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Single-particle motion in a random magnetic Aux
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The motion of a quantum particle in a random magnetic flux in two dimensions is investigated.
Two situations are distinguished, a "Debye" phase where the fluxes are uncorrelated, and a "Meiss-
ner" phase where the fluxes appear as neutral pairs. A geometrical interpretation of effective single-
particle action in these phases is emphasized. Results are discussed for (a) a continuum white-noise
model where we employ a trial-action method, (b) a continuum model with randomly distributed
flux tubes where we obtain the form of the Lifschitz tail, and (c) a lattice model, where numerical
results for the density of states and diamagnetic response of Debye and Meissner phases are given.
An important conclusion is that the density of states in the Debye phase exhibits a sharp peak at
an effective band edge.

I. INTRODUCTION

The quantum motion of a particle that experiences
a random magnetic flux presents a problem of funda-
mental interest to condensed-matter physics. Aspects
of this problem have arisen in several contexts during
recent years; notable examples include holon motion
in doped Mott insulators, ' vortex liquids in type-II
superconductors, and anyons. The correlations or con-
straints appearing in real systems can often be repre-
sented by gauge fields. Thus for example the backflow
constraint in a doped Mott insulator is equivalent to a
current-current interaction between spins and charges,
which can be considered to be mediated by a gauge
field 25

It is clearly important to understand the single-particle
static field problem which parallels these many-body ex-
amples. Here there are few exact results, although a good
deal of understanding has been achieved recently using a
variety of techniques. 2 The lack of exact results is not
surprising; even the conceptually simple situation of a
periodically varying magnetic flux (e.g. , a periodic array
of flux tubes) presents a formidable problem. The reason
is that the vector potential associated with a flux line is
long ranged.

The problem of particle motion in a random flux P
can be simply formulated in terms of the imaginary-time
path integral

d]r]exp —Sr + r'/a «
(1)

I
Z = d[P] exp PDP——

2

where p = '(7 x a, and D i(r, r') is the flux correlator

(p„p ). The kinetic term So ——
2 Jo dr r is the action

of a random walker in imaginary time; P is the inverse
temperature, r(r) = r(r + P), and we set e, c, h, and the
particle mass equal to unity.

We distinguish two cases which often arise in prac-
tice. A "Meissner screened" phase is defined by a static
gauge-field correlation (a a~ ) = (q~ + A&2) i(I) (3(ao2)

corresponding to a flux fIuctuation

(2)

where Ko is a Bessel function of the second kind (the
screened Coulomb potential). The Meissner phase corre-
sponds to the static flux fluctuation in a superconductor.
It has an interpretation as a phase in which the fluxes
occur only as neutral pairs, with average separation Al, .
If the screening length is infinite,

ESMe(ssn~p = dr ~ dr Ko(AI ~r —r'~). (4)
(ao) —1

4m

In the Debye limit Ko(AI r) —+ —ln AI r/2 and this
becomes

—:(a())A. (5)

Because of the closed-loop boundary condition, the
length scale appearing in the logarithm of the Debye ac-
tion is arbitrary and has been dropped. Note that the
efFective action [Eqs. (4) and (5)] is independent of the
parametrization of the path and so measures a purely
geometrical property of the path. The quantity 0 ap-
pearing in the Debye action [Eq. (5)] is the "Amperean
area" of the path. Under dilatation of the loop by a scale
factor 8, 0~8 0

An equivalent expression for the quantity A is

0 = d B ui (R),

where t()(R) is the winding number of the loop about

this is called the "Debye" phase because it corresponds
to the static part of the magnetic flux fluctuation in a
dielectric or metal.

Performing the average over Meissner flux in Eq. (1),
the contribution to the single-particle effective action

2 $$dr dr'~(a™a „,) is
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FIG. 1. Pictorial representation of Meissner phase. The
Aux accumulated in a Meissner phase depends on the perime-
ter of the loop.

the point B. This provides a geometrical interpre-
tation of Eq. (5). The equivalence of the two ex-
pressions follows since Eq. (6) can be expressed as

jdr~ f dr'~ f d2Rao (r —R)a&~(r' —R), where ao(r —R)
is the vector potential of a unit flux tube located at A.
The quantity f d2Rag (r R) ao~(—r' R) can b—e identified

with the kernel (a„a„,) in the Debye phase since its dou-
ble curl is 6~21(r —r'), corresponding to the Debye Hux
Huctuation [Eq. (3)].

A more pictorial description of the Meissner and Debye
phases is provided by considering the lattice equivalent
of the above models. Figure 1 shows a possible Meissner
phase; "molecules" of Hux P and —P are placed randomly

on the lattice. If a particle moves about a loop as shown,
the Hux accumulated in the case of the Meissner phase
depends on the number of molecules cut by the loop; the
mean-square flux fluctuation therefore follows a perime-
ter law which corresponds to Eq. (4). In the Debye case,
the mean-square accumulated flux follows an area law.
This is familiar from lattice-gauge theories where area
and perimeter laws of the Wilson loop distinguish con-
fined from deconfined phases.

A lattice version of the model is treated numerically
in Sec. IV. The Debye phase is defined by a uniformly
distributed random . Pux; the Meissner phase is defined
by a uniformly distributed random phase on links of the
lattice. The numerical results yield the form of the den-
sity of states in "typical" regions of the system. A sharp
peak in the density of states is clearly resolved in the De-
bye phase; this feature is entirely absent in the Meissner
phase. We associate the peak with the singular long-
distanee behavior of the Debye action.

First, however, we outline some analytic approaches to
the continuum problem.

II. VARIATIONAL METHOD

A simple but powerful approach to the continuum
problem is provided by the trial-action method. A lower
bound on Z is obtained using a trial action S~ ——Sp+LS~
and the inequality

Z & Zi exp —(AS —AS~)s, .

For a Gaussian trial action, whose diffusion law we denote
as (r2(r)), we get for the average of the action [Eq. (4)]:

d'd, Z. (A; ~, —,
~)4a 8m2

(ao)
8vr2

&(a'.)
87t 2

d

+A

d q

q'+ Ai'

q

q'+ Ai'

I
dade'r r'leis r—'g r

p p
drdr (r~ r~)e

] d2
dr (r2) e—

2 d7.2

r~~ and r~ refer to components parallel and perpendicular
to q.

The singular behavior of Eq. (8) at small and high q
is controlled by the diffusion law of the trial model. For
large q only the short-time difFusion is important; since
the short-time difFusion is that of a free particle, &", (r2)
can be replaced by b(r) and the time integration yields a
factor independent of q. Therefore the integral depends
logarithmically on an upper cuto8' qp.

For small q the momentum integral is cut ofF by the
screening length Al. . A second cutoff at small q is pro-
vided by the thermal length Ath of the trial model. This
follows because for momenta satisfying q2(r2) (( 1, the

d2integral fo dr &", (r2) vanishes by periodic boundary con-
ditions on the paths. Thus

~( ') lnqoAI„AI, (( Aqh Meissner,

lnqpA&h, Ai &) A&h Debye.

n, —P~I j.+in ~.yqj2' (10)

and thus (ESq)s, = rldlnZq/drl = pgln—u, /rl. ur, is a
high-frequency cutoff. The thermal length is fixed by the

In the Debye phase it is advantageous to limit the
growth of the thermal length at low temperatures. One
Gaussian model which does this is is the Caldeira-Leggett
model of dissipative quantum mechanics, which is Sp +
erg fo fo drdr' ln ~r —r'

I The low-temperature partition
sum in this model is
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and

(~o)

Z) 2P 8
—exp —P ' inqoAL

' "exp —P' ln",':,16' 87t (g,o2)

( ') « 1 Meissner

( ')
~z && 1, Debye.

(12)

These expressions can be used to deduce information
about densities of states. The exponential decay of the
partition sum present in. both cases corresponds to an
upward shift of the band edge. The behavior of the den-
sity of states at the new band edge is markedly different,
however; in the Meissner case it corresponds to a weakly
renormalized free-particle density of states in two dimen-
sions; in the Debye phase it corresponds to a b-function

( ')
peak of strength ~is'l . The existence of a density of states
peak at low energy in the Debye phase is also predicted
by perturbation theory and will be confirmed in Sec. IV.

While these results are suggestive, they suffer from the

the dissipation g: At low temperature A~& g. Com-
bining these results, the value of g which maximizes the
right-hand side of Eq. (7) at low temperature P ~s'l )) 1
1s

( ')
Al, 8' « 1, Meissner,

2(~') A '
&& 1, Debye

usual limitations of the trial method. A significant de-
fect is that the introduction of a cutoff scale for the flux
Buctuation means that a Lifschitz tail is expected in
the density of states, starting from zero energy, deriving
from exceptional regions of the system with small flux.
This effect is completely missed in the analysis leading to
Eqs. (12); to capture the I.ifschitz tail it is necessary to
use a trial action which breaks translational symmetry as
described in Sec. III. The presence of a low-energy tail
means that the behavior of the density of states at the
"effective band edge" can be less singular than that given
by Eq. (12) without violating the variational principle.

III. LIFSCHITZ TAILS

To illustrate the Lifschitz tail in a random magnetic
flux we study a system of randomly distributed flux tubes
of fixed strength; the model is defined by two parame-
ters: an areal density p (equivalent to qs above) and a
small flux strength p. (With flux strengths +p the De-
bye model [Eq. (5)] is recovered in the limit of infinite p
but finite pp = (ao).) We follow the forrnal technique of
Friedberg and Luttinger who studied the Lifschitz tail
in a system of randomly distributed, local, repulsive po-
tentials. The key to this approach is once again the use
of a trial action and the inequality (7) for the partition
sum. The impurity averaged partition sum is

ti[r] exp —Se + i ) f dre„(r —B;)

where a„(r —R) is the vector potential of a flux tube of
strength p located at R and 7' x a„(r) = pb~ ~i(r).

Integration over the flux tube positions R, is eas-
ily carried out. Noting that the impurity average
(expi $ adr), m~„„.t~ can be written [1 —p/N f d2R(1—
expi $ adr)], with p = N/V, and taking the thermody-
namic limit, Z = f d[r] exp[ —So —W+], where the efFec-

tive action is

lW+(r) = p d R
~

1 —exp i a„(r —R)dr—
(14)

The exponent appearing in Eq. (14) is precisely p times
the winding number ui(R) of the path r about the point
B. Note that in the limit p, —+ 0 but pp fixed the effective
action reduces to ipp f d Rui(R), which is the action in

I

a uniform field pp, as expected.
We introduce a trial field V' x aq corresponding to

a large hole in an otherwise uniform flux distribution
pp centered at the origin. (The trial flux thus breaks
translational symmetry. ) The transition amplitudes (K)
satisfy the inequality Z ) VKq(0) exp[ —(W+ —Wq)o],
where the average is taken with respect to the trial ac-
tion So + Wi, Wq ——$drai(r). It is assumed that
exp —PEO(aq) )) exp —PEi(at, ), where Eo and Ei are the
lowest and first excited state in the well, so that for in-
stance we can write Kq(0) = ~go(0) ~2 exp( —PEO), where
idio is the ground state of the Schrodinger equation in the
trial Bux. The validity of this inequality is checked at the
end of the calculation.

Retaining leading terms in P a simple calculation shows
that we must rnaxirnize exp( —PQ[aq]) where the func-
tional Q[aq] is

Q[aq] = Eo[aq] + j aqdr + — d R(1 —exp [ —p(ED[at. + a&(R)] —Eo[aq])]).

The first two terms are the leading contributions from
exp[in K& + (Wq)] and the last term is the average of the
efFective action [Eq. (14)]. The energy shift on placing
a flux tube of strength p at R, Eo[aq + a&(R)] —Eo[aq],

I

is —f j a„d r, where jo ——@o(iV' —az)$0/2m+ c.c. is
the physical current Bowing in the ground state. Since
V j = 0, jo can be expressed as e i BpA, where the
scalar field A(r) = f' j x dr'. The line integral is taken
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along an arbitrary path from infinity to B. Therefore the
energy shift may be written as f e ~8~a~Ad r = pA(R).
The optimum trial flux distribution is given by the solu-
tion of bQ/ba, (r) = 0, yielding

d R exp[ —A(R)] = 0. (16)

Noting that bA(R)/bai~(r) = f ei&[bj~~/ha~(r)]dr'
IV'I f b~ l(r —r')e dr' and taking the curl of Eq. (16)
yields a relation between the ground-state current and
trial flux. The equations to be solved are finally

2[iV'R —ai(R)] gp(R) = Ep@p(R), (17)
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7'~ x aq(R) = pp, exp Pp —jp(r) x dr . (18)

Perhaps, remarkably, the solutions of these nonlinear
nonlocal equations are similar to the solution of the cor-
responding problem for the scalar potential case. Sup-
pose the solution takes the from of a large disk-shaped
region of zero field with radius d. Outside this region
the Geld takes the average value pp. The ground-state
wave function is localized about the origin of the disk,
and decays as a Gaussian in the region of finite field
with decay length A of order (pp) i~2 for a large disk
radius. For large d where the ground state is expected
to be real, the current flow is confined to the edge of the
disk; je(r) = ~Qp(r)] C'/2mr, where C (r) = happ(r2 —d2)
is the flux enclosed at radius r ) d. Thus the quantityj j x dr' in the exponent of Eq. (18) jumps when the
point R moves through the edge, forcing the field to de-
crease for B ( d. This is a consistent solution provided
the edge current is sufBciently large.

To check the self-consistency of this solution we need to
know the edge current or the value of the wave function in
the boundary region. Since the wave function penetrates
a finite distance into the edge, we may apply "soft-wall"
boundary conditions Ad//dr+Q~g = 0. The interior wave
function is a simple Bessel function d Jp(v'2Epr),
where for large d, Ep zpz/(2d ), Jp(xp) = 0. At the
edge Qp(d) = d 2. The exponent in Eq. (18) is there-
fore pPd and we obtain a self-consistent solution at
low temperature provided Pd 4 is divergent at low tem-
perature. Since this should be satisfied with d as large
as possible, this means that d (P)i~ is a marginal
solution, and we expect logarithmic corrections to this
result. ~7

The above analysis assumed that the solution of Eqs.
(18) is governed by a single scale, the disk size d. This
was confirmed by numerical solution of the equations, as-
suming circular symmetry and real wave functions. The
results are shown in Fig. 2. The asymptotic behavior of
the partition sum corresponding to the marginal solution

1
is Z exp( —+2vrxppP~ ) with a corresponding density of
states exp( —mxpp/2e). This is the same as the result for
repulsive short-ranged potentials in two dimensions.

Finally, we remark that the Debye model discussed in
the Introduction can be recovered when there are two
species of flux tube each of density p and strengths +p.
In this case the effective action is

FIG. 2. Self-consistent solution of Eqs. (18} for the trial
flux and wave function. Inset: the scaling d P ~ which
determines the Lifschitz tail is verified. d is defined computing
the total Aux missing in the hole region and equating this to
pjlR'd

r
W~(r) = 2p d2R 1 —cos as„„(r—R)dr

i

(19)

In the limit p ~ 0 but pp2 constant, this becomes
Wy(r j = pp2 f dzRur~[R]. This corresponds to the De-
bye model described in the Introduction. Moreover, since
the I ifschitz tail is infinitely dilute in the limit p + oo,
this is consistent with the conclusion of Sec. II that the
"band-edge shift" diverges in the limit of large qp.

IV. LATTICE MODEL: DENSITY OF STATES

In this section we study the model

on a square lattice. i and j are nearest-neighbor sites.
The flux through a given loop L on the lattice is CL, =
Q, ~z a,~ with real gauge or link fields a;~ = —a~, . The
model is nontrivial even for the well-studied case of uni-
form flux. ~ For arbitrary a;~ the eigenvalues of H lie
in the interval [

—4, 4]. There is also an exact symme-
try on a bipartite lattice. The Hamiltonian changes sign
under the canonical transformation c, —+ P(i)c, , where
P(i) = 1 on the even and —1 on the odd sublattice; if

the state P,. n, c, is an eigenfunction with energy E, then

Q,. P(i)n, c, is an eigenfunction with energy —E and so
the density of states is symmetric about E = 0.

-A Meissner phase of the lattice model is readily gen-
erated by choosing the link fields to be uniformly, ran-
domly distributed in the interval [

—ap, ap]. To see this
recall that from the continuum limit discussed in the In-
troduction a Meissner phase is defined by the property
that the plaquette sum Po, (PoPo ) vanishes. Suppose
that ap ( vr/4 so that the flux is always in the interval

[
—vr, vr]. With random link phases, only nearest-neighbor
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plaquette fluxes are correlated since they share one link.
For near neighbors (PiPz) = ((aiz+azs+a34+a4i)(a4s+
a35 + aM + as4)) = —(a ). Thus the sum over nearest
neighbors plus the local fluctuation ((aiz + azs + a34 +
a4i) ) = 4(a ) is zero. The screening length in this phase
is clearly of order of a lattice constant. A difFerent con-
struction is required for the Debye phase where we re-

quire that there be no correlations between fluxes on
neighboring plaquettes. This implies long-range corre-
lations between the link Belds a,~. We choose fluxes from
a uniform distribution [

—Pp, Pp].
For gauge-invariant quantities (such as the local den-

sity of states), the relevant object to examine is the loop
average

exp ia;&
iggL (—)"+exp —Q ln „.„'~~,

oGL

Meissner,

Debye.

(21)

Here A = JV+ —JV, where JV~ are the number of times
the link is traversed in each direction, L~ = Pz JV~ is
the "nonretraced path length" of the loop L, tuo is the
winding number of the plaquette, A = Pztp& is the
lattice-oriented area enclosed by L, and Pp = Pp + nor,
where Pp ( vr, with an equivalent definition for ap. Note
that when the amplitude of the random flux or phase is
close to an integer multiple of 7t. the contribution of non-
retraced paths is effectively suppressed. Also, for small
amplitude of the fluctuation we recover the continuous
form of the effective interaction.

Ground-state energies as a function of the ap and Pp
on lattices of size 200x 200 with hard-wall boundary con-
ditions were obtained by the Lanczos technique. The
results (Fig. 3) clearly illustrate the features anticipated
from the loop averages [Eq. (21)]. In the Meissner phase
the energy rises to a value close to —3.5 —2v 3 (the
retraced path result; see below) at ap = ~ and then re-
mains roughly constant at this level. In the Debye phase
the energy reaches the same value at Pp = vr but contin-
ues to rise to a maximum value —3.35 at Pp ——3vr/2.
For larger fluctuations the ground-state energy oscillates
with period 2~. The reason for these contrasting behav-
iors derives from the sign factors in Eq. (21). Since the
nonretraced path length L~ is even for all loops, the sign
is positive in the Meissner case. Frustration occurs when
the sign is negative in the Debye case; this is analogous
to a uniform magnetic Beld of vr per plaquette.

The density of states was obtained using the recursion
method. This involves construction of the continued-
fraction expansion for the local Green's function, and
averaging over sites. Representative results are shown
in Fig. 4. When ap = 0 or Pp = 0 we obtain the density
of states for a square lattice with a "rounded" logarith-
mic singularity at the band center. The rounding is due
in part to the finite number (50) of coefficients retained
in the continued-fraction expansion, and in part to the
finite size of the lattice. For small values of ap and Pp sig-
niflcant differences between Meissner and Debye phases
emerge [Figs. 4(a) and 4(b)]. In the Debye phase a sharp
pileup of states near the effective band edge appears; this
effect is entirely absent in the Meissner phase. This is
qualitatively consistent with the conclusions for the con-
tinuum models [Eqs. (4), (5), and (12)] described in the
Introduction. Previous numerical studies did not resolve

I

this peaks ii which requires use of a large lattice and rel-
atively weak flux fluctuation. Note that while a Lifschitz
tail is expected in a random flux, it is very dilute and
therefore not present in our numerical results.
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FIG. 3. Dependence of ground-state energies on (a) ap
(Meissner phase) and (b) Pp (Debye phase) on a 200x200
square lattice. The structure present in the Debye case is
associated with the properties of Eq. (21) as described in the
text.
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Results for Po = vr and ao = vr are compared in
Fig. 4(c). Here the numerical results are almost indis-
tinguishable from the retraced path expression p(E) =
1/w lm3/(E+2v E2 —12) given by Brinkman and Riceze
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00 ===
4

FIG. 4. Density of states obtained by recursion method
on a 200x200 lattice using 50 coefBcients in the continued-
fraction expansion and averaging over sites. (a) Meissner
phase ao = 0, ao = 0.5, ao ——1.0, ao = 1.5 (average over
250 sites), and ao = vr (average over 2500 sites). (b) Po = 0,
Po = 0.5, Po = 1.0, Po = 1.5 (250 sites), and Po = vr (2500
sites). (c) Comparison of ao = Po = a data with the retraced
path result.

in both phases. We conclude that the distinction between
the Meissner and Debye phases is completely lost for large
Aux fluctuations on a lattice. This can be regarded as a
topological efFect.

Finally we make some remarks on the response to a
small uniform magnetic field. This is a subtle property
which depends on the physics of localization, Lifschitz
tails as well the effects of the type of flux correlations
present. In the Iifschitz tail regime the behaviors of
Meissner and Debye phases are completely different. The
reason is that in the Debye phase the applied field can
be completely "screened" out since the particle can move
to a region where the external field is effectively canceled
by the random Aux. Since the probability of finding such
a region is independent of the external field, the energy
shift in an external field vanishes at zero temperature.
Conversely in the Meissner phase there is a small prob-
ability of finding such a region; the diamagnetic suscep-
tibility is large as for a free particle. Our lattice calcula-
tions are not sensitive to this effect since they only yield
information about strongly localized states states outside
the tail region. In a localized state the effect of an ex-
ternal magnetic field can be treated perturbatively when
the magnetic length exceeds the localization length t~, .
In this regime the susceptibility is O(t&, ). The similar
behavior of the response of Meissner and Debye phases
was confirmed numerically.

V. CONCLUSION

We have found in this paper that there are profound
differences in the quantum motion of a particle in a ran-
dom magnetic flux in Debye and Meissner phases. This
verifies the expectation7 that the long-range effect in the
Debye phase plays a crucial role in the low-energy prop-
erties. Variational calculations suggested the existence
of a peak in the density of states in the Debye phase,
which was confirmed in numerical calculations. We do
not know at present whether the Debye phase peak rep-
resents a true singularity (pole or cut in the local Green's
function) or just a smooth pileup of states. This is an
important question which lacks a definitive answer. It
seems likely that the single-particle properties described
here will nevertheless play a role in the quantitative, if
not the qualitative, behavior of Bose systems coupled to
gauge fields.

We recently learned of the work of Khveshchenko and
Meshkov. i~ These authors performed an elegant calcu-
lation of the density of states in the Lifschitz tail using
a functional method with conclusions which agree with
the results of Sec. III. Moreover, they obtained the dia-
magnetic response of the Debye phase in the Lifschitz

1
tail regime, and find T& behavior. These authors do not
report the density of states peak.
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