_,Sr, CuO,. In the opposite limit the
Fermi surface topology changes completely and results
are very different. In Fig. 2, the second-neighbor hop-
ping parameter is chosen as ¢'=—0.16¢f, a value for
La,_,Sr,CuO, which is consistent with local-density ap-
proximation (LDA) calculations and comparisons with
x-ray-absorption experiments.! At half filling, orbits are
open whereas sufficiently far from half filling, the orbits
close again. In the intermediate case, the Fermi energy,
equal to 4¢', lies at a Van Hove singularity, as illustrated
in the density-of-states plot of Fig. 3(a). That single-spin
density of states is given by

1

N(w)=
@ 2r [t —t'w]?

172
16t2—(w+4¢')?
16(:2—t'w) ’

(3)

where K(x) is the complete elliptic integral of the
first kind. The band extends in the range
—4t—4t'<w=<4r—4¢'.

It should be emphasized that a negative second-
neighbor hopping ¢’ suffices to give the correct tendency
to the following: (a) The Hall coefficient, which is posi-
tive for the open orbits encountered at small doping and
changes sign at large doping when the orbits close
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sufficiently. (b) The doping dependence of the uniform
magnetic susceptibility. Indeed, in this noninteracting
limit the latter quantity is simply a measure of the density
of states which here clearly increases with hole doping
(Fig. 3) instead of decreasing as in the nearest-neighbor
model. (c) The temperature dependence of the magnetic
susceptibility which does have a maximum at progres-
sively lower temperature as the doping increases [Fig.
3(b)]. Other quantities have also been discussed in Ref. 5,
for example. Although there is no quantitative agree-
ment with experiment in this noninteracting limit, at
least the tendencies and signs of the effects are correct,
contrary to the model with ¢'=0 which, in the nonin-
teracting limit, has the wrong sign for all the effects men-
tioned above.

|
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As can be seen from Fig. 2(a) there is no nesting at half
filling so that, unlike the usual #'=0 case, it is not obvi-
ous whether in the finite negative ¢' case there is antifer-
romagnetism at this filling. In fact, antiferromagnetism
does appear for negative ¢’ as long as U is sufficiently
large, and ¢’ is larger than —0.25¢. (See Ref. 33 and Sec.
III A).

We will be mostly interested in the imaginary part of
the magnetic susceptibility x''(q,), as measured by mag-
netic neutron scattering. In two dimensions, this quanti-
ty is particularly sensitive to band-structure effects as
noted before.»% In the zero-temperature noninteracting
limit, we have (ug=1, kz=1, #i=1, S=1 and in all the
figures, but not the equations, t =1)

Xo(a,0)=1/8m) [ dk, [ " dk,8lo—e(k+q)+e(k)]{f[ek)—p]—fle(k+q)—u]) @)

0 T
— u=4t'=-0.64

_____ M=, =—1.09
.............. M:MC:_i'Zl

FIG. 2. (a) Three types of Fermi surfaces encountered when
second-neighbor hopping ¢’ is in the range —0.5¢ <t'<0. The
specific case plotted is #’= —0.16¢. Near half filling the orbits
are open (solid line), then as the system is doped they close, but
there is a change in curvature as one goes around the Fermi sur-
face (short-dashed line). Finally, the Fermi surface is closed and
has a single curvature (dashed line). (b) Limiting orbits between
the three types of cases identified in (a). The solid line is at the
boundary between open and closed orbits and corresponds to
the Fermi surface lying at the Van Hove singularity. The long-
dashed line is at a bare chemical potential u; [see Eq. (20)]
where the change in curvature of the Fermi surface, as seen
from (q,,) scans, is no longer observable. The short-dashed
line is at a bare chemical potential u. [see Eq. (B7)] where the
change in curvature of the Fermi surface disappears, as seen
from (q,q) scans.
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FIG. 3. (a) Density of states when ¢'= —0.16z. [See Eq. (3)].
When the Fermi level lies in region 1, orbits are open, in region
2 they are closed but there is a change of curvature, and when
the Fermi level is in region 3 the Fermi surface has a single cur-
vature. When the Fermi level is in region 4, orbits are open and
a kinetic gap reappears in the magnetic structure factor around
(m,1), as is the '=0 model. (b) Uniform magnetic susceptibili-
ty of the noninteracting system when #'= —0.16¢. Clearly this
is a better perturbative starting point than the ¢’ =0 model since
the magnetic susceptibility increases upon doping and the max-
imum in the temperature dependence moves to lower tempera-
tures as observed experimentally. The temperature scale for the
maximum is also small. The increase in the magnetic suscepti-
bility upon doping is easy to understand from the fact that in re-
gion 1 in (a) the density of states increases upon hole doping.
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where f[e(k)—pu] is the Fermi-Dirac distribution. For
the ideal case of a circular Fermi surface with dispersion
relation =k ?/2, we have,

X6(q,0)=1/(4mg"){V 2uq*—[w—(g>/2)]
—V2uq’—[o+(g%/2)1?} . 5)

In the above result, © functions which insure positivity of
the arguments of the square roots should appear. To sim-
plify the notation, we adopt from now on the convention
that a term vanishes whenever it contains a square root
with a negative argument. In the limit || << |u—g?/8|
we may write,

Xolgo) 1 1
4mv2q [p—q?/81"?

lim lim
0—0 w<<|y-*q2/8| @

(6)

Figure 4 illustrates how this square-root singularity de-
velops as the zero-frequency limit is approached. Clearly
the singularity near ¢ =2k is a signature of the Fermi
surface. Because of the restriction |w|<<|u—q?/8|,
however, it is important to notice that the maximum in
X0(q, )/ near 2k grows, in fact, as 1 /V w. The singu-
larity (6) in x,(q,w)/w is basically the two-dimensional
version of the physics which eventually leads to Kohn
anomalies in phonon dispersion relations The shape of
Xo(q,®) near 2k in Fig. 4, a 2k, anomaly, is characteris-
tic of the two-dimensional circular Fermi surface and will
be encountered in the lattice case as well. The two-
dimensional results are contrasted with one and three di-
mensions in Appendix A.

Anticipating results which will be discussed in more
detail later, consider now the usual one-band nearest-

neighbor problem, with the well-known “rounded-
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FIG. 4. Imaginary part of the spin susceptibility for free
two-dimensional fermions. One sees in the top two panels that
as the frequency decreases, the feature at g =2k sharpens.
This is more clearly seen in the lower two panels which show an
enlargement of the two corresponding g =2k regions.
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square” Fermi surface. The result for x;(q,®) may be
computed analytically, as shown in Appendix A. The
low-frequency limit of this result is illustrated in Fig. 5(a)
along the high-symmetry directions for a doping
x =0.14. Since the length of the vector joining opposite
pieces of the Fermi surface depends on direction, one no-
tices that in each of the three directions considered, there
is a distinct large-q square-root singularity. The strength
of the singularity in Y, (q,) in Fig. 5(a) is twice as large
along the zone edge as it is along the diagonal direction.
(See Appendix A.) The (0,0) to (0,7) direction is special
because the corresponding vector is larger than 7 and
hence it folds back in the first Brillouin zone, correspond-
ing physically to umklapp scattering. In an extended
zone scheme, this singularity (indicated by arrow number
two in the figure) corresponds to scattering between the
two rounded corners of adjacent Fermi surfaces. This
picture is confirmed by the fact that the curvature in
Xo(q,®) is in a direction opposite to that found in the cir-
cular Fermi surface case of Fig. 4. In fact, close to the
singularities, the shape of x; (q,w) is always similar to the
case of the circular Fermi surface, except in the cases
where umklapp scattering or holelike effects produce a
mirror image.

It is important to remember that in higher dimensions
X0(q,w) decreases monotonically towards 2k, leaving
interactions mostly responsible for structure which may
appear in the magnetic structure factor. By contrast, in
two dimensions this is not the case: Interactions mostly
modulate the intensity of various sharp features which
are already present in the noninteracting limit [Figs. 5(b)
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FIG. 5. Imaginary part of the spin susceptibility for the
nearest-neighbor one-band Hubbard model. (a) Exact result for
the Lindhard function (see Appendix A). (b) and (c) were com-
puted for the parameters indicated in the figure on 1000 X 1000
lattices with Lorentzian energy-level broadening 7=0.02t.
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and 5(c)]. These singularities, or lattice-2k, anomalies,
should appear in magnetic neutron scattering as clear sig-
natures of the Fermi surface. In the noninteracting,
zero-frequency limit, the strength of the singularity at a
given q is generally largest when the curvature of pieces
of the Fermi surfaces joined by this q is smallest. This is
quite different from nesting, which occurs when a given q
maps a finite segment of the Fermi surface into another.
Nevertheless, we will designate the q with the largest
singularity (largest lattice-2ky; anomaly) as the
pseudonesting vector since nesting is recovered in the lim-
it of zero curvature of the Fermi surface. The beginning
of the next section expands on this concept of pseu-
donesting, and classifies all possible types of singularities
in the noninteracting limit.

III. MAGNETIC STRUCTURE FACTOR FOR U =0,
IN THE T — 0 LIMIT

In general, the magnetic structure factor is obtained
from )'’, the imaginary part of the spin susceptibility,
through the fluctuation-dissipation theorem:

Xo(q,0)

[1—exp(—Bw)] ~ ™

So(q,0)=2

Given the importance of the noninteracting limit in
determining the position of the peaks, we consider it first.
Taking the zero-frequency limit, and expanding in
powers of ® in the most direct manner leads to the fol-
lowing asymptotic behavior for the structure factor of the
noninteracting system:

max(

So(q)zz—:’m)fjﬁdkx f_ﬂﬁdkyS{[e(k+q)—,u]+[e(k)—

In this form, it is apparent that the structure factor will
depend on how the condition £(k+q)= —&(k) is satisfied
[&(k)=e(k)—pu]. When this condition is satisfied for a
finite range of k, we have nesting. At the edge of the 2kp
anomaly, the Fermi surface is displaced by a vector q
such that it becomes tangent to the original Fermi sur-
face instead of intersecting it at two points. The smallest
curvatures tend to give the largest singularity, what we
call pseudonesting. Mathematically, this may also be
seen by changing variables in the previous equation so
that

max(T,w) 1

So(q)=
° 4 7 Ve —a2 X Vi Ex +ar0l

for min(T,w) << max(T,w)<<|u|, (11)
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max(T,w) = 7
Sol@=", % [ 7 dk, [ dk,8le(k)—e(k+q)]

X 8[e(k)—p]
if min(7T,0) << max(T,0)<<|u|l. (8)

The same kind of expansion leads to the asymptotic re-
sult for x"'(q,w) /o discussed in Sec. II. Hence, the above
expression is also valid in the same limit, in particular,
the square-root singularities in the wave vector that will
be encountered later should be interpreted in the manner
discussed in Sec. II: even at T=0, the frequency leads to
a cutoff as long as it is finite.

When ¢’ =0, the asymptotic result, Eq. (8), becomes in-
correct also when the temperature or the frequency be-
come comparable to the absolute value of the chemical
potential, taken as zero at half filling. For temperatures
much higher than |u|, thermal excitations are spread
over an energy interval of order T > | ,ui around the Fermi
energy u and the bare structure factor becomes quite in-
sensitive to the value of the chemical potential, behaving
essentially as if |u| were zero. In this case the imaginary
part of the bare susceptibility is largest when ¢ is close to
Qap=(m,7) (the null wave vector notwithstanding) and
obeys a MFL-type of scaling,*? that is,

sinh(Bw /2)
cosh(Bu)+ cosh(Bw /2)
—(m/4)N(w/2)tanh(Bw /4) , (9)

(m/4)N(w/2)

where N(g) is the single-spin density of states. This is the
regime of nested Fermi liquids discussed by Ruvalds and
Virosztek.?’ The corresponding discussion when ¢'70 is
more complex, so it is reported in Sec. III B 2.

It is also instructive to rewrite (8) for the structure fac-
tor as

1]}8e(k) —e(k+q)]

for min(T,w) << max(T,w) << |u| . (10

where the sum extends over the set of distinct points k; in
the first Brillouin zone such that for a given q,
€k —q/2 = Ek+q,2 With both k—(q/2) and k+(q/2) on the
Fermi surface (e, _g,,t€cyq,,=2u). The Jacobian has
been written in a form which makes it clear that when
q=q, joins two points of the Fermi surface whose
tangents are parallel, the cross product vanishes, leading
to a singularity in the structure factor. There are three
different types of such wave vectors q,. The first type is
the trivial null wave vector which maps the Fermi surface
onto itself. The second type consists of the wave vectors
qo that connect pairs of parity-related points of the Fermi
surface. Since for these points q has to cross the origin
(0,0), these wave vectors (and their umklapp) are defined
by the equations e(qy/2)=p, e€[qy/2+(m7)]=u,
e[qo/2+(m,0)]=pn, €[qy/2+(0,7)]=pu. Finally the last
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type of wave vector only occurs when the curvature of
the Fermi surface changes sign. These wave vectors link
tangent points of the Fermi surface without going
through (0,0). This type of solution will occur for a range
of values of u when ¢t'40. However, if t'=0, the curva-
ture of the Fermi surface is always the same, so in this
case the maxima of the bare structure factor are at
qp=0, cos(qq,/2)t cos(qg,/2)=p/2t, and cos(qg,/2)
*coslqq, /2)=—u/2t.

To continue our discussion of pseudonesting, it is in-
structive to find the functional form of the singularities
near the vectors qo. This may be done by expanding Eq.
(11) around q,. For infinitesimal displacements from qo,
the shape of the pieces of Fermi surfaces which touch
can, in general, be approximated by circles. Define a dis-
placement Aq, measured from the point where the two
circles are tangent, and a unit vector P parallel to the line
joining the two centers of the circles when they just touch
(at qp). To fix a sign convention, it suffices to think of one
of the circles as fixed when the other is moved by Agq.
Then, we take the direction of P pointing from the center
of the circle which will be displaced towards the center of
the fixed circle. In the simplest case, Aq is along P and
one obtains, away from the Van Hove singularities,

R.R_ 172
R, +R_

1
V2]Aq] ’

max(7T,w)

S +Aq)=
0(@+Aq) 270 v

(12a)

where v, are the Fermi velocities at, respectively, €y 4,2
and gy 4/, while R are the absolute value of the k-space
radii of curvature of the Fermi surface at the correspond-
ing points. Note that Sy(q,+Aq)=0 when Aq points in
the direction opposite to p. The functional form of the
singularity is the same as in the case of free electrons in a
continuum, where R, =R _, v, =v_. These two equali-
ties are also satisfied, in general, when q, is a vector that

max(7T,o)
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connects parity-related points of the Fermi surface.
Clearly, the strength of the singularity depends on the ra-
dius of curvature of the Fermi surface at this point, as we
stated above. When the Fermi surface exhibits changes
in curvature, it is, in principle, possible to find situations
where R . R _, but this situation is not encountered in
the high-symmetry directions considered in the rest of
this paper.

For an infinitesimal displacement Aq along an arbi-
trary direction, define ¥ as the angle between the vectors
Aq and P. As long as cosy>>|Aq|/(2R . +2R_), we
find,

SO(QO+AQ)
172
_max(T,w) RiR_ 1 (12b)
2mv,v_ |RL+R_ V2[Aq] cosyp

Otherwise, Sy(qy+Aq) vanishes. This last result is just
another way of saying that just the component of dis-
placement Aq along P contributes.

At first sight, it seems that while the presence of the
lattice allows umklapp processes and pseudonesting, the
functional form of the singularity is always 1/V'|Aq|. In
fact, the lattice allows one more possibility when there
are changes of curvature in the Fermi surface. Indeed, as
discussed after Eq. (11), it becomes possible in this case to
find certain singular q, where the Fermi surfaces which
become tangent are curved in the same direction, con-
trary to the last case (12b) where they were curved in op-
posite directions. (See Appendix B and vector Qs in Fig.
21 for an example.) We define p as above. We then ob-
tain, for a general displacement Aq away from qq,

1

Solget+Aq)=

We obtain zero when the argument of the square root is
negative. It is clear that, when ¥=w/2, or when
R,.=R_, a new 1/|Aq| type of singularity is encoun-
tered. In fact, when R =R _, the direction P is not
defined, and we should take ¥=m/2 in the above expres-
sion. (In the perfectly circular Fermi surface case, this
type of 1/|Aq| singularity occurs only for q,=0.) As dis-
cussed in Appendix B, this new type of singularity is en-
countered when #'70 for a certain range of fillings.

Obviously, still more singular behavior of Sy(q,+Aq)
is possible when the pieces of Fermi surfaces which touch
become parallel over some range. This possibility is en-
countered when ¢'=0, p=0, and for ' < —0.5¢, a case
not discussed here.

2mv v [—2|Aq|cos(|R . —R_|/R R _)+(|Aq|sing)*/R R _1"* "

(12¢)

A. Bare structure factor
with nearest-neighbor hopping only

1. Zero-frequency limit

For frequencies less than 2|u| and ¢'=0, there are two
remarkable sets of lattice-2kr anomalies. One with four
equivalent wave vectors centered about the origin (0,0)
and the other one, also with four equivalent wave vectors,
centered about the antiferromagnetic wave vector Quf.
It is the latter feature which has been observed experi-
mentally in detail,>’ and this is the one we will concen-
trate on. However, as will be discussed in more detail
later, the relative size of the small and large wave-vector
lattice-2k anomalies could be a way to confirm or re-
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ject®® the MFL suggestion that one must consider the
physical system as being far from a magnetic instabili-
ty. 3032 _

Equation (11) can be solved exactly for arbitrary q.

J
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The result is written in the following form, using again
the convention that there are implicit © functions which
lead to the vanishing of any term which would lead to an
imaginary number:

’ (13a)

S(q)= max(T,w) [sin(qx/2)sin(qy/2)]1/2
d 16me*  {[(u/2t)sin(g, /2)sin(q, /2) >+ cos®(q, /2)— cos*(g, /2)]*} 172
1 1
[(1=x2)(1—p2) "% [(1—x2)(1—p2% )4
where

(u/2t) coslg, /2) sin*(g, /2)% cos(g, /2){[(u/2t) sin(q, /2) sin(q, /2)]*+[ cos*(g, /2)— cos¥g, /2)]*} /2

X4 =

= cos’(g, /2)— cos*(g, /2)

>

(13b)

_ (u/2t) coslg, /2)sin’(q, /2)= cos(q, /2){[(1/2t)sin(q, /2) sin(g, /2)]*+[ cos*(gq, /2)— cos™(q, /2)]2} /2

Y+

cos*(q, /2)— cos(q, /2)

(13c¢)

Note that Eq. (13) is ill-behaved when g, or g, is zero and when g, is equal to gy- The limiting behavior in these two

special cases are, respectively,

(T,w) 1 1
So(g,0)=—"2X"1, + 14
o'd 167t %sin(q /2) | {1—[ cos(q/2)—p/2t*}'7? {1—[ cos(q/2)+p/2t ]}/ (14a)
and
(T,w) cotan(q /2) 1
So(g,q)=""2% . (14b)
0 4mt lul  Veoskq/2)—p2/16

For the ¢’=0 limit, the Hubbard model has particle-hole symmetry, so the results are valid for both hole doping and
electron doping. Near the antiferromagnetic wave vector the maximum of the structure factor is located on the zone

edge, hence we set g, to 7. Equation (13) then reduces to

_ max(T,w)

(15)

SO(qx’Tr)_ 87rt2

where 0=q, <7, |u| <2¢, and T, << |u/.

Thus, asymptotically close to zero temperature and
zero frequency, the bare structure factor has the largest
square-root singularity at the pseudonesting wave vec-
tors??*  Q,, located at {[+2cos”(—p/2t),7],
[m,+2cos™ (—u/2t)]}, as illustrated in Fig. 6. As dis-
cussed in Sec. II, this square-root singularity is charac-
teristic of two-dimensional systems.

Equation (15) also shows that close to the antiferro-
magnetic wave vector, the bare structure factor has a gap
in g space for wave vectors greater than the pseudonest-
ing wave vector. Geometrically the gap simply means
that wave vectors of the form (Xgq,,7) with g, larger
than 2 cos™!(—p/2t) cannot be fit inside the Fermi sur-
face. This gap is the extension in g space of the kinetic
gap discussed by Bulut and Scalapino.!” The small wave-
vector lattice-2k, anomalies discussed earlier are located
at {[£2cos™ (1 —|ul/2¢),0], [0,+2cos '(1—|ul/2¢)]}
as can be seen from Eq. (14a).

[cos®(q, /2)—(u/2t)*)'?[ cos®(q, /2)+(u/2t)* tan’(q, /2)]'/%

2. Frequency dependence

Since '’ is an odd function of frequency, we consider
only positive values of @ without loss of generality. From
the energy conservation constraint in Eq. (4) it can be
shown that the imaginary part of the susceptibility y” is
zero for frequencies greater than

o =4t[sin(g, /2)+ sin(g, /2)] . (16)

At zero temperature the Fermi-Dirac distributions be-
come O functions, which force xg(q,,7;®) to vanish also
for wave vectors g, greater than gf,

1

4 _ o

2 (17)

g5(w)=2cos™

if ©<0. At Qpg={(m,7), the imaginary part of the sus-
ceptibility is thus zero for frequencies less than 2| ,u|, as
shown by Bulut and Scalapino.!” Thus, Eq. (17) defines
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FIG. 6. Limiting value of the bare structure factor Sy(g, ) di-
vided by o as a function of g, for g, = (see Eq. (15)]. Doping
is x=0.14. One can see the kinetic gap and near that gap the
same square-root singularity as in the free-fermion case (Sec. 1I
and Fig. 4).

the boundary of the extension of their kinetic gap into the
(gx,q, =m;o) plane. The full boundary of the kinetic gap
in the region » = 0 is simply

9x

k2

+
cos 2

CcOs

@_ = max lO,——4t —2#} (18)
for u<0. In other words, in the positive-frequency re-
gion, when o is less than @_, X;(g,,g,,®) vanishes at
zero temperature. We will refer to this region simply as
the “kinetic gap.” It fills in slowly as the temperature is
increased, and disappears when the temperature is of or-
der 2|u|. This kinetic gap may correspond to the “spin
gap” in the neutron-scattering literature.!"® It plays a
key role for the collective mode described in Sec. III and
survives in certain cases even in the presence of second-
neighbor hopping.

The full frequency and momentum dependence of the
zero-temperature bare structure factor can be calculated
exactly for any wave vector, but, in general, a quartic
equation must be solved. We thus restrict ourselves to
work along the three high-symmetry directions (g,0),
(q,9), and (q,m) (Figs. S and 7) where only a quadratic
equation needs to be solved to express the result in terms
of elliptic integrals (Appendix A and Ref. 25). The fre-
quency dependence of the Q,r and Q,, directions are of
particular interest to us. As mentioned by Bulut and
Scalapino,17 the structure factor at (m,7) is simply

1/(16m)0(0—2|u K ({1—[w/(8)]*}1/?),

where K(x) is the complete elliptic integral of the first
kind. At the pseudonesting wave vector Q,,, as long as
470, the maximum in the structure factor is proportion-
al to the square root of the frequency
So(Q,,0)=t Nw/|u)'? if ®<<|ul. This w'/? depen-
dence is the same as that discussed in the circular Fermi
surface case in Sec. II. When p=0, (,7) is a nesting
vector and the bare structure factor drops abruptly to
zero at 0 =0.

Other than the Fermi energy, when t'=0 the energy
scale introduced by band-structure effects close to
q=Q,F is equal to 2|u|, which corresponds to twice the
difference between the Fermi energy at half filling, and
the Fermi energy at the filling of interest. For the experi-
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mentally relevant dopings, this is an energy scale five to
ten times larger than the observed scale of about 150 K.

B. Bare structure factor
with next-nearest-neighbor hopping

1. Zero-frequency limit

The energy spectrum of the tight-binding Hamiltonian
with a next-nearest-neighbor hopping term is given by
Eq. (2). We work with ¢’ negative in the above expression
because this corresponds to the sign suggested by LDA
calculations.!* The case of positive ¢’ is also covered
since, for a bipartite lattice, the canonical particle-hole
transformation c;,—(—1)’c;5 (p=1 on one sublattice,
and p =0 on the other) maps the Hamiltonian onto itself
with a change of sign of both ¢’ and . We only consider
cases where the hopping amplitude |¢'| is less than ¢ /2 in
order to avoid any change in the symmetry axes of the
Fermi surface.

Next-nearest-neighbor hopping alters the curvature of
the Fermi surface for values of the chemical potential
close to zero. It also changes the dependence of the
chemical potential on the density of electrons. The bare
structure factor in the low-frequency limit can, in princi-

0.05
w=0.02
0.04 x=0.14
3 0.03
=
=© 0.02
0.01 ML J
0.00
(0,0) (,0) (m,m) (0,0)
0.20 . .
‘w=0.20
Ao.15 3 x=0.14
3
Zo.
0.
0.00 : :
(0,0) (47,0) (7r,7v) (0,0)
0.50 : T
: w=0.595
0.40 ; x=0.14
3 0.30 '
=
=20.20
<
0.10
0.00 * "'
(0,0) (,0) (sr,7) (0,0)

FIG. 7. Exact result }" for two-dimensional tight-binding
electrons along the highly symmetric directions (q,0), (g,7),
and (q,q). Energy is measured in units of z. On the top graph
there is an umklapp lattice 2k, anomaly in the (g,0) direction
in addition to the lattice 2k anomaly at (7+8,7). One also
sees that there is a region of q near (m,7) where ¥"'(q,w) van-
ishes, allowing the existence of a collective mode. The middle
panel shows that the peaks broaden as w increases at the same
time as the kinetic gap decreases around q=(, 7). In the bot-
tom panel, one sees that the (7, 7) point becomes the maximum
when o > 2y, as in the numerical calculation of Fig. 11.
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ple, be calculated for any wave vector q but the result in-
volves solving a quartic equation, except along the three
high-symmetry axes (q,0), (q,q), and (g,7). In the
present section, we restrict ourselves to the direction

J

_ max(T,w) 1
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(g,m). Results for the other two high-symmetry direc-
tions also contain rich information on the structure of the
Fermi surface, as shown in Appendix B. Setting g, =7
we obtain

Solgx,m)= 82

{(1—2'u/t*? cos®(q, /2)—[4t'(u—4t") /t*]sin’(q, /2)}'/?

1+(2¢t'/t) A~ cos(q, /2)
([1=(A7)PN{[1+(2¢'/t) A~ cos(g, /2)]*—[1—( 4 ~)*]sin%(g, /2)})'?

1+(2t'/t)A ™ cos(q, /2)

+
([1=CATP]{[1+(2t' /1) A" coslg, /2)2—[1—( A4 T)?]sinX(g, /2)})'/2

for 0< g, <, and where A4~ is given by

to tp |t 9x
A [1+ 2 |2 cos 2
2
ii I_L'E cos? 2‘_
4’ 2 2

172
(19b)

The contribution of any term above vanishes for any
combination of u, q,, or ¢’ that makes this term imagi-
nary. The structure factor may exhibit several singulari-
ties due to the geometry of the Fermi surface. Since the
latter depends on the chemical potential, its low-
temperature behavior can be characterized by three dop-
ing regimes when u <0, as illustrated in Fig. 8.

The first regime, close to u=0 (0>pu > 4t’') in Fig. 8(a),
is characterized by the absence of a pseudogap and the
presence of a lattice-2k; anomaly at the wave vector
qo={2cos™![—u/(2¢t)],7} and symmetry-related points.
The peak is a square-root singularity as usual but invert-
ed because of the holelike nature of the Fermi surface.
The absence of a kinetic gap in this doping regime can be
easily explained in terms of the Fermi surface geometry.
For these values of u, the Fermi surface is open, as shown
in the inset, which allows for the possibility of joining
different sections of the Fermi surface with wave vectors
larger than the #'=0 pseudonesting vectors along the
(4,9, =) direction. When the chemical potential de-
creases from its half-filling value, the intensity at (7, 7)
increases, as shown by the dotted line in Fig. 8(a), until
the chemical potential eventually reaches 4¢’, as in Fig.
8(b). At this point, the Fermi surface closes, touching the
Brillouin zone at the points (£,0) and (0,+#) which
lead to Van Hove singularities in the density of states.
These points are linked together by the four vectors
Qap=(xm, 7). There is thus a strong divergence in the
structure factor at Q,g because of the vanishing Fermi
velocities [Eq. (11) fails in this limit]. A small peak
remains at g, =q? because of a remaining lattice-2k;
anomaly.

] (19a)

A second regime, Fig. 8(c), occurs when the chemical
potential is lowered below 4¢' but is still larger than
2 172
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FIG. 8. Wave-vector dependence of the bare structure factor
divided by frequency at asymptotically low temperature along
the line g, = for t'=—0.16¢ [Eq. (19)]. The four regions cor-
respond to the three Fermi surface shapes discussed in Fig. 2(a)
and to the limiting case where the Fermi surface is at the Van
Hove singularity. The insets show the corresponding Fermi sur-
faces. The chemical potentials used for the solid lines are, re-
spectively, in units of =1, —0.32, —0.64, —0.66, and —1.28,
in the direct corresponding to those used in the other two high-
symmetry directions discussed in Appendix B (Figs. 18 and 19).
In (a) there is also a dotted line, computed for u= —0.58, which
is also in the open-orbit case. This is closer to the Van Hove
singularity so that weight starts to build up at (,7). In (b), the
large peak at (w,7) is extremely sensitive to temperature and
frequency.



15 226

the Fermi surface is closed, and the size of the g, com-
ponent of the wave vectors that can be fitted inside the
Fermi surface is limited by its diameter. Thus, a gap
opens up at a wave vector Q) (and those related by
square symmetry):

172

1 1—

> qy—ﬂ-

gl=2cos”

4t'(u—4t')
[t+(t'/t)u]>—16t"

21

for which the bare structure factor is singular. The
anomaly at q? is still present. There are two divergences
because there is both positive and negative curvature in
the Fermi surface.

Finally, in the third regime, when the chemical poten-
tial is lowered below p_, as in Fig. 8(d), the structure fac-
tor along the direction (g,,) is not sensitive to the ex-
istence of two curvatures, even though the two curva-
tures persist for a range of smaller fillings. (As shown in
Appendix B, the diagonal direction is the one which is
most sensitive to the existence of two curvatures in the
Fermi surface.) In this regime the structure factor
behaves similarly to the ¢'=0 limit with a singularity at
Q. |

For finite ¢’, the system is electron doped even at zero
chemical potential. For positive values of the chemical
potential, the Fermi surface is composed of disconnected
sections such that, in the direction (q,,7), g, must be
greater than 7 in order to link two sections of the Fermi

O(a_)
8t

Xo (7, m0)=

—K(p)®O(—b_)—2F(6,,p)0(b_)0(a_—V'b_)],

where K(p) and F(6,p) are, respectively, the complete
and the incomplete elliptic integrals of the first kind. [See
Eq. (A23).] The various parameters are defined as fol-
lows:

w w
_=1-2, 4, =1+2,
a 8> 4t 8¢
, , (22b)
_|e | p_ o I R I TR
bo= |2 | + L b=+
8¢ 4’ 8t + 8t 4t 8t’
p=Via,a_,
Vi 1/2
a_—VvV'b
0,=sin"! | ——— | (22¢)
a‘(a+—\/b+)
JE 1/2
a_—vVb_
0,=sin"! | —————
a_(a,—1V'b_)

The imaginary part of the bare susceptibility behaves
differently according to the nature of the Fermi surface.
There are two situations of interest for us, each with
three frequency regimes in addition to > 8t where

Xo =0.
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surface [region 4 in Fig. 2(a)]. In an extended zone
scheme, sections of the Fermi surfaces are actually closed
around all points in k space equivalent to (7, 7). Since
there is no change in the curvature of the Fermi surface,
we should not expect two structures in S,(q,,7). The
structure factor will behave similarly to the limit ' =0,
with a singularity at Q,, and a gap for larger values of g, .

In summary, the effect of a next-nearest-neighbor hop-
ping term is mainly felt for values of the chemical poten-
tial larger than p, up to about £ =0. The fact that the
particle-hole symmetry of the Hubbard model is broken
when next-nearest-neighbor hopping is allowed is clearly
reflected in the bare structure factor, hole doping (nega-
tive values of u) being more sensitive to ¢’ than electron
doping (which involves mainly positive values of u but
also a small range of negative values of i, between rough-
ly 2¢' and 0).

2. Frequency dependence

Even when ¢'70, the frequency dependence of the bare
structure factor can, in principle, be calculated exactly
along the three directions considered previously. Howev-
er, this time the solution involves finding the roots of a
quartic equation, except along the (q,0) direction. We
limit ourselves to presenting results for the wave vector
(0,7) (Appendix C) and for q=Q,, which has been ex-
tensively studied experimentally.'®? In the latter case we
find

[K(p)O(—b . )+2F(0,,p)0(b, 0(a_—1'b)

(22a)

[
For open orbits, 0> u > 4t’,

XE)'(7T,1T;w)=g:;?[K(p)G(w—wo)+2F(9‘,p)9(w0—w)

—2F(0,,p)8(0; —w)] (23a)

while for closed orbits, 4¢' > u.
) = — _
Xo (m,m0) - [K(p)O(w—ay)

+2F(6,,p)8(w,—»)]180(0—0])

with the critical frequencies defined by (23b)
.2 wt’ 172
=—4— [1— |1—
g ' l t2 >
+ — - 2( H_4t/ )
“e T r2rrsn) 24
—_ 2(u—4t)

o, = .
¢ (12t /1)

The two situations are illustrated in Fig. 9. In the case

of a Fermi surface with open orbits there is no kinetic

gap. When the Fermi surface is closed, however, the gap
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FIG. 9. Frequency dependence of the bare value of Y at
(m,7) in the next-nearest-neighbor hopping model (¢'= —0.10¢)
for various fillings [see Eqs. (22)—(24)]. The limiting case where
the Fermi level lies at the Van Hove singularity (u=4¢') is
shown by a solid line. For smaller dopings (larger u) there is no
kinetic gap, while for larger dopings there is a kinetic gap at o' .
The highest energy feature is at w=w,. The @, energy is seen
in the open-orbit case. [See Eq. (24).]

appears for frequencies less than .. Proximity to the
Van Hove singularity at 4¢’ can thus introduce a small
energy scale. However, unlike the t'=0 case where the
imaginary part of the susceptibility drops discontinuously
to zero at @=2|u/|, the imaginary part of the susceptibili-
ty vanishes smoothly as w is decreased towards ..

We summarize the important results as follows: (a)
The presence of ¢’ has led to a small energy scale (o, if
u>4t" and o if p<4t’). (b) ¥"(Qap,@) has a finite
jump as w vanishes (instead of a kinetic gap) not at half
filling, as in the ¢'=O0 case, but at a finite doping, corre-
sponding to the Fermi level lying at the Van Hove singu-
larity. (c) The small energy scale leads to MFL w /T-like
scaling of ¥ (Qpp®) for smaller temperatures than in
the t'=0 case.

IV. STRUCTURE FACTOR AT FINITE U

The generalized RPA for a zero-range potential has the
same functional form as the standard RPA. The struc-
ture factor in this case is

Solq,w
S(qw)= oldh ) . 25
{[1-Ux'(qo)]*+[Ux"(q,0)]"}

In a conserving approximation for a zero-range potential,
the self-energy just shifts the chemical potential, so it is
trivial to take into account. For a quantitative compar-
ison with Monte Carlo data, one needs to use’
U,, =U/(1+0.2U), instead of the bare value of U, this
being understood as coming from summing particle-
particle ladders. The self-energy leading to a conserving
approximation is then nontrivial,>* unless a zero-range
U,, remains a good approximation for the self-energy cal-
culation as well. In any case, lifetime effects will not be
important for the zero-frequency structure factor, as long
as this lifetime vanishes at the Fermi surface. If lifetime
effects introduce a new energy scale, however, then they
will influence the energy dependence of the magnetic
structure factor, as shown by Littlewood et al. for the

15227

marginal Fermi-liquid self-energy.’® For the weak to
intermediate-coupling regime, this does not occur in the
present microscopic approach.

A. Zero-frequency limit

The zero-frequency low-temperature limit of the mag-
netic structure factor (25) is
So(q)
S(q)= —0—,2 . (26)
[ 1— UrnXO(q)]

When ¢’ is equal to zero, the real part of the bare static
susceptibility x, has a finite maximum at the pseudonest-
ing wave vector?! Q, and is nonzero in the region where
the kinetic gap appears in the imaginary part. Thus, as
long as U,, <1/x¢(Q,), the vertex corrections represent-
ed by the denominator of (17) only enhance the incom-
mensurate peaks that appear as square-root singularities
in the bare structure factor in the zero-frequency limit.>
When U,, =1/x,(Q, ), a phase transition to magnetic or-
der occurs.

For t'<0 and pu>4t’', a numerical study of the real
part of the susceptibility®® reveals that as long as
t'> —0.25t, x¥'(g,,9, =m,0=0) has a broad maximum at
Qap=(m,7m) with a half-width roughly equal to
2cos” }(—p/2t). This is illustrated in Fig. 10(a) for vari-
ous t' at half filling. Results for fixed ¢’ at different
fillings are also shown in Fig. 10(b). In the open orbit re-
gime, p>4t’, illustrated in Fig. 8(a), vertex corrections
will enhance those features of the zero-frequency bare
structure factor which are close to Q,g. Since most of
the interesting features of S (g, ) are within this interval,
we do not expect any qualitative changes from the U=0
limit. However, since the lattice-2k anomaly is a singu-
larity only asymptotically close to =0 and w=0, the
maximum will be at Qug if ¢'> —0.25¢ and if U,, is
sufficiently close to the critical interaction U,. In other
words, as long as t'> —0.25¢, finite negative ¢’ favors a
transition to antiferromagnetism instead of an incom-
mensurate spin-density wave, even in cases where the
low-frequency maximum of Y{ is at an incommensurate
position, a rather unintuitive result. At finite frequency
and at finite temperatures, the absolute maximum along
the (g,,) line will be either at the lattice-2k anomaly (if
u is close to zero) or at Qg (if u is close to the Van Hove
singularity). The transition between the two situations is
expected to be strongly temperature and frequency
dependent. For the second (u, <p <4t’) and the third
regimes (u <pu, <4t'), the edge of the kinetic gap in the
imaginary part of the susceptibility corresponds to a
maximum in its real part. Thus, again, the denominator
in (17) enhances the features associated with the kinetic
gap. For U sufficiently large there will be a phase transi-
tion as in the ¢'=0 case, but we do not consider it any
further.

B. Finite-frequency collective modes

At finite frequency, two collective modes appear in the
vicinity of the kinetic gap (Fig. 11). For t'=0, the first
mode has been identified by Bulut and Scalapino.!”?? In
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FIG. 10. (a) Real part of the bare, zero-frequency spin sus-
ceptibility for a half-filled band in various directions Q in the
Brillouin zone. The directions are distinguished by various
symbols as indicated on the figure. It is only for ¢' < —0.25¢
that the maximum moves away from (s,7). When this is the
case, as in the lower panel, interactions will lead to a magnetic
instability at the wave vector which corresponds to the new
maximum. (b) The various panels correspond to a fixed value of
t' and three different fillings. Since the maximum stays at (7, )
for a range of fillings away from half filling, antiferromagnetism
would be stable at finite U,, contrary to the ¢'=0 case where in-
commensurate magnetism is favored immediately away from
half filling.
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FIG. 11. The imaginary part of the susceptibility at finite U,,
for x=0.14, t'=0, (a) U/U,=0.75, and (b) U/U,=0.975 for a
4000 X 4000 lattice (renormalized U values are implied). The
overdamped mode softens as U,, approaches the incommensu-
rate spin-density-wave instability at a renormalized value
U, =2. The peak in the intensity as a function of wave vector
decreases as the frequency  increases, as long as o is larger
than the resonance frequency.

this case, Xo(q=Qup @) diverges logarithmically at the
edge of the gap (when w=2|ul) and a finite-frequency
mode can then appear inside the gap for arbitrarily small
values of U,, since X;(q=Qup, @) also vanishes for
w<2|u|. The mode is exponentially close to the
particle-hole continuum. It is thus strongly temperature
dependent. The mode becomes overdamped as it
disperses away from (Q,g,@=2|u|) into the particle-hole
continuum. This mode is closely associated with the
presence of the perfect nesting instability at (m,77) for
pu=0. In fact, it can be shown that such an undamped
mode should be present for any band structure which has
a perfect nesting instability at q=Q°% and p=p, (..,
€t Q0 +e&,=2u,vk). Indeed, at p different from p, and

such that there is a kinetic gap, the nesting leads to an
edge in x¥"'(q=Q°%, w=2|u—puel) which, through the
Kramers-Kronig relation, manifests itself as a logarith-
mic divergence in the real part and hence leads to the col-
lective mode. For —0.5¢ <t’' <0, the mode appears only
under very special conditions because there is never per-
fect nesting. In the case of open orbits, the sharp in-
crease of x5 (Qap @) at @, also correspond to a large x,
but not to a divergence. For sufficiently strong U there
will thus be a large increase at that frequency of the in-
teracting }'’. For a Fermi surface with closed orbits
(u<4t'), the absence of a discontinuity for
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X5(q=Qap@=w)) at T=0 precludes a singular
behavior for x3(q=Q,p @) at the edge of the kinetic gap.
The singularity is replaced by a finite maximum. Thus,
because second-neighbor hopping removes perfect nest-
ing, the mode remains overdamped as long as
Xo(q@=Qapo=w]) is less than its zero-frequency max-
imum. The mode may reappear without damping for
small values of ¢’, but only for values of U,, above
U, =1/X(q=Qap0=w. ).

The second mode is the spin-density-wave equivalent of
paramagnons. It appears as a maximum in the response
at finite frequency and wave vector along a feature of the
bare response. This maximum is still present for finite ¢’.
As U, is increased from zero, the maximum softens to-
wards the pseudonesting wave vector as the spin-density-
wave instability is approached. The key point here is that
close to the phase boundary, the overdamped collective
mode introduces a new small energy scale. While the
bare magnetic structure factor S(q) increases in frequen-
cy, the mode leads to a dressed S(q) which decreases in
frequency for a while beyond the maximum. A calcula-
tion which includes the fluctuations which destroy long-
range order at finite temperature in two dimensions!#2%2*
might lead this energy scale to remain small but finite
whenever U,, is larger than the mean-field critical U,,.

V. THEORY AND EXPERIMENT (REF. 37)

A. Position of the incommensurate peaks

Experimentally, the maxima in the neutron-scattering
cross section are displaced by 8(+,0) and 8(0, £7) from
(mr,7). Cheong et al.” found in La, ,Sr,CuO, a value of
8 equal to 0.25+0.01 for x =0.14 and of 0.14+0.02 for
x =0.075. In the case of nearest-neighbor hopping only,
the position of the peaks is determined by the bare chemi-
cal potential at the corresponding concentration:*’

[g0=+2cos N —p/2t )q,=m]
and
[g0=mq,==+2cos (—pu/2t)] .

Assuming that the concentration x is equal to the doping
of the copper-oxygen planes, the above equation predicts
a displacement & of 0.087 for x =0.14 and of 0.038 for
x =0.075. These values are much smaller than allowed
by the experimental data. Assuming that the real doping
is smaller than x gives corrections in the wrong direction
and it does not appear chemically reasonable to assume
that the doping is larger than x, unless strong oxygen
overdoping occurs. Another discrepancy in comparing
theory with experiment is that the observed peaks appear
much smoother than predicted. Convolution of the
theory with the experimental resolution®® helps to solve
both of these problems. Indeed, because of the proximity
of the peaks at g, =7—8m and g, =m+ 8, and because
of their strong asymmetry at low temperatures, the mea-
sured positions of the peaks may be shifted appreciably
from their real positions by experimental resolution.

Realistic values of the experimental resolution, however,
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do not produce a sufficiently large displacement to ac-
commodate the data. The theoretical value of the shift is
still smaller by a factor of about 2.

Next-nearest-neighbor hopping can appreciably shift
the position of the incommensurate peaks from their po-
sition when ¢’ =0, especially close to half filling. Various
cases are illustrated in Fig. 12. Consider any of the finite
t' curves. The cases with closed orbit but no observable
change in curvature are on the right of this plot: There is
a single peak and it is not shifted much from its ¢'=0
value. In the regime with closed orbits but curvature
changes, there are two peaks [u>pu, , Eq. (20)]. The one
closest to =0 is the largest one, and it is not shifted very
much from the #'=0 case. When the orbits open
(u>4t'), at smaller doping, one of the peaks stays at
8=0. But as the doping is decreased even more, one
moves away from the Von Hove singularity and it is only
the peak at large 8 which survives.

The case of closed orbits with a single peak is not
different enough from the ¢’ =0 case to explain the exper-
imental data.® To try a fit of the data with a rigid-band
model, let us then consider the x =0.075 compound in
the case when orbits are open. Note that in the open-
orbit regime, the repulsion U tends to increase all
features uniformly between the incommensurate peak and
(m,7) because the real part of the susceptibility is quite
flat in this wave-vector range, as seen from Fig. 10. It is
only very close to the instability that the antiferromag-
netic region becomes enhanced. It thus suffices to consid-
er the noninteracting case. The dotted line in Fig. 13(a)
shows for x =0.075 that §=0. 18 for t'= —0.16¢, a value
of § slightly larger than the required § =0.14. Since the
lattice-2k; anomaly is holelike, convolution of the experi-
mental resolution will this time move the peak towards
(m,7) an effect which tends to make the peak position
agree with experiment. However, we see that the rigid-
band model fails when we plot the x =0.14 case (solid
line) since then the maximum is near (7, 7) because of the
proximity to the Van Hove singularity. If instead we
choose t'=—0.25¢ to make the position of the peak for
the latter compound [8=0.29 from the solid line in Fig.
13(b)] agree with experiment after convolution with the
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FIG. 12. Peak displacement 8 vs dopant concentration x (de-
creasing u) for three values of ¢’ (0, —0.1, and —0.2 in units
t=1) at low temperatures and low frequencies (T, <<2|ul), as
predicted by GRPA with renormalized U.
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FIG. 13. Imaginary part of the bare value of the spin suscep-
tibility for open-orbit cases. (a) The dotted line, corresponding
to a concentration x =0.075, has a peak at the experimentally
observed position but for the same value of ¢’ the x =0. 14 com-
pound (solid line) has a peak at the wrong position. (b) This
time the peak for the x =0.14 compound (solid line) is at the
correct position, but not that for x =0.075 (dotted line).

experimental resolution, we see that this time it is the
x =0.075 compound whose peak position [§=0.24 from
the dotted line in Fig. 13(b)] is too far from (7, ) to be
explained by experimental resolution. Assuming a
doping-independent value of ¢’ then (rigid-band model), it
does not appear possible to shift the peaks to their
correct position for both of the experimentally studied
dopings. For a given value of ', however, note that in
the open-orbit regime and at the frequencies of interest
experimentally, the intensity at (s,7) is roughly half the
intensity at the peak position, as observed experimentally.

B. Energy scale

When ¢'=0, as discussed earlier, the energy scale of
the incommensurate antiferromagnetic spin fluctuations
in the bare structure factor is set by the value of the bare
chemical potential (which measures the difference be-
tween the Fermi energy at finite doping and at half
filling). For temperatures higher than 2|ul|, the incom-
mensurate peaks move to (,7) and nested Fermi-liquid
theory?® may describe the behavior of the structure fac-
tor.*® As shown in Fig. 1, experimentally the intensity of
the incommensurate spin fluctuations decreases by about
a factor of 2 for energies (or temperatures) of the order of
150 K for hole doping of 0.14, with respect to the intensi-
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ty at (m,7). Since the bare chemical potential is —0.12z
for hole doping of 0.07 and —0.27¢ for hole doping of
0.14, this suggests, for # =~5000 K, that the energy scale
coming from ¢'=0 band-structure effects only is 5-10
times too large.

It was shown in Sec. III B that second-neighbor hop-
ping t" can add another small energy scale
wf= F2(u—4t')/(1£2¢" /t), associated with the Van
Hove singularity. On that scale, instead of 2|u/|, the in-
commensurate peaks would disappear and scaling similar
to w/T would be recovered. If ¢’ is chosen to reproduce
as much as possible the peak position of the x =0.14
sample, then o, is indeed small. However, we just saw
that the same value of ¢’ would predict that the peak is in
the wrong position for the compound with smaller hole
doping, x =0.075. If we insist in keeping the same value
of t’, corresponding to open orbits, then the energy scale
should be larger for the x =0.075 compound than for the
x =0.14 compound.

We can also take a different point of view, arguing that
the small energy scale must be a fundamental manifesta-
tion of the proximity to a magnetic instability while the
peak positions are a trivial band-structure effect which we
should not worry about. As we have seen in Sec. IV B,
the overdamped mode which becomes soft at the incom-
mensurate transition does provide a mechanism to obtain
a small energy scale in the paramagnetic phase.>* It can
be objected that one would need again to fine tune the
repulsion, for each value of x, so that the system is close
to the magnetic instability. However, it is likely, but still
unproven, that this small energy scale is present for a
wide range of dopings and interactions when one adds the
long-wavelength fluctuations which remove the finite-
temperature mean-field transition in two dimen-
sions.!*?324 Preliminary experimental results** seem to
indicate an increase in the intensity of the neutron
scattering for smaller doping. This would be consistent
with the increase in intensity which occurs as the over-
damped mode softens. This is seen in Fig. 11 as a func-
tion of U,, but similar behavior occurs as a function of
doping. Clearly, however, if one remains strictly within
our approach, one needs to be unrealistically close to the
instability to see the decrease in frequency of the magnet-
ic structure factor.

C. Suggestions for further experiments

Within the MFL approach, it is argued that one is far
from any magnetic instability and that the peaks seen in
neutron scattering are purely band-structure effects with
large self-energy corrections (which vanish in the limit of
zero frequency). If this is the case, a number of struc-
tures should be observable experimentally. We suggest to
scan both the (¢,0) and the (q,q) directions. First of all,
let us recall why other incommensurate features away
from (7, ) should appear along these directions if we are
far from a magnetic instability. (a) Incommensurate
features away from (s,7) (see Fig. 5) are as generic on
the square lattice as those already studied experimentally
near (m,7). In particular, we have verified that these
lattice-2k; anomalies are still present in a three-band
model.?3 (See also Appendix B.) (b) It is only the vertex
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corrections (proximity to the instability) which make
these peaks away from (,7) smaller than those near the
antiferromagnetic wave vector. As seen in Fig. 5(c), the
low-energy scale appearing in the experiments can be ex-
plained by the softening of the overdamped mode only if
the lattice-2k; anomaly near zero wave vector is very
small.

What can be learned from the lattice-2k; anomalies
along (¢,0) and (¢,g9)? In compounds where incommens-
urate peaks are observed near (,7) with little intensity
at (m,m), the Fermi surface should be away from the Van
Hove singularity and there should be an incommensurate
peak in the (g,0) direction if the system is far from a
magnetic instability. However, we have encountered a
case in the three-band model*® where the incommensu-
rate peak in the (g,0) direction blends into the peak at
the origin even if there are no interactions and there are
incommensurate peaks in the vicinity of (7,7). That is
why it is important to look in the (g,q) direction as well.
In the lightly doped systems the open orbits suggested by
the positive Hall coefficient should have a clear signature
in the existence of two incommensurate peaks along this
direction, as seen in Fig. 19(a) (Appendix B).

Finally, we suggest that neutron-scattering studies at
even higher hole doping would be of interest. In particu-
lar, if the Hall coefficient becomes negative in
La,_,Sr,CuO, at a concentration xj because the Fermi
surface closes, then in the concentration range before xp,
the scattering maximum has to go back to the (m,7)
point.

VI. CONCLUSIONS

The one-band Hubbard model with second-neighbor
hopping t’, and U in the intermediate-coupling regime,
does explain qualitatively the behavior of the incommens-
urate spin fluctuations®’ in the normal phase of
La,_,Sr,CuO,, in particular the symmetry of the ob-
served maxima in the scattering intensity, and their shift
from the simple t'=0 case. However, within a rigid-band
model where t-t'-U are independent of doping and the
concentration x is identified with doping, one cannot ac-
count quantitatively for the experimental results since the
correct peak positions cannot be obtained for both of the
experimentally studied compounds. This lack of detailed
agreement may not be too disturbing, however, since we
have seen that in two dimension the position of the peaks
comes from lattice-2k anomalies and is very sensitive to
details of the Fermi surface geometry; and even the Fer-
mi surface of the simplest three-band model cannot be de-
scribed in detail by a single-band model with first- and
second-neighbor hopping. Evidently, one must also leave
open the possibility of either a failure of the rigid-band
model, or the necessity to use strong-coupling ap-
proaches.3_5 Since t' is already a small number, it is not
unlikely that the effective Hamiltonian has a value of ¢’
which does depend on doping. In fact, to obtain the
correct peak positions, ¢’ would need to become more
negative with hole doping. Assuming that the antiferro-
magnetic transition is most sensitive to the two-
dimensional spin susceptibility, the fact that antifer-
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romagnetism disappears with increased doping also sug-
gests that ¢’ becomes more negative with hole doping.
(See Fig. 10 to determine the critical U,, as a function of
doping.) Slave-boson approaches®~° also predict that |¢'|
must increase with doping in the strong-coupling limit.

More importantly, the second disagreement with ex-
periment is in the existence of a small energy scale, of or-
der 150 K. We have seen that a small energy scale, coc+ or
o, in Eq. (24), can be introduced by second-neighbor
hopping in a manner consistent with the displacement of
the peaks from the ¢'=0 position. In fact, in several pa-
pers> 73 this is effectively taken as the source of the exper-
imentally observed small energy scale. An alternate ex-
planation of the small energy scale is the occurrence of an
overdamped collective mode which softens near the in-
commensurate magnetic instability. However, as seems
to be the case also in previously published interpretations
of NMR experiments,7 one needs to be extremely close to
the instability to obtain the correct magnitude of the en-
ergy scale. It is still an open question whether the in-
clusion of fluctuations which destroy long-range order at
finite temperature in two dimensions would lead this en-
ergy scale to remain small but finite for a wide range of
dopings and interactions.

While our approach should be valid up to intermediate
coupling, as justified from previous work, its strict appli-
cability would require working far from all the mean-field
instabilities, namely, at bare values of U of order 3¢ or
less when ¢'=—0.2t. Suggested values of U for high-
temperature superconductors are usually in the range
6t—-10t. What happens to the peak position in this
strong-coupling limit may be suggested by the recent
work of Singh and Glenister.”® What remains of the
overdamped mode in this limit, as well as how critical
long-wavelength fluctuations affect the frequency depen-
dence in general, are still open questions. These ques-
tions may ultimately need to be answered to completely
explain future neutron-scattering experiments or to find a
microscopic foundation for the spin-fluctuation kernels
entering recent theories of high-temperature supercon-
ductors.*!

Finally, we have pointed out?’ that neutron-scattering
experiments could settle the important question of the
proximity to a magnetic instability, as raised in particular
in the MFL approach.* It would suffice to measure the
relative size of the incommensurate lattice-2k; anomalies
near zero and near Q,p along both the (g,0) and the
(g,q) directions. (See Figs. 5, 18, 19.) These features
should be of comparable intensity unless one is extremely
close to the transition. If one is indeed far from a mag-
netic transition, magnetic neutron scattering can provide
a detailed spectroscopy of the two-dimensional Fermi
surface. In particular, scattering in the diagonal direc-
tion (Appendix B) contains characteristic signatures of
holelike Fermi surfaces or of changes in curvature in-
duced by second-neighbor hopping (¢'). We also gave
predictions for larger hole dopings.
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APPENDIX A: IMAGINARY PART
OF THE LINDHARD FUNCTION
ON THE SQUARE LATTICE

Although the two-dimensional 2k, anomalies of the
imaginary part of the Lindhard function have already

X5(q,0 v S ax

oo [T dkydlo—e(k+q)+elk)
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been discussed in Sec. II, we first quote the result for el-
lipsoidally shaped Fermi surfaces in arbitrary dimension
to contrast the two-dimensional result with one and three
dimensions. We then give the exact zero-temperature re-
sult for tight-binding electrons on the one-dimensional
chain and the two-dimensional square lattices, conclud-
ing with a finite-temperature result valid near the antifer-
romagnetic point.

1. Electrons with ellipsoidal Fermi surfaces

We define the imaginary part of the Lindhard function
x''(q,w) in d-dimensional space by

1{flek)—pl—flek+q)—pl} , (A1)

where e(k) is the energy dispersion, u is the chemical potential, and f(x) is the Fermi function. One can explicitly in-
tegrate the above expression at zero temperature for the hyperellipsoidal energy dispersion relation

d k?
ek)=3 —, (A2)
i=1 M
obtaining the following simple generalization of the result of Ref. 42:
d
Hmi [ (@] [ @T (d—1)72
n( , )= i=1 e _ w—€ q _ w— € q
Xolq,0 2d+2ﬂ.(d*1)/21-\[(d+1)/2)]‘/_‘—‘6((1) [# 4e(q) 4e(q)
N ()T (d—1/2
-0 |u— Ml_ ‘ l _lotelq))” ] ] . (A3)
4e(q)
The real part of the spin susceptibility Y''(q,®) is found using the Kramers-Kronig relation. One obtains
Xo(q,@)=II(q,0)+1I(q, — ) (A4)
where
anp
p’ II m; 4e(q) [ @7 k
_ i=1 e(qQu—[w—elq
II(q,0)= A
O AT DA (4 +1)/2] 4e(qip
eq—ow & |del@Qu—lo—eqP | ,ld+1—2v d+1-2v
B ) >
de(q)n Zl 16e(q)u 2 2 (A3
with the value of £ and A depending on whether the dimension is odd or even:
172
rle@—o] |, delqp 4e(qlu (if d=2k +2) ,
4e(q)u [e(q)—w]? [e(q)—w]?
A= Vo (A6)
1 e(qQ)—w+2Velqlu (if d=2k+1)
2Ve(q)u e(qQ—o—2Ve(qu
Blx,y)= L'(x)T(y) (A7)

C(x+y)
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This form differs from that in Ref. 42. Note that when
using the above formula for d =1 and 2 one should take
k=0 which means that only the A term survives in the
large square brackets of Eq. (A6).

A few plots of ¥"'(g,®) should now show that spin fluc-
tuations are strongly dependent on the dimensionality for
the free fermions: Higher dimension tends to diminish
the sharp features in the spin fluctuations around 2kgp
(2ky anomalies). While there are sharp peaks around
2kg in the low-frequency spin fluctuations of both one-
and two-dimensional noninteracting fermions, this is not
true in three and more dimensions where interactions
more than the Fermi surface will determine the position
of peaks in the neutron-scattering cross sections. (In the
next section we will show this is true for tight-binding
electrons as well.)

In the following plots we take m; =1 without loss of
generality.  is measured in units of the Fermi energy.
In Fig. 14 the one-dimensional x''(g,®) is plotted as a
function of g for several frequencies. It is seen that when
o is small y''(q,®) has sharp features in two separate re-
gions of g space, one near the origin and the other near
2kp. As o increases, the peak around 2k broadens fas-
ter than the peak close to (0,0). If  is increased even fur-
ther the peak near the origin disappears, leaving only one
(0,0) peak tailing away at 2kg.

In Fig. 15, the top panel shows x''(q,w) for two-
dimensional free fermions. There are still two peaks at
small frequencies, one near the origin and the other near
2kp. The latter is considerably weakened in contrast
with one dimension. As in Sec. II, one can show for
small w that ¥"'(q,0) <V at the peak positions. There-
fore, any linear expansion of x''(q,w) for small o fails
close to these two peaks. It is worthwhile to emphasize
again that the peak around 2k exists in two dimensions
even without nesting. Similar to the one-dimensional
case, as w increases the peak near the origin disappears
leaving only a single broad feature. The bottom panel of
Fig. 15 shows x'(q,w) for three-dimensional free fer-
mions. In contrast with the other two cases, there is no
sharp peak around 2k, except a “kink” for small fre-
quencies. At larger frequency the behavior is similar to
the two-dimensional case.
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FIG. 14. Imaginary part X"’ as a function of q /ky for several
frequencies. The electrons are free in a one-dimensional contin-
uum.  is measured in units of the chemical potential k3. The
sharp features of the top graph broaden when o increases, until
a single feature is left.

2. Tight-binding electrons
First in the one-dimensional tight-binding case
€14(k)=—2tcos(k) , (A8)

one can find the exact expression for the imaginary part
of spin susceptibility in the zero-temperature limit:

O{[4tsin(q /2)*—w?}
4V'[4t sin(q /2)]*—w?

71D —

Xo

2

9(#+ % +l cot-‘zl\/[4t sin(g /2)]*—

+e ,u+ﬂ—i cot—g—\/[4t sin(g /2) > — w?

2 2

—0
2 2

p—2 4+ 1 cot—‘zl-\/[4t sin(g /2)]*—o?

—0

Figure 16 shows x''(q,w) as a function of g for several
frequencies when the doping is x =0.14. The behavior is
similar to that of fermions in the continuum. It is only at
high frequency where one peak extends beyond the wave
vector ¢ =1 that a new small-step feature appears.

_e 1 9y i 2__3
B 200t2 [4t sin(q /2) )" —w ’

(A9)

More interestingly, for the two-dimensional tight-
binding band
€,p(k)= —2t cos(k, ) —2t cos(k,) , (A10)

one can also obtain exactly, in the zero-temperature limit,
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free electrons. The peaks are less sharp than in the one-
dimensional case. The bottom panel shows the three-
dimensional result. Only a kink is left at 2k for small frequen-
cies.

the imaginary part of spin susceptibility y'’(q,»). The
solution is expressed in terms of elliptic integrals, but for
a general direction of q=(q,,q,) one needs to solve a
fourth-order algebraic equation. However, it turns out
one can get a relatively simple expression in the high-
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FIG. 16. Exact result for the imaginary part of the spin sus-
ceptibility in the one-dimensional nearest-neighbor one-band
Hubbard model. The three panels show three different frequen-
cies. New features appear as the frequency increases. (o and p
are in units of t=1.)
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symmetry directions q=(g,,0), (¢,,7), and (q,q).
Using the usual mappings we can restrict ourselves to
the u =0 case, without loss of generality. Let us define

e(k)E—2t(coskx+cosky) , (A11)
=1 (o 2 - q
Hg,0)=<— [ "k, [ "dk,8 |o—e |k+]
+ ~9g
€ lk > ]
[ q
X0 |u—e lk—— ,
2
(A12)
then
Xo(q,0)=1(q,0)—I1(q,-~®) . (A13)

From now on, we work in units where t=1. Note also
that the results for I(q,») and for I(q, —w) are quoted
separately because, in general, the analytic continuation
of the function I(q,w) from ® to — is not trivial. For
this reason, we will always assume » = 0 below.

First in the q=(q,,0) direction, let us introduce the
function

0 ifx>1, 7
acos(x )= jarccos(x) if —1=<x=1,
T ifx<—1,

(A14)

1 cot-q—x\/[4 sin(q, /2))*—w?

alg,,tw)=acos 2 5

_ 2utow
4

©{[4sin(g, /2)]*—w?}

, (A195)

I,(q.,tw)=
4mV/ [4sin(q, /2)]* — o?
X[a(gy, To)tal—g,,tw)] .  (Al6)
Then we have
Xo?Pl(g,,0),0]=1,(gq,,0)—1,(qy, — @) . (A17)

In the diagonal direction q=(q,q) we must consider
separately the cases w<2|u| and w>2|u|. For the
® <2|ul, let us define the angles v, BF, ¢, all contained
in the [0,7 /2] interval:

. )
siny ——~—8 sin(q/2) ’ (A18)
tanBt = Leolg/e) cot(_/2)_ (A19)
2ul Fo
+
singt =S98~ (A20)
cosy
Then,
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I,(g,+0)=0 for X<y, (A21)
while for B+ =y
_ ©[8sin(g/2)—|w|]
Lig,tw) 167 sin(q /2)
X |F %,cosy —F(¢%, cosy) |, (A22)
where
_re¢ da
F(¢,k)= (A23)

0 V1—k2sina
is the incomplete elliptic integral of the first kind. For
®=2|u| the expression for I,(g, —®) is unchanged. For

I,(q,0) we define another angle 8t contained in the
[ /2,7] interval:

B+ =+ arctan | — 20 /2) (A24)
o—2|pl
Then, for 8/ >7—vy,
_ O[8sin(g/2)—o0] |7
I ’ - . F A0 ’
2(g,0) 8 sin(q /2) 27 % (A23)
and, fOr7T/2§B'+<7T_'}’,
_ ©[8sin(g/2)—w]
Llg 0)= e in(g/2)
X |F 127—, cosy |+F(¢'", cosy) (A26)
with
ot
&+ =arcsin | <8 T—B") (A27)
cosy
Finally we have
X5*°[(g,9),0]1=1I,(g,0)—I,(q,~) . (A28)

These results in the diagonal direction differ from previ-
ously published ones.”> Comparison with full numerical
integration of the original expression confirms our analyt-
ical result.

The last direction we are interested in is q=/(q,,7).
Define

cos€5i=———L——-———2| [To

4 cos(q, /2) (429)

with 0<8* <7 /2, and
d*=sind* , (A30)
s = sin(q, /2) , (A31)
v=w/4 . (A32)

Then for @ <2|u| we have

15235

I,(q,,*w)=A |F —F(¢i,6)—F(¢3,k)

1 K
2 b
X O[4cos(g, /2)—2|ultw] (A33)

with 4, k, ¢i, and ¢5 taking the following values in
different intervals:
for 1—v>s:

A=8m) " [(14+s)2—+?]" 12,

k=167 AV's ,
l—dt 14— 1,2 (A34)
+= arcsin sV ,
! 2 1—sdf—w
1—d* 1+4s+v |7
#5 = arcsin si 4 ,
2 1—sd*+v
forsd*<1—v<s:
A=(167) 15712,
k=8m AV (1+s)—1?,
. 172 (A35)
¢ = arcsin I _1-sd”—v
! 1—dt 1+s—wv ’
172
¢i=arcsin 25(1—d")
2 (1+s—v)(1—sd*+v) ’
for —sdt<1—v<sd™*:
A=(16m)" s 172,
KZSWAVm ’
(A36)
$17=0,
1/2
¢5 = arcsin 25(1—d*)
g (1+s—v)(1—sd ¥ +v)

Finally, for 1 —v < —sd * we have I,(q,,t®)=0.

The last case we need to consider in this q=(q,,7)
direction is w>2|u|. The expression for I(g,, —w) is
the same as above but for I;(q,,»), we need to be more
specific. First, notice that 8% is in the interval [7/2,7]
when 0<w—2|u| <4cos(g, /2) while 87 must be taken
to equal to 7 when w—2|u|>4cos(q, /2). Considering
7/2<8% <, and the first three intervals, namely,
1—v>s, sd T <l1—v<s, and —sdt <1—v<sd*, the
answers have the same algebraic forms as for o <2|u| ex-
cept that ¢;" and ¢, have opposite sign [remember also
that F(—¢,k)=—F(¢,k)]. The fourth of the previous
intervals, 1—v<—sd™, is split in two now: In
—s<1—v<—sd™, the algebraic expression is the same
as the last third interval except ¢ =—=/2; and if
1—v < —s we again have I,(g, ®)=0. When 8" is equal
to , namely, when w—2|u|> 4 cos(qg, /2), we find that
when 1—v>s, 4 and « have the same value as they had
for smaller 8" while ¢;t=0 and ¢ =—=w/2. For
—s<1—wv<s, the situation is the same as in the
—s<1—v<—sd™ case just discussed for w/2<8" <.



15 236

Lastly, when 1 —v < —s we have I;(q,,0)=0. Therefore,

X3Pl axm)0]=I3(q5,0)~I3(qy, —0) . (A37)

Figure 7 shows ¥''(q,®) along these highly symmetric
directions for several frequencies when the doping is
x =0.14. Even for frequency less than twice the chemical
potential, extra features due to the geometry of the Fermi
surface are shown in Fig. 17 in which the peak near the
origin splits into two closely separated ones followed by a
broad umklapp peak.

Finally let us discuss ¥"'(q,w) at finite temperature for
the two-dimensional tight-binding band. One can have
the following form of the imaginary part of spin suscepti-
bility:

dk sinh(Bw /2)8[ 0 — 4t sin(q, /2) sink, —4t sin(q,, /2) sink, ]
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0.00

(0,0)

FIG. 17. Effect on x"'(q,w) of Fermi surface geometry at

finite frequency. The plot shows the exact two-dimensional

tight-binding electron result in the direction (q,,0). It is seen

that the peak near the origin splits into two, and is followed by a

broad umklapp peak. This figure is an enlargement of part of
Fig. 7(b). (w and p are in units of 1=1.)

(7,0)

Xo(q,0)=

87 cosh(Bw/2)+ cosh{B[u+2t cos(g, /2) cosk, +2t cos(g, /2) cosk, ]} ’

(A38)

where =1/ T and the integration is over the first Brillouin zone. It is interesting to look at the asymptotic form of the
above expression around point q= (m—g,,7—@,) for small g, and g, at low frequency o, we get

Xy~ I—’ZN [% sinh BT‘" 1 4 1
cosh(fw/2)+ cosh{B[u+1(g, +g,)]}  cosh(Bw/2)+ cosh{Blu—1(7,+7,)]}
+ 1 + 1
cosh(Bw/2)+ cosh{B[u+t(g,—q,)]}  cosh(Bw/2)+ cosh{Blu—1(7, —7,)]}
(A39)
Here (a) (b)
N |2 | =LKV (/807 aso) —ous | 0 —
i L30.0 K=-0.64
is the density of states and K(x) is the complete elliptical =)
integral. From the above equation one can easily argue ‘3"-20'0 3
that the maximum value of Y’ near (,7) in the direction %)
(m—q,,m) is twice of that in the direction (7—¢q,7—q) 10.0
in the limit of low temperature and small frequency. This
can be seen clearly from the top graph of Fig. 5. This dis- o. i . :
cussion is different from a previously published result.* b5T5E oA q "/?T 58 To 85705% 04 (’/gr 0.8 1.0
APPENDIX B: STRUCTURE FACTOR * b
WITH ¢'#0 ALONG (gq,q) AND (g,,0) (c) (d)
FOR T AND © SMALL 600 80
Even with t'70, interactions will, in general, enhance 3500 t'=-0.16 t'=-0.16
the spectral features near (w,7m—8). Nevertheless, we ~ u=-0.66 ieo. u=-1.28
have shown in Ref. 23 that unless one is very close to a S 400 =)
magnetic instability, the features present at U=0 will 3;'300 S 40
persist at finite U. When ¢'#0, the diagonal direction “ 00 w
then becomes extremely interesting since it is very sensi- 20
tive to t’, showing qualitative differences with the case 100 \L
t'=0. These differences would allow one to differentiate, M——

for example, between open- and closed-orbit situations.
In this appendix then, we calculate exactly the low-
frequency low-temperature limiting form of the structure
factor along the two other high-symmetry directions
(q,9) and (q,,0), using Eq. (11).

As usual we do not explicitly write the Heaviside func-
tions which lead to a vanishing of the corresponding term
whenever the argument of a square root is negative. We
first start with the (g,,0) direction:

8.0 0.2 04 06 0.8 1.0

8563 64 05 05 1.0
q/m

ql/ mw

FIG. 18. Wave-vector dependence of the bare structure fac-
tor, divided by frequency, at asymptotically low temperature for
t'=—0.16¢ (Appendix B) along the line (g,,0). The four re-
gions correspond to the three Fermi surface shapes discussed in
Fig. 2(a), and to the limiting case (b) where the Fermi surface is
at the Van Hove singularity. [See Fig. 8 for the corresponding
cases in the (g, ) direction.]
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max(T,w) t—2t'cos(g, /2)

So(%n()):g - CRDT
wsin(g, /2)[t*—t'ul | v/ [4¢' cos(q, /2)—2t P— [ —2t cos(q, /2)]?

t+2t'cos(q, /2)
V/[4t' cos(q, /2)+2t P—[+2t cos(q, /2)]?

The result is illustrated in Fig. 18 for various fillings. The overall shape is qualitatively similar to the ¢t'=0 case illus-
trated in Fig. 5(a) (peak no. 2). The main qualitative difference is in the doping dependence of the position of the um-
klapp peak. This doping dependence, in principle, allows one to bracket the doping at which the Fermi surface just
closes. Indeed, when #'540, the peak moves towards the origin as we hole dope from half filling until the orbits just
close [Fig. 18(b)]. The peak then moves away from the origin as the system is doped further, as in the =0 case. This
is easy to understand from the shape of the Fermi surface illustrated in Fig. 3(a). In the open-orbit case, the peak corre-
sponds to the shortest vector, along the edges of the zone, which links two disconnected sections of the Fermi surface.
The more interesting result is along the diagonal. We obtain Sy(g,q)=S}(g,q)+S3(q,q) with

(B1)

Sl(g,q)= max(T,w)
O 30| sinlg 22V A,
1
[V A, — coslqg/2)(t/2t'—2t' /D)|V 1—[V A, —(t /2t") cos(q /2) ]
_ 1 (B2)
[V A, + cos(q/2)(t/2t'—2t' /t)|V 1— [V A, +(1 /2t") cos(q /2)]?
where
= _L_+_ 209 - 219
A, 4o TS| + e cos” |2+ | (B3)
max(T,)|8 cos(q /2)|O{[2t' cos(q /2)*—1t% A
S§(g,9)= { - 2} , (B4)
16msin(g /2)V A, (1— A,) |4t'— ———L———||[2¢ cos(q /2) 212 4, |
t' cos“(q/2)
[
where 20, allowing the existence of the two lattice-2ky vectors
., shown by arrows. The shortest one is an umklapp vector.
A= 41" cos(q/2)—p (B5) These two vectors lead to the two well-separated peaks in

4t'—1t2/t' cos¥(q/2) Fig. 19(a). This should be contrasted with the '=0 case

This is illustrated in Fig. 19. In both the open- and  YWhere a single peak appears. The two peaks tail towards
closed-orbit cases there is now the possibility of obtaining large ¢ b'ecause of the l}o.lellke curvatures of the se(?tlons
results which are qualitatively different from the t'=0 of Fermi surface they jom. If the system is sufficiently
case. Before we begin a more detailed discussion, let us electfon fiope:.d, the Fermi surface does not cross the.dot-
define four wave-vector components g, to g3 which lo- ted line in Fig. 20, and we recover the case of a single

cate the position of singularities in the various cases: peak (not 'shown in Fig. 1.9)' . .
Returning to hole doping, when the Fermi surface just

, | 90 m closes, as in Fig. 19(b), the (m,7) vector joins the Van
cos™ | - = 4’ Hove singularity points and, as in the case of the (g,,7)
. direction in Fig. 8, the vanishing of the Fermi velocities
¢ ¢ o 172 leads to a huge intensity at (7, 7).

cos |— | =sgn(u) 2 + 2 | T 4 > When the Fermi surface is closed a bit more by doping,
(B6) it exhibits changes in curvature. This leads to three pos-
, ible singular wave vectors, defined by Q,;=( ) to

q 11— /4¢ S1 g > y Qi=141,9;
cos? —22— = 1—‘_(%/5—,? , Q;=(g3,93) above. One of these, while involving no um-
t/at klapp processes, has no free-electron analog. This is the
_ . large, almost symmetrical, peak in Fig. 19(c). It comes

g3 1—u/4t 8¢, ymmetrca’, P &

cos? > —m . from the Q; vector in Fig. 21. We are in the situation

discussed in Eq. (12c¢) with R, =R _ and ¢¥=w/2, so

We start the discussion with the open-orbit case, near that the singularity at Qs is in 1/Agq instead of the usual
half filling. In the hole-doped case, the Fermi surface in- 1/V'Aq. Such 1/Aq singularities occur in the free-
tersects the 45° line illustrated by the dotted line in Fig. electron case only near the origin. This behavior would
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(v)
3000
t'=-0.16
i25°° 1=-0.64
2000
o
1500
wn
1000
500 Lﬁ A}
0. .
X W }3 0.8 1.0 857573 0.4 0.6 0.8 1.0
q/m q/m
(c) (d)
40 40
'f—gég t'=-0.16
an M= . Qa(} }l.=—l.28
T =
Z20 Z20]
w w
1on\\\___ 10]

8553 0.4 ?3 0.8 1.0 8553 0.4 0.6 0.8 1.0
q/m q?-n

FIG. 19. Same quantity as in Fig. 18, but along the diagonal
direction. The other parameters are identical, except for the
case u=—0.66 (t=1) which has been replaced here by
pu=—0.74 to enhance the separation between the Q, and Q,
peaks.

lead to a stronger temperature dependence than for the
usual case, but it occurs in a regime where even the
1/v E]— peaks strongly depend on temperature because of
the smallness of .. This is illustrated in Fig. 22. Re-
turning to Fig. 19(c), note that, in general, the relative
position of the three peaks may change and that in the
specific case illustrated, the two peaks nearest (m,)
would, in practice, be impossible to resolve.

The last situation is when the Fermi surface has a sin-
gle curvature, namely, when u <p., with

21

-2
-2 0 2

FIG. 20. The two wave vectors corresponding to the two
singularities in the open-orbit case in Fig. 19(a).
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- 0 ™

FIG. 21. The three wave vectors corresponding to the three
singularities in Fig. 19(c) when orbits are closed and there are
changes in the curvatures of the Fermi surface. The Fermi sur-
face is shown as a dashed line. The solid line is a guide to the
eye to enhance the curvature of the Fermi surface. The Q; wave
vector leads to a 1/Agq singularity. The analytic expressions for
the wave vectors are in Appendix B.

0.005 ; -
------- £=100 A (a)
j—— B=200
0.004 E R ﬁ=400
E mzo.oozit
= 3 t'=-0.16
20.003 g o
é é ';L = \
T 0.002 1 it A
> E " i > 3
0.001 1
0.00g 3=
0.010 7
0.008 §
£ 0.006 ]
3 ]
o ]
T 0.004 3
~ ]
0.002 %
E
0.000_ 3
TR0 21 22 23 24 25

q(1,1)

FIG. 22. (a) Temperature dependence along the (g, ,) direc-
tion [see also Fig. 8(c)]. The 1/V'Aq peaks, exceptionally, also
have a strong temperature dependence because of the smallness
of . (b) Temperature dependence of the 1/ Ag singularity
along the diagonal direction at Q; when the orbits are just
closed [Fig. 19(c)]. As seen in the figure, as long as the frequen-
cy is finite, two peaks can be resolved at sufficiently low temper-
ature. The separation between the peaks decreases with fre-
quency. This effect is similar to that seen near the origin in Fig.
17 but the sensitivity to frequency is stronger here.
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2 2 2.0
— A4 |9 — t'=-0.1t
p=4t' |2 ; ] . ®n u=-0.30t,
---------- u=—0.35t
In this case, illustrated in Fig. 19(d), a single peak located Y A ez :8:igt
at Q, appears. Note that the diagonal direction is more 2-1.0 Enh u=-0.50t
sensitive to changes in curvature than the (g, ) direction =
since u, <u. , where p_ is defined by Eq. (20). <
APPENDIX C: ANALYTICAL RESULTS ///}
0-%% T8 36 50640 5.0

FOR x"[(q=(0,7),w0] WITH FIRST-
AND SECOND-NEIGHBOR HOPPING

The result will be written in the form
Xo(q,0)=I1,(q,0)—1,(q,—w), (Cn

where q=(0,7). The result for I,(q, —®) may be ob-
tained from I,(q,w) simply by using

= 4t' —_— 9_
g=—" |FT5 (C2)
instead of
_ 4 3
€= ut+ > (C3)

[}

FIG. 23. Exact result for the frequency dependence of the
imaginary part of the spin susceptibility ¥’ at q=(1r,0) for elec-
trons on a lattice, including second-neighbor hopping ¢'= —0.1¢
(see Appendix C). The result depends very little on filling. A
logarithmic singularity appears at o =4¢ +8t¢'.

First, in the region 4t —w < 8t’, we have
I,(q,w)=0. (C4)

Second, in the region where 8t¢'<4t—w=<—8t' and
4t +w= —8t’' we find

in locating the various intervals. We identify four re- I1,(q,0)=0 ifegp>4t—w, (C5a)
gions, which, in turn, are subdivided in several possibili-
ties depending on the value of &,,. and, otherwise,
|
I(q0)=———2—F(6,,4,)
4 q, 217_ 2‘/557 qul ’
172
_ | (4t+w+8t')(4t—w—8t")
N —32wt’ ’
172 (Csb)
. —16:' H—w—g i 81" <& <4t
6,= arcsin 4—w—81 —8f'—¢ it 81" <gy= o,
/2 if ;<8¢ .

In the last two regions, I,(q,©)=0 when g,> —8¢'. The other cases within these two regions must be considered sep-
arately. In the third region, delimited by 8¢’ <4t —w < —8t' and 4¢ +w < —8¢’, we first define

_ 2
A=
20V (4t +w—8t')(—8t' —4t + o)
(—8t'—4t—w)(—8t'+4t —w)
(—8t'+4t+w)(—8t'—4t+w)

’

172

9=

to write the final answer in the form,

I4(q,w)= AF(G3,Q2) s

—8t'+4t+o 8’ &
8t'+4t+o e,—8t

w/2 if4t—w<eg=4t+to,

arcsin
0,=

and

172
] if 4t+ow<ey=—8t',

(C6a)

(C6b)
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I(q0)=A4 F(oz,q2>+F[§,q2” ,
—8t' 4t +o 405 |
arcsin t, tTo 9 if 8t'<gp<4t—w,
0,= —8t't+4t—w 4tt+o—c¢, (Céc)
/2 if gg< 8t .
In the fourth and last region, where 4t —w > — 8¢’, we have
2
I,(q,0)= F(8,4,q;) ,
St o8t —8 T —w) T
172
_ —32wt’
D=4t rorse) 4 —o—8t) |
, 172
. | 4t—w—8r —8 g e, ,
arcsin ; if 8" <gy< —8t",
0,= —16¢ 4t —w—c¢, (e7))
m/2 if g5<8t' .

The answer is plotted in Fig. 23 for various chemical potentials. It is quite remarkable that a logarithmic divergence

appears at o =4t + 8¢’ for all the fillings considered.
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