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The electron-momentum distribution function in the ¢-J model is studied in the framework of the
slave-particle approach. Within the decoupling scheme used in gauge-field and related theories, we
treat formally phase and amplitude fluctuations as well as constraints without further approxima-
tions. Our result indicates that the electron Fermi surface observed in high-resolution angle-resolved
photoemission and inverse-photoemission experiments cannot be explained within this framework,
and the sum rule for the physical electron is not obeyed. A correct scaling behavior of the electron-
momentum distribution function near k£ ~ kr and k ~ 3kr in one dimension can be reproduced by
considering the nonlocal string fields [Z. Y. Weng et al., Phys. Rev. B 45, 7850 (1992)], but the
overall momentum distribution is still not correct, at least at the mean-field level.

I. INTRODUCTION

The t-J model is one of the simplest models contain-
ing the essence of strong correlations, and its implications
for oxide superconductivity!:? still remain an outstand-
ing problem. The t-J model was originally introduced
as an effective Hamiltonian of the Hubbard model in the
strong-coupling regime, where the on-site Coulomb re-
pulsion U is very large as compared with the electron-
hopping energy t, and therefore the electrons become
strongly correlated to avoid double occupancy. In this
case, the electron’s Hilbert space is severely restricted
due to this constraint Y CEGCW < 1. Anderson! and
later Zhang and Rice? have argued strongly that the ba-
sic physics of oxide superconductors can be described by
the ¢t-J model.

The normal-state properties of oxide superconduc-
tors exhibit a number of anomalous properties in the
sense that they do not fit in the conventional Fermi-
liquid  theory.3* Some properties can be interpreted
only in terms of a doped Mott insulator.>* A cen-
tral question in the theory of these strongly corre-
lated systems concerns the nature of the electron Fermi
surface (EFS).# High-resolution angle-resolved photo-
emission and inverse-photoemission experiments®
demonstrate the existence of a large EFS, with an area
consistent with band-structure calculations. Since the
band theory is consistent with the Luttinger theorem,®
this means that the EFS area contains 1 — § electrons
per site, where § is the hole-doping concentration. Al-
though the topology of the EFS is in general agreement
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with one-electron-band calculations, the Fermi velocity
is quite different. This indicates that electron correla-
tions renormalize considerably the results obtained in the
framework of a single-particle treatment. It has recently
been shown by small-cluster diagonalization that in a
two-dimensional (2D) square lattice the EFS within the
t-J model is consistent with Luttinger’s theorem.” Monte
Carlo simulations for a nearly-half-filled 2D Hubbard
model also support this result.® Moreover, the electron-
momentum distribution function of a 2D ¢-J model was
studied® by using the Luttinger-Jastrow-Gutzwiller vari-
ational wave function, which seems to show the exis-
tence of an EFS and an algebraic singularity at the
Fermi edge. For the one-dimensional (1D) large-U-limit
Hubbard model which is equivalent to the ¢t-J model,
Ogata and Shibal® obtained the electron-momentum dis-
tribution function by using the Lieb-Wu exact wave
function.!! Their result also shows the existence of an
EFS as well as the singular behavior at ¥ ~ kg and
k ~ 3kr in the momentum distribution function. Fur-
thermore, Yokoyama and Ogatal? studied the 1D t-J
model by using exact diagonalization of small systems
and found a power-law singularity appearing at kr in
the momentum distribution function.

So far, strong correlation effects can be properly taken
into account only by numerical methods,” %12 such as
the variational Monte Carlo technique,!® exact cluster
diagonalization,'* and various realizations of the quan-
tum Monte Carlo method.!® Apart from these numeri-
cal techniques, an analytical approach to the ¢-J model
receiving a great deal of attention is the slave-particle
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theory,%16 where the electron operator C;, is presented

as Cw:aI fioc with a;f as the slave boson and f;, as the
fermion or vice versa. This way the nonholonomic con-
straint

> clci. <1 (1)

is converted into a holonomic one

alai + > flfio =1, (2)
o

which means a given site cannot be occupied by more
than one particle. A new gauge degree of freedom must
be introduced to incorporate the constraint, which means
that the slave-particle representation should be invari-
ant under a local gauge transformation a; — a;e®(":t),
fio = fioe®Tt) and all physical quantities should be
invariant with respect to this transformation. We call
such slave-particle approach “conventional.” The advan-
tage of this formalism is that the charge and spin degrees
of freedom of electrons may be separated at the mean-
field level, where the elementary charge and spin exci-
tations are called holons and spinons, respectively, but
spinons and holons are strongly coupled by gauge-field
(phase) fluctuations!” or other effects beyond the mean-
field approximation. The two fluids of spinons and holons
represent the same set of electrons, and they must, on av-
erage, flow together. The decoupling of charge and spin
degrees of freedom in the large-U-limit Hubbard model
is undoubtedly correct in 1D,° where the charge degrees
of freedom of the ground state are expressed as a Slater
determinant of spinless fermions, while its spin degrees
of freedom are equivalent to the 1D S = % Heisenberg
model, so that charge and spin excitations propagate at
different velocities. However, the situation is still not
clear in 2D.

The 1D t-J model (the large-U-limit Hubbard model)
behaves like a Luttinger liquid.'%!2 The separation of the
spin and charge degrees of freedom is indeed generic to
the universality class of Luttinger liquids.'® Anderson!?
has hypothesized that the normal state of 2D strongly in-
teracting systems relevant for the oxide superconductors
should be described in terms of the theory of Luttinger
liquids. Thus it is interesting to understand the global
features of the electron-momentum distribution function
and EFS in the ¢-J model where separation of the spin
and charge degrees of freedom might be expected. To our
knowledge, the global features of the electron-momentum
distribution function and EFS have been obtained only
by using numerical techniques, and have not been studied
systematically by analytical methods.

In this paper, we study analytically the electron-
momentum distribution of the ¢-J model by using the
slave-particle approach. In Sec. II, we present a formal
study of the electron-momentum distribution function
and discuss the sum rule obeyed by it. Under the de-
coupling scheme commonly used in gauge-field!” and re-
lated theories, we treat formally the phase and amplitude
fluctuations, constraints, and other effects without fur-
ther approximations. The results obtained indicate that
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the EFS observed in the high-resolution angle-resolved
photoemission and inverse photoemission experiments®
cannot be explained by the conventional slave-particle
approach. Moreover, the sum rule of the physical elec-
tron is not obeyed, if the corresponding sum rules are
imposed on the above particles. Since the total number
of electrons is independent of interactions, this result is
also valid beyond the decoupling scheme within the slave-
particle approach. In Sec. III, we give an example, fol-
lowing Ref. 20, to show that the scaling behavior of the
electron-momentum distribution function near k£ ~ kg
and k ~ 3kr in 1D can be reproduced by considering
nonlocal string fields in the mean-field approximation,
but there is still no EFS, and the sum rule for the elec-
tron number is still violated. If the Luttinger theorem is
obeyed, the Fermi volume is invariant under the interac-
tions. Thus our mean-field result seems to indicate that
the correct scaling behavior of the electron-momentum
distribution does not guarantee the existence of an EFS
(in the sense of global distribution) in the same theoreti-
cal framework. Section IV is devoted to a summary and
discussions on related problems.

II. FORMAL STUDY OF
ELECTRON-MOMENTUM DISTRIBUTION

The slave-particle theory can be the slave-boson or the
slave-fermion theories according to statistics assigned to
spinons and holons. The slave-boson formulation?! is
one of the popular methods of treating the ¢-J model.
This method, however, does not give a good energy of
the ground state.?? For example, in the half-filled case,
where the ¢-J model reduces to the antiferromagnetic
Heisenberg model, the lowest-energy state obtained by
this method fails to show the expected long-range Néel
order, and the energy is considerably higher than nu-
merical estimates.!® Also, it does not satisfy the Mar-
shall sign rule.?? However, this theory provides a spinon
Fermi surface!” even in the mean-field approximation.
Alternatively, the slave-fermion approach naturally gives
an ordered Néel state at half-filling,?* which obeys the
Marshall®® sign rule. The ground-state energy obtained
in this case is much better than the slave-boson case. At
the mean-field level, they are quite different, although in
principle they should be equivalent to each other. The
differences may be reduced by going beyond the mean-
field®® approximation. In the following, we use both ap-
proaches to discuss the electron-momentum distribution
function and the sum rule obeyed by it, and a direct
comparison of the obtained results is made.

First consider the slave-fermion representation in
which the electron operator can be expressed as Cip =
e;‘bw, where e;f is the slave fermion, while b;, is the
Schwinger boson, with the constraint ) bIabic, + e:fei =
1. In this case, the Lagrangian Lsr and the partition
function Zgp of the ¢t-J model in imaginary time 7 can
be written as
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Lsp = waa bio + Z eld,e;+ H Dy(Ri — Ry, 7 —7') = —(Trbig ()b}, (7))
1 t — [ DrL T
2N ( i+ 3 biobio - ) L) T g | DePE DDV DA (e BT,
(9)
H= -t eielbl bjo
m)a Go(Ri — Rj, 7 — ') = —(T;Ci0 (T)CJ, (1))

+= Z b,bigb!bis(Cap0ys — bapbys)
(n)

— K Z €€, (4)
i
Zsr = / DeDe' DbDb! DAe™J d7Lsr(7), (5)

where )\; is the Lagrangian multiplier on site 4, u is the
chemical potential, and the summation (ij) is carried
over nearest neighbors. Following the common practice,
the boson operator bIa keeps track of the spin, while the
fermion operator el keeps track of the charge; i.e., they
should obey the following sum rules:

8= (eles) = - / DeDe! DbDbf DAele;e/ drLse (D)
F
(6)
1—6=2 (blbic)
= 7o > / DeDe' DbDb! DAb] bige™ 4rlsr(r),
)

where 6§ is the hole-doping concentration, and (- - -)
means the thermodynamical average. We assume that
there is no Bose condensation of spinons, which means
that the temperature?* of the system is T = 0*. In
gauge-field theory,!”2% one can introduce the SU(2)-
invariant Hubbard-Stratonovich transformation and de-
couple the Lagrangian by using the auxiliary fields. In
the present formal study, there is no need to make
any transformation for the Lagrangian (3), and we will
treat formally phase fluctuations (gauge fields),!” am-
plitude fluctuations,?® constraints, etc. For discussing
the electron-momentum distribution function, we define
the following Matsubara fermion, boson, and electron
Green’s functions

g(R; — Rj,7—1') = —(Trei(r)e;(r’»
= —— [ DeDe! DbDb! Daei(r)el (r)e f drEse (™),
ZsF

(8)

fa (7))

=—§1— DeDe' DbDb' DXe] (7)e; (7' )biq ()b, (1)
SF

= —(Trel(T)e(r)bia (7)1}

xemJarLer(n), (10)

The spinon-holon scattering contained in Eq. (10) is a
four-particle process; therefore the spinon and holon are
strongly coupled. At the mean-field level, the holons
and spinons are separated completely. However, in many
theoretical frameworks, such as the usual gauge theories
discussed by many authors,!”>26 where the vertex correc-
tions are ignored, but the random-phase-approximation
(RPA) bubbles are included, the spinons and holons
are still strongly coupled by phase fluctuations (gauge
fields),!” amplitude fluctuations,?® and other effects.
Nevertheless, in all these cases the electron Green’s func-
tion G, (k,iw,) can be presented as a convolution of the
fermion Green’s function g(k,iw,) and boson Green’s
function D, (k,iwy,),

1 1 . , ,
G, (k,iwy) = i Z 3 Zg(q, W) Dy (q+k, twm+iwy).
q " wn
(11)

The coupling of the gauge field to these particles can be
strong, and a partial resummation of the diagrams has
been carried out,!” but the vertex corrections were ne-
glected, being the essence of the decoupling approxima-
tion. This is an important but the only approximation
apart from the sum rules for slave particles [Eqgs. (6) and
(7)] in our formal study. In what follows, one will find
that many difficulties might appear due to this approx-
imation. The fermion and boson Green’s functions can
be expressed as frequency integrals of fermion and boson
spectral functions as

© dw Ae(k,w)

k,iw,) = - ,
9 n) oo 2T Wy — W

(12)

© dw Apo (k, w)

Do (k,iPn) = 2w iP,—w '’
o0 n

(13)

respectively.?” Substituting Egs. (12) and (13) into
Eq. (11), we obtain the electron Green’s function by sum-
ming over the Matsubara frequency iw,,,
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G, (k,iwy)

1 © dw' [ dw' , "
—N;/_m o /_oo ?Ae(q,w)Aba(q'*‘kyw )

9 np(w’) + np(w”)
wn +w' —w”

(14

where np(w’) and ng(w”) are the Fermi and Bose dis-
tribution functions, respectively. The spectral functions
Ac(g,w’) and Aps (k, w”) obey the sum rules coming from
the commutation relations

[_o; (;_::Ae(q’ ’LU) =1, (15)
Z/_oo %%Aba(k,w) =2 (16)

The electron’s Hilbert space has been severely restricted,
but the fermion and boson themselves are not restricted.
By an analytic continuation iw, — w + in in the elec-
tron Green’s function(14), the electron spectral function
Aco(k,w) = —2ImG.,(k,w) can be obtained as

Aco(k,w)

1 * d'w’A NA & ,
—NZ T (@, W) Apo (g + kb, w + w')
q

x[np(w') +np(w +w)). (17)

Therefore, the electron spectral function A.,(k, w) obeys
the sum rule

*® dw
;/_m 90 Aer(kyw) =145 (18)

which is less than 2 since an amount of (1 —4§) of the dou-
bly occupied Hilbert space is pushed to infinity as U — oo
in deriving the t-J model. Thus the spectral function
Aco(k,w) only describes the lower Hubbard band. In
deriving Eq. (18), we have used the identities

oo (k) = /_oo g%nB(w)Aba(k,w), (19}
ne(k) = /—oo %%np(w)Ae(k, w). (20)

This is because ng(w)Aps (k, w) and np(w)Ae(k, w) can
be interpreted as the probability functions of state k with
energy w for boson and fermion, respectively. A similar
interpretation is also valid for the electron spectral func-
tion Ao (k,w). Thus the number of electrons in state k
is obtained by summing over all energies w, weighted by
the electron spectral function

ne(k)=3" /_ - 2 () A ()

™

—1-6-% 3 maolk + ane(a) (21)

15 195

In Eq. (21), the first term of the right-hand side, 1 -4, is
independent of k, and therefore it is true for all k¥ states
of the entire Brillouin zone. The value of the second term
of the right-hand side is of the order of §, and hence it is
not enough to restore the EFS; i.e., the distribution out-
side the should-be EFS is still of order 1. Figure 1 shows
the mean-field electron-momentum distribution n.(k) for
doping § = 0.125 in 1D. Beyond the mean-field approxi-
mation, but still within the decoupling scheme (11), there
are no important corrections for the global features of the
electron-momentum distribution and EFS, but the Fermi
velocity will be modified. This is because the essential
global features of the electron-momentum distribution
are dominated by the first term of the right-hand side,
1-4, in Eq. (21), and the second term of the right-hand
side in Eq. (21), which is of the order of §, is not enough
to cancel out 1 — § at each k outside the kp state, i.e.,
krp <k<m for k>0,and -7 <k < —kp, for kK < 0.
Since npo (kK + ¢) > 0 and ne(g) > 0 and a minus sign ap-
pears between the first and the second terms of the right-
hand side in Eq. (21), then it is impossible to shift the
weight 1 — 6 in state k outside the Fermi points into state
k' inside the Fermi points, i.e., 0 < k¥’ < kp, for k' > 0,
and —kr < k'’ <0, for ¥’ < 0. The above discussions are
also true for the 2D case. Therefore, there is no EFS in
the standard sense within the decoupling scheme (11) in
the conventional slave-fermion approach. If § holes are
introduced into the half-filled system, one might expect
that the total electron number per site would be 1 — 6.
However, a surprising result is

1 2
N onel) = (16" (22
15 ———TT—TT T T
3 1
1F -
—~ T
A L ]
SN—"
(8] - 4
G - -
05 - -
' 1
b v vt v v v vy )
0 0.2 0.4 0.6 0.8 1
k/m
FIG.1. Mean-field electron-momentum distribution n.(k)

for doping § = 0.125 in 1D in the conventional slave-fermion
approach. The integrated area of the electron-momentum dis-
tribution is 1 — 6§ — §(1 — 8) = (1 — 6)2.
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which is not the expected value, and violates the sum
rule of the electron number.

Alternatively, in the slave-boson representation, the
electron operator can be expressed as C;, = figb;f , where
fio is the fermion and bZ is the slave boson, with the con-
traint 3>, fi fio + bib; = 1. In this case, the Lagrangian
Lgp and the partition function Zgg of the t-J model may
be written as

Lsp =Y fl,0-fio + Y _bl0:b; + H

+Z,\ (b*b +Z o fic = ) (23)
= ——thb fga’ ;U/quyfw
(w)a
Z Fhafipfl, Fis(0apoas — 6apbas),  (24)
(U)
Zsp = / DbDbIDfDftDxe~J47LsB(T) (25)

where the fermion operator fit, keeps track of the spin,
while the boson operator bl keeps track of the charge,

ie.,

6= (blb;) = / DbDb!DfDft Dbl be= S dLsB(T),

Zsp
(26)

1-6 =Z<f,-t,fw>

Z / DbDb DfDftDAf], fize= T drEsB(™),
ZSB

(27)

We assume that there is no Bose condensation of holons.
Strictly speaking, this is true above the Bose conden-
sation temperature. However, as shown by Lee and
Nagaosa,'” the inelastic scattering of bosons by the gauge
field suppresses significantly the Bose condensation tem-
perature. After some formal calculations which are sim-
ilar to the slave-fermion case, we obtain

Z/w ‘;—:Aw(k,w) — 1456, (28)

Re(k) = 1= 6+ % 3 ngo(k +Q)ns(a), (29)

= Sne(k) =1~ (30)
k

In comparison with Eq. (21), the second term of the
right-hand side of Eq. (29) changes sign as an essential
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difference of the electron-momentum distribution func-
tion between the slave-boson and slave-fermion represen-
tations. However, the value of the second term of the
right-hand side of Eq. (29) is also of the order of §, and
it is also not enough to restore the EFS. Figure 2 shows
the mean-field electron-momentum distribution n.(k) for
doping § = 0.125 in 1D. Beyond the mean-field approxi-
mation, but still within the decoupling scheme, there are
no important corrections for the global features of the
electron-momentum distribution. The reason is almost
the same as in the conventional slave-fermion approach.
The essential global features of the electron-momentum
distribution are dominated by the first term of the right-
hand side 1 — § in Eq. (29). Since ns,(k + ¢) > 0 and
np(g) = 0, and a plus sign appears between the first and
the second terms of the right-hand side in Eq. (29), it
is impossible to remove those 1 — § states beyond the
Fermi points. The best situation is that an amount of
order of 6§ is added into each k' state within the Fermi
points. The above discussion is also valid for the 2D case.
Therefore, there is no EFS within the decoupling scheme
in the conventional slave-boson approach. In this case,
the sum rule of the electron number is also violated as
in the slave-fermion case. The difference between these
two approaches is that the electron number is more than
the expected value in the slave-boson representation, but
less than it in the slave-fermion representation.

These results indicate that there is no real EFS for
the electron-momentum distribution function n.(k) near
k ~ kr within the decoupling scheme in the conventional
slave-particle approach. The sum rule of the physical
electron number is violated. The scaling behavior of the
electron-momentum distribution near kr is also not cor-

n.(k)

05 - i

k/m

FIG.2. Mean-field electron-momentum distribution n.(k)
for doping § = 0.125 in 1D in the conventional slave-boson ap-
proach. The integrated area of the electron-momentum dis-
tribution is 1 — 6§ + 6(1 — 8) = 1 — §2.
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rectly described by this scheme. The theory can be ap-
plied to both 1D and 2D systems. It was proposed!7:26
that the low-energy physics of the t-J model can be de-
scribed by a theory of fermions and bosons coupled by a
gauge field. Our results also indicate that the gauge fields
(phase fluctuations) discussed by many authors!?:-26:28
are not strong enough to restore the EFS under the de-
coupling scheme (11). This is because the effects of phase
fluctuations in the slave-particle approach are essentially
local in momentum space. On the other hand, it has
been shown from experiments® that oxide superconduct-
ing materials exhibit an EFS, and the EFS obeys the Lut-
tinger theorem,® which means the Fermi volume is invari-
ant under interaction. In this sense the EF'S of strong cor-
related systems should also be described by an adequate
theory even in the mean-field approximation. In fact,
the rearrangements of spin configurations in the electron-
hopping process,'® which are nonlocal effects and beyond
the conventional slave-particle approach, play an essen-
tial role to restore EFS for a system of decoupled charge
and spin degrees of freedom. Thus the electron is not
a composite of holon and spinon only, and it should in-
clude other fields which describe the nonlocal effects. In
the next section, we will see that the scaling behavior of
n¢(k) near k ~ krp and k ~ 3kp can be obtained in 1D
by considering some nonlocal effects. Before going to the
next section, we would like to emphasize that the “Fermi
surface” obtained previously?® from the slave-boson the-
ory is a spinon Fermi surface, not the real EFS. In or-
der to interpret the high-resolution angle-resolved pho-
toemission and inverse-photoemission experiments,® the
spinon Fermi surface is not enough because experiments
have shown the EFS for real electrons.

III. SCALING BEHAVIOR OF THE
ELECTRON-MOMENTUM DISTRIBUTION
FUNCTION AND THE EFFECTS
OF NONLOCAL STRING FIELD IN 1D

Interacting 1D electron systems generally behave like
Luttinger liquids'® in which the correlation functions
have power-law decay with exponents which depend on
the interaction strength. For the 1D Hubbard model,
an exact solution was explicitly obtained by Lieb and
Wu.ll In the limit of J — 0, the ¢-J model is equiv-
alent to the large-U-limit Hubbard model.}»?1® Thus
the 1D ¢-J model provides a good test for various ap-
proaches. The asymptotic forms of some correlation
functions as well as the single-electron Green’s func-
tion have been obtained by many authors using different
approximations.?%:30 In particular, Ogata and Shibal®
obtained the electron-momentum distribution function
n.(k) by using the Bethe-Ansatz Lieb-Wu'!! wave func-
tion, and their results show the presence of EFS and the
correct scaling behavior of n.(k) at k ~ kr and k ~ 3kp.
It is well established that the Landau Fermi-liquid theory
breaks down in 1D, namely, (1) there is no finite jump
of the momentum distribution at the Fermi surface, (2)
there is no quasiparticle propagation, and (3) the spin
and charge are separated. On the other hand, there is still
a well-defined Fermi surface at kr, as one would expect
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from the Luttinger theorem. It is remarkable that the
exact solution of the 1D Hubbard model demonstrates
explicitly these two aspects at the same time. In this
sense it is important to check whether both aspects re-
main in any appropriate approximate treatment of the
1D model. To our knowledge, such global features of
the electron-momentum distribution function even in 1D
were obtained only by using numerical techniques. In
this section, we try to study analytically this problem. A
C P! boson-soliton approach including the effects of the
nonlocal string field to study the large-U Hubbard model
was recently developed by Weng et al.?° They have shown
that the electron is a composite particle of a holon and
spinon, together with a nonlocal string field. We will
draw heavily on their results, but we try to make the
presentation self-contained. The correct scaling form of
the electron-momentum distribution function can be ob-
tained even in the mean-field approximation (MFA) if
one considers the nonlocal string field.

For convenience, we begin with the t-J model, but con-
sider the limit J — 0% which is a fixed point different
from J = 0. In this case, the t-J Hamiltonian may be
written as

H=-tY ClCj,+Hec. (31)
(ij)o
As in the C' P! boson-soliton approach,2® the electron op-

erator C;, can be expressed in the slave-fermion repre-
sentation including the effects of nonlocal string fields as

Cic = e;‘te_ig icimu bi- G, (32)
with the constraint 3 b:fabw + efei =1. Here n; = e;rel

and the fermion operator e;f keeps track of the charge,
while the boson operator b} keeps track of the spin.
e~ *3 Li<i™ jg the string field, which describes the ef-
fects of rearrangements of spin configurations from —oo
to site ¢ when one electron was removed or added at
site i. G; is a projection operator, which ensures that
b;c annihilates the spin o and is a nonlocal phase shift
G; = 3 (N=Xi=Xsim) (X, is the lattice site), which de-
scribes the effects of rearrangements of the spin configu-
rations from site ¢ to +o00 when one electron was removed
or added at site 4. As shown by Ogata and Shiba,'© the
“squeezing”’ effect, i.e., the rearrangement of spins when
holes are squeezed out, is crucial in recovering the Fermi
surface and getting the correct exponents for the correla-
tion functions. The nonlocal “string” proposed in Ref. 20
will partly take into account this effect. In fact the mo-
tion of holons is also affected by the rearrangements of
the spin configurations.3! We have neglected this second
effect since the kinetic energy t is much larger than the
magnetic energy J. One can check easily that the anti-
communication relations are the same as for the conven-
tional slave-fermion approach. In this case, the Hamilto-
nian with contraints can be written as

H =~y [ib] bjs10e} 165 + (—0)bl1,b50€fe511]

jo
—,uZe;-ej + Z)\j (e;ej + Zb;‘gbja - 1) ,» (33)
J J 4
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where p is the chemical potential, and X; is the La-
grangian multiplier on site j. The factor ¢ in the Hamilto-
nian is very important, which will shift the holon energy
spectrum and will give rise to the correct scaling form of
the electron-momentum distribution function. Thus we
define the new holon operator as

ej = e'5Xih;, (34)

and the Hamiltonian may be rewritten as

H=—tY [blbiy1ohly hi + He] — > bl

io
+3 N (h;fhi + > bl bio — 1) . (35)

Following Weng et al.,2° we can obtain the asymptotic
singular behavior of the electron-momentum distribution
by a similar calculation, and the result is in agreement
with theirs. In doing so, the major approximation is
to drop the G; factor in Eq. (32), while calculating the
asymptotic single-electron Green’s function. As pointed
out by Weng et al.,?° this factor will contribute an addi-
tional power-law decay in the asymptotic single-electron
Green’s function, and one may neglect it for simplicity
if only interested in the leading contribution. The main
effect due to the nonlocal string is already present. In the
MFA, our situation is very similar. Equation (32) holds
exactly in the Néel limit of the spin configuration, and
therefore the quantum many-body effects are neglected.
This does not affect the leading long-wavelength behav-
ior. In this paper, however, we are mainly interested
in the global features of the electron-momentum distri-
bution. If the Luttinger theorem® is obeyed, the Fermi
volume is invariant under interaction and a strongly in-
teracting system should also show a large EF'S even in the
mean-field approximation. Thus a mean-field treatment
is a useful test for the present approach.

The mean-field approximation to the Hamiltonian (35)
amounts to treating \; as a constant, independent of po-
sition and to decoupling the spinon-holon interaction in
a Hartree-like approximation by introducing the order
parameters

X = Z bAT b1+la

¢ = (h{ThE ), (37)

where we have considered two sublattices A and B with
i € A,i+ 1 € B. The self-consistent equations about
A, X, ¢, and u can be obtained by minimizing the free
energy.

Under the same approximation as the one used to ob-
tain the asymptotic single-electron Green’s function [i.e.,
G; factor in Eq. (32) has been dropped], the single-
particle electron Green’s function G.,(k,iw,) in the
present mean-field approximation can be obtained as

Geo(kyiwy) = N Z

(36)

np(Wq) +nF(5q——k:t§-(1+6))
Wy + € kT (1+6) —

(38)
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where )

W =A—t¢vk, Ex=A—p—1txVk Yk = 2cos(k).

(39)

Therefore, one can get the electron spectral and momen-
tum distribution functions

Aco(kiw) = 5 3 Ins(wg) + nrler-razaro)
X6(w + g kig(irn —we),  (40)
Ak) =% [ G (biw) =145 (41)
ne(k) =1-6- Zns(wq)nF(sq kxz+6),  (42)
Ejmw) (1-6)° (43)

In comparison with Eq. (21), we find that the holon en-
ergy spectrum has been shifted by Z(1 + 6) due to the
presence of nonlocal string fields. Figure 3 shows the
electron-momentum distribution n.(k) in the mean-field
approximation, including the nonlocal string fields for
doping § = 0.125 in 1D. The singular behavior of the
electron-momentum distribution function at kr and 3kg
is in qualitative agreement with the numerical results,°
but the sum rule for the total electron number is still vi-

15 —————T—
1k kp/m —3kp/m+2 -
~ -
i L
N—"
(9] -
g -
0.5 F
I ]
L ]
ol v 4w vy
0 0.2 0.4 0.6 0.8 1
k/m
FIG.3. Mean-field electron-momentum distribution n.(k)

for doping 6 = 0.125 in 1D in the slave-fermion approach
including the nonlocal string fields. The integrated area of the
electron-momentum distribution is (1—8)2. Note that, for § =
0.125, 3kr becomes larger than 7 and a singularity appears at
3kr-2m, while —3kpF is less than —7 and a singularity appears
at —3kr+2n. The values of kr and —3kp+27 are indicated
by arrows.
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olated and EFS still does not exist in the present frame-
work under the above approximations. Beyond these
approximations, the situation is not clear yet. If the
Luttinger theorem® is obeyed, then there are no impor-
tant corrections to the global features of the electron-
momentum distribution function and no EFS beyond the
mean-field approximation in the same theoretical frame-
work. Since the rearrangements of quantum spin config-
urations in the hopping process play an essential role to
restore the EFS,'0 then Eq. (32), which holds exactly?®
in the Néel limit of the spin configuration, is perhaps
not enough to describe all of these quantum spin con-
figurations. Thus our feeling is that in this theoretical
framework, the correct singular behavior of the electron-
momentum distribution may be obtained, but it does not
guarantee the existence of the EFS. We also note that
only the asymptotic forms were discussed in the previ-
ous works by many authors,3® while the global features
of the momentum distribution function have not been
considered by their theoretical methods.

IV. SUMMARY AND DISCUSSIONS

We have discussed the electron-momentum distribu-
tion function and the sum rule of the electron number in
the t-J model by using the slave-particle approach. Un-
der the decoupling scheme (11) used in gauge-field!” and
related theories, we have formally proved that the EFS
cannot be restored and the sum rule of electron number is
violated in the framework of conventional slave-particle
approach. For the 1D t-J model, the correct singular-
ity forms can be reproduced by considering the nonlocal
string fields in the special mean-field approximation, but
there is still no EFS and the sum rule is still not satisfied.

In the present slave-particle approach to study t-J
model, we have pushed out the upper Hubbard band.
This means we have neglected the doubly occupied sites
in the original slave-particle approach:?* Ci, = al fir +
odif}_,, with a constraint aja; + 3, Il fio +didi =1,
where az is the slave boson, f;, is the fermion, and d;
is the boson which describes the doubly occupied sites,
or vice versa. In fact in the original slave-particle ap-
proach the electron spectral function obeys the sum rule
of conventional electron, i.e., > fix;o %%Aw(k,w) = 2,
but the sum rule of the electron number is still violated.
We also find that the sum rule of electron number is not
violated in the CP! representation of electrons, which
probably means it is a better choice to study the t-J
model.

The decoupling of charge and spin degrees of freedom
of electron is undoubtedly correct in the 1D ¢-J model
in the J — 0% limit,'° and the 1D ¢-J model behaves
as a Luttinger liquid.1%12 Anderson!® has hypothesized
that the normal state of 2D strongly interacting systems
relevant for the oxide superconductors might show gen-
eralized Luttinger-liquid behavior, and the characteris-
tic separation of charge and spin excitations might be
responsible for the experimentally observed temperature
dependences of the resistivity®? and Hall effect.3® If these
properties can be described in the framework of slave-

15 199

particle approach, then we must be out of the difficulties
mentioned in Secs. II and III. A possible way to restore
the EFS is to try to include the vertex corrections be-
yond the decoupling scheme (11). As stated earlier, the
coupling to the gauge field can be strong, but so long
as the vertex corrections are neglected—i.e., the decou-
pling scheme is adopted—the difficulty will remain. On
the other hand, it is difficult to introduce vertex correc-
tions in the present form of gauge-field theory, because
the infrared divergence has not yet been properly han-
dled. Another possibility to avoid this difficulty is that
one should make a new interpretation of the constraint
(2) and the physical meaning of spinons and holons. In
fact the constraint (2) is an operator identity, and one
replaces the constraint (2) by Egs. (6) and (7) in the
slave-fermion approach or Egs. (26) and (27) in the slave-
boson case. It is not clear that this is a correct way of
imposing the constraint; i.e., the charge is represented
by a fermion, while the spin is represented by a boson in
the slave-fermion approach and vice versa in the slave-
boson version. The crucial point is to implement the local
constraint rigorously.3 Finally, according to the implica-
tions of numerical solutions,? the electron is perhaps not
a composite of holon and spinon only, but it rather should
be a composite of a holon and spinon together with some-
thing else. This is because the Bethe-ansatz Lieb-Wu'’s
exact wave function!® for the 1D Hubbard model at the
large-U limit may be written as

U(z1,...,TN) = (——1)Qdet[exp(ikixqi)]<I>(y1, ey YM)s

(44)

where the determinant depends only on the coordinates
of particles (zg, < : -+ < Tqgy) but not on their spins.
Thus it is the same as the Slater determinant of spin-
less fermions with momenta k;’s. The spin wave func-
tion ¢(y1,...,ynm) is the same as the Bethe exact solu-
tion of the 1D Heisenberg spin system. In the second
quantization representation, a spinless fermion operator
may be responsible for the Slater determinant of spinless
fermions, but a simple fermion or boson operator may be
not enough to describe the spin wave function. Perhaps
it should be a fermion or boson operator together with
something else, such as the Jordan-Wigner’s form3® in
1D, or a map of the three spin operators of the SU(2)
algebra onto a couple of canonical boson operators, such
as Holstein-Primakoff form,3¢ is responsible for the spin
wave function. We believe that a successful theoretical
framework must include the essential ingredients to give
a qualitatively correct description of the global features
of the EFS even in the mean-field approximation.

To summarize, we are facing a dilemma: If we would
like to split one electron into two particles, one keeping
track of the charge, the other keeping track of the spin,
and impose corresponding sum rules on them [Egs. (6)
and (7) or Egs. (26) and (27)] and then use the decoupling
scheme for their expectation values, the resulting electron
distribution does not satisfy the sum rule and does not
show an EFS. In this sense, we have proved in this paper
a “no-go” theorem. The alternative would be to give
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up the attractively simple interpretation of spinons and
holons and to look for more complicated charge and spin
collective excitations.

Finally we note that the present slave-particle ap-
proach is different from those first proposed by Barnes3”
and rediscovered and extended by Coleman,® Read and
Newns,3® and Kotliar and Ruckenstein?® in their works
on the mixed-valence problem and heavy-fermion sys-
tems. In their formulation, the spin and charge degrees
of freedom are not decoupled, where the auxiliary bosons
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keep track only of the environment by measuring the oc-
cupation numbers in each of the possible states for elec-
tron hopping. Their theory describes the properties of a
Fermi liquid, and is another story.
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