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Superconductive and normal-state transport properties
of epitaxial YBa~(Cu1 Ni )30' Alms
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Ni-doped epitaxial thin YBa2(Cui Ni )sO& s films have been prepared by high-oxygen-pressure
dc sputtering from stoichiometric targets on SrTi03 substrates. Structural properties of these c-
axis-oriented films were not affected by Ni doping up to 2: = 15'%%uo. Inductively measured transition
temperatures show a decrease with a rate of —4.5 K/(at. % Ni) for Ni concentrations up to x = 4'.
For higher Ni contents the T;depression rate changes to —1.5 K/(at. % Ni). A change in slope is also
detectable in the dependence of the resistivity on Ni concentration. These results can be explained
in a model based on a concentration-dependent site preference of the Ni atoms. The activation
energy for vortex creep (extracted from resistive transitions) and the critical-current density show

the pinning efFectiveness of the dopant. Scaling laws for the pinning-force density have also been
studied. The Hall concentration nH shows a slight increase for small x and a decrease for higher
values. The slope dnH/dT is also lowered for increasing Ni content. Furthermore, the mobility and
the Hall angle of the YBa2(Cui Ni )s07 s films were deduced from experimental data.

I. INTRODUCTION

The change of normal and superconductive trans-
port properties due to the substitution of copper in
YBa2Cus07 s by other 3d transition metals (e.g. , Ni)
is of particular interest in understanding parameters es-
sential for superconductivity. From experiments on bulk
material it is already known that Ni leads to a decrease of
the superconducting critical temperature T,. The exper-
imental results on YBa2(Cui ~Ni )s07 s bulk samples
reported so far give evidence for Ni substituting Cu in the
Cu02-plane sites [Cu(2)]. But there are also reports
deducing the substitution in both the Cu02-plane sites
and the CuO sites [Cu(1)].4 s Varying results are also
reported on the strength of T, depression reaching from
—3.6(K/at. % Ni) (Ref. 7) up to —10.5(K/at. % Ni) s

even if eventually observed impurities due to incomplete
solubility are corrected. Because of the difBculties in
obtaining high-quality doped single crystals with well-
defined Ni content, most groups investigated only few
doping levels (especially below 2: = 1%) or narrow doping
intervals in bulk material, giving only a crude overview
of the change in physical properties. Moreover, measure-
ments of the intrinsic critical-current density in polycrys-
talline bulk material are ruled out by grain-boundary ef-
fects.

Epitaxial thin films are suited ideally to perform direct
j, and Hall-effect measurements, if they are patterned in
appropriate structures. This paper presents a detailed,
systematic study of the inHuence of Ni substitution on
the normal-state transport and superconducting prop-
erties of YBa2(Cui Ni )sOr s. To this purpose, we
prepared epitaxially grown high-quality films on SrTi03
substrates for ten different Ni concentrations in the range
of 0 & x & 0.15. All films were characterized by x-ray
diffraction and ac susceptibility. After patterning, elec-

trical resistivity and Hall measurements were performed.
In order to study the effect of Ni impurities on vortex
pinning, we measured superconducting critical transport
currents ja (B,T) and resistive transitions in high mag-
netic fields.

II. EXPERIMENTAL DETAILS

For the preparation of YBa2(Cui Ni )s07 s sput-
ter targets (diameter 32 mm), we first prepared pure
YBa2CU307 s-powder and YBa2 (Cue s Nip 2)s 07
powder by solid-state reaction using stoichiometric
amounts of Y203, BaCO3, CuO, and NiO powders as
described elsewhere. These two starting materials were
thoroughly mixed to obtain a homogeneous and reliable
distribution of the Ni atoms in the intended concen-
tration. The targets were bonded to a planar, water-
cooled cathode in a noncommercial sputtering system.
The c-axis-oriented films were prepared by sputtering
onto (100)-oriented SrTiOs substrates mounted on a Pt
ribbon, which was resistively heated to Tp& ——920'C,
using 3.5 hPa pure oxygen as process gas. Deposition
was terminated after 2 h, leading to a film thickness of
1500—2000 k measured by optical and mechanical meth-
ods with an accuracy of about 10%. In order to increase
the oxygen content, the films were annealed in situ for 30
min at Tpq ——570'C after venting the sputter chamber
with 1000 hPa oxygen. Then they were cooled down to
room temperature with a rate of —20K/min.

X-ray-diffraction and ac-susceptibility measurements
to determine T, were carried out routinely. In order to
further characterize the samples, sputtered neutrals mass
spectrometry (SNMS) and scanning-electron-microscopy
(SEM) measurements were performed for at least one film
of every concentration. Silver pads were evaporated on
the films and annealed to achieve contact resistances of
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the order of 10mA, which are able to carry currents up to
1 A. After oxygen recharging, the samples were patterned
wet chemically using highly diluted H3PO4 for etching.
The patterned structure allows four-probe measurements
of the Hall eÃect and the resistivity on a 200-p, m-wide and
1.8-mm-long strip. The critical-current density j, was
measured in dc technique using a 1-pV criterion over a
100-p,m-long and 10-p,m-wide microbridge.

Hall measurements were performed in magnetic fields
parallel to the c axis of the films. Since the Hall voltage
UH was found to increase linearly with the magnetic field,
we measured the temperature dependence of the Hall ef-
fect by monitoring UH in a constant magnetic field of
5 T and sweeping the temperature from 300K down to
T, . Thermal voltages were eliminated by measuring the
voltage drop for both current directions. The resistive
contribution was substracted by a second run in oppo-
site magnetic field.

Furthermore, the temperature dependence of the elec-
trical resistivity, p(T), was measured for all concentra-
tions. For the determination of the activation energy for
vortex creep, we measured the resistive transitions to su-
perconductivity in a range of T,o ( T & 100K and in
magnetic fields up to 12 T parallel to the c axis of the
films.

III. T, AND RESISTIVITY MEASUREMENTS

X-ray difFraction (XRD) using Bragg-Brentano geom-
etry showed only (OOE) peaks, and rocking curves of the
(005) peak indicated no broadening of the full width at
half maximum (FWHM) value which is typically 0.4'.
This indicates the c-axis orientation and the epitaxial
growth of the films. XRD, SNMS, and microprobe mea-
surements revealed no indications of impurity phases or
deviations from stoichiometric composition up to the
highest Ni concentration x = 15%. SEM showed smooth
surfaces. The midpoints of the inductive transitions are
plotted in Fig. 1. The critical temperature decreases with

p~ = ms (x —Cc) + ps'o (2)

pc' = mc&c+ pco

Since our films are twinned, we introduce a chain resis-
tivity pe, which is related to the chain resistivity pe by

p~ = ~2pc due to geometrical reasons. Contributions of
the twin boundaries to the resistivity are neglected. C&
is the Ni concentration on the chain sites. It is calculated
as the fraction P of Ni that occupies the chain sites for
Ni concentrations higher than 4%:

increasing Ni content at a rate of —4.5K/at. % Ni up to
x —4%. This T, depression is lowered to —1.5 K/at % Ni
at higher concentrations. Whereas the transition widths
(90% signal and 10% signal) are not strongly affected
having values AT, ( 1 K up to x = 4% and less than 5 K
at x = 15%. Error bars indicate twice the standard devi-
ation o. from the mean value of T, based on the number
of films indicated for each concentration.

Considering only the inductive data, two explanations
of the change in slope dT, /dx are possible, namely, first,
incomplete solubility of Ni at higher x values and, sec-
ond, change in site preference of Ni. Since no impurities
are discernible and measurements of resistivity show also
a change in the slope of dp/dx at x 4%, we are con-
vinced that the site preference of Ni changes. Welp et
al. showed that the conductivity of YBa2Cus07 ~ could
be understood by considering a parallel circuit of copper
chains and planes as

pc'pI'p=
pc'+ PI'

A fit of this model to our experimental data using a linear
increase of resistivity of chains and planes with increasing
Ni content is shown in Fig. 2 for the resistivity p(300 K).
In this fit we assume that, up to 4%, only Cuo2-plane
sites were occupied by Ni, while at higher 2: values the
substitution also takes place at the CuO-chain sites, lead-
ing to partial resistivities of chains and planes as
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tion x on the inductively measured transi-
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FIG. 2. Resistivity at T = 300K depen-
dent on Ni concentration. The solid line is a
t assuming that for x & 4% also the CuO-

chain sites are substituted b N' Dy i. etai s are
given in the text.
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dicates the bandwidth of spin excitations W, in the Cu02
planes. Chien, Wang, and Ong tested the RVB model
using a series of Zn-doped YBa2Cus07 b-single crystals
with 0% ( x ( 5%%ua. While Chien, Wang and Ong con-
firmed Anderson's predictions by plotting cot OH versus
T for 0% ( x ( 3.5%, we did not find the same behavior
for our epitaxial YBa2(Cui Ni )s07 b-films. As can be
seen from Fig. 9(a), the slope and hence n are not inde-
pendent of the doping level, showing an increase of this
value especially at concentrations higher than x = 2%
The measured values of n range from 8 x 10 s/K2 to
22 x 10 /K (b), leading to W, values between 901 and
544K. Nevertheless, C(x) = Px shows a linear depen-
dence on the Ni concentration with P = 32/(at. '%%uo Ni) as
displayed in Fig. 9(c).

VI. CONCLUSIONS

A series of high-quality YBaz(Cui Ni )s07 p films
has been prepared by high-pressure oxygen sputtering.
No impurity phases were detected. A change in slope
of T, (2:) and p(x) could be explained consistently by a
model of difFerent site preference of the Ni atoms de-

pending on the Ni concentration. Fits of p(2:) treating
YBa2Cus07 p as a parallel circuit of the CuO chains
and the CuOz planes lead to values of p~/pi, consistent
with those reported by Welp et al. The increase of the
activation energy and of the critical-current density for
small doping concentrations shows the pinning effective-
ness of the dopant. The pinning-force density scales with
~b(1 —6) as proposed by Kramer. is The carrier den-
sity n shows a slight increase for small x values as al-
ready reported but not discussed by Clayhold, Ong, and
Wang. Nevertheless, the mobility p decreases mono-
tonically with increasing Ni content. Investigations of
the Hall angle OH were not able to confirm all of the
predicted behavior of Anderson's RVB model.
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