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Vortex-loop crinkling in the three-dimensional XYmodel:
Numerical evidence in support of an ansatz
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A scaling theory for the three-dimensional (3D) XY ferromagnet was previously proposed, in terms of
directed vortex loops of average diameter a =e', and core size a, (l). An ansatz was made for the loop
self energy from a 1/R potential, E-a 1n[a/a, (l)]~ a1nIC~ ", where K~ is the screened coupling and
x =0.6 the self-avoiding random-walk exponent. Here, the central role of the core-size ansatz in produc-
ing known 3D XY exponents is brought out in numerical solutions of the scaling equations. We then re-
late the cutoff a, (l) to radial Auctuations around the mean radius a/2, and provide partial numerical
support for the ansatz by computer-generated vortex-loop configurations. A Flory-type polymer argu-
ment for the core size a, (l) is given.

I. INTRODUCTION

The general notion of a phase transition driven by to-
pological excitations was proposed by Berezinskii' and
Kosterlitz and Thouless, in the context of the 2D XY
ferromagnet. The topological excitations are vortex
points, of topological "charge" +1, interacting via a
log(R) potential. The charges are bound in dipoles in the
low-temperature phase and form a screened, unbound
plasma of charges, in the high-temperature phase. The
vortex-point unbinding picture was applied to 2D helium
films, 2D superconductors, 2D Josephson arrays, and
2D melting. The 2D systems do not have long-range or-
der, or conventional exponents, at transition.

The idea that vortex loops may drive the 3D
superfluid-helium transition was suggested by Onsager
and Feynman. Shockley proposed a picture of 3D melt-
ing involving the proliferation of dislocation loops. The
extension of topological scaling ideas to a 3D transition
with conventional long-range order, was carried out by
Williams and Shenoy, who adapted 2D nested-scaling
procedures' of Kosterlitz, and of Young, to 3D directed
loops with 1/R segment-segment interaction. An appli-
cation of the ideas to hydrodynamic vortices in turbulent
flows has been made recently. "

Numerical simulation' of the 3D XY model showed
that vortex loops do exist, and proliferate at transition.
This was extended to the layered 3D XY model, ' of in-
terest' in the context of high-T, superconductors. Simu-
lations of the isotropic XY model were made by Kohring,
Shrock, and Wills. ' They showed that an external chem-
ical potential that suppressed the vorticity in each lattice
square, also suppressed the transition out of the ordered
state, i.e., raised the transition temperature. This is of
obvious current relevance. ' ''

Thus, 3D XY vortex loops are present, ' ' are in-
volved in the transition, ' and a real-space scaling ap-
proach exists. ' An important part of the argument is
incomplete, however.

The scaling treatment focuses on quasicircular directed
loops characterized by some average "diameter" a =e
with a short-distance, scale-dependent cut-off a, (l) asso-
ciated with the "crinkling" or fluctuation around "a."
Due to vector cancellation between segments, the
effective perimeter "~a" is less than or equal to the actu-
al perimeter P along the segments. The picture is that of
a toroidal region with a circular loop axis, containing the
radial fluctuations" roughly inside this "core" size a, .
The self-energy of the loop is taken to be

PEi = rr Ki a in[a /a, ( l ) ] .

Here KI is the dressed coupling constant at scale "a."
The scale-dependent core size a, (l) is modeled as fol-

lows. The ratio of the core size to the effective diameter
is taken to be a function of the dressed coupling E&, that
influences the folding and crinkling. The dependence on
Ki, close to the critical point, l =l =ln(T T, ) ))1, —
is taken to be a power -Ki. (Here v is the exponent of
the loop size blowout, that is also the spin-spin correla-
tion length exponent. ) Due to approximate vector can-
cellation of the potential between nearly antiparallel seg-
ments, the loop wandering in the core region is like a
self-avoiding random walk (SAW). Since K& scales as a
length, it is natural to take x =0.6, the SAW exponent'
in 3D. Thus this core-size model or ansatz assumed valid
for l = l yields the self-energy as

PEi=rr~Kia 1n(Ki ") .

For K& —+E =0.3875, the fixed-point value, reached for
l =l ~ oo, one has, 13E& =rrK*E, with

Efa =1.78 .

A purely finite core model, with a circular loop, yields
a transition, but with v=0. 5, as the mean-field exponent.
The model for the expanding core a, (l )-a, also yields
the transition, but now with critical exponents and cou-
pling close to accepted values v=0. 6717, a= —0.015.
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FIG. 1. Schematic picture of
equivalent topological current
distributions, as seen at large
distances (a). Full loop with
mean diameter "a," transverse
fluctuations "a„" and uncan-
celed azimuthal segments of nar-
row radial fluctuations (bold-
face). (b) Uncanceled segments.
(c) Effective loop, of mean diam-
eter "a"and arc cutoff "a, ."

In this paper we carry out numerical simulations clari-
fying the meaning of the scaling procedure and of the
effective diameter a, providing partial support for the
core-size ansatz. More precisely we do the following. (a)
We solve the scaling equations numerically with and
without the ansatz, showing its central role in producing
the correct exponents. (b) From the theoretical self-
energy expression, the core size a, (l) is related to the
transverse root-mean-square (rms) radial fiuctuation (o),
with cr ~ a, the mean-loop diameter. (c) We numerically
generate vortex-loop configurations, by randomly replac-
ing bonds by elementary radial fluctuations" to generate
crinkled loops, starting from a regular square loop as a
seed. We find that the random configurations have an as-
sociated "best-fit" circle with a mean diameter a -P,
5=0.4, where P is the loop perimeter. The scaled self-
energy E, both from the full energy expression and the
approximated form, is proportional to the diameter,

E =(0.40+0.25)a . (1.4)

II. THE VORTEX-LOOP SCALING
ARGUMENT AND ROLE OF THE ANSATZ

The + vortex unbinding transition in 2D is pictured as
follows. There are a few tightly-bound dipoles (of posi-
tive creation energy) at very low temperatures. As the
temperature is raised, the dipoles, interacting via a log(R )

potential, expand, and more and more screening dipoles
can fit in between them. This weakens the binding still
further, and the dipoles can further expand, until a
blowout, or dipole unbinding occurs at T= TBKT.
Screening of the log(R) potential sets in at TsKT, from
the +1 two-component plasma formed by unbinding of
the most weakly bound pairs of the largest size and ener-

Thus the overall loop-scaling approach is made more
plausible. (d) A handwaving Flory-type polymer argu-
ment for a, is made

The paper is organized as follows. In Sec. II we refor-
mulate and restate the scaling argument for general
configuration loops. In Sec. III we show that the cutoff
a, (l) can be related to transverse segment fiuctuations,
and present the Flory argument. Section IV summarizes
the results and discusses possible future work.

(c)
gy. Thus the transition is led, not by the most probable
small-dipole configurations of lowest energy, but by the
less probable, most unstable, large-dipole configurations.

The extension of this 2D picture to the topological ex-
citations of the 3D XY model is pictured as follows.
There are a few tightly-bound vortex loops (with those of
interest having positive creation energy), at very low tem-
peratures. As the temperature is raised, the loops, with a
1/R segment-segment interaction, expand, and more and
more nested loops can fit in between. This weakens the
binding still further, and the loops can further expand,
until a blowout, or loop unbinding occurs at T=T, .
Screening of the 1/R potential sets in at T= T„from the
random wandering of the infinite-sized loops. The transi-
tion is dominated by the expansion and unfolding of the
most weakly-bound loops of the largest size

—(T, —T), and energy. Thus the transition is
led, not by the most probable, lowest energy, tightly fold-
ed or smallest loops, but by the less probable, most unsta-
ble, more extended or quasicircular loops. '

A vortex loop of perimeter P on the 3D lattice may be
thought of as a closed chain with hinged segments. The
segments have arrows J on them, all the way round the
chain, with the energy depending on the cosine, J„.J„.of
the angle between segments, favoring backward folding
or antiparallel sections. The highest energy state is clear-
ly a fully pulled-out chain, forming a circle, and the
lowest, a tightly folded ball with lots of antiparallel seg-
ments giving negative contributions to the energy. For
adjacent segments pointing in the same direction, the J.J
interaction will favor the segments to swing perpendicu-
lar to each other making the interaction energy zero,
rather than positive. Four successive 90 bonds of unit
segments form an elementary radial fluctuation. By "ra-
dial fluctuation, " we mean in general a "transverse Auc-
tuation" with radial and azimuthal components. Such
fluctuations can merge, and extend into a larger struc-
ture. Thus the relatively high-energy family of loops that
lead the unbinding will retain a quasicircular character,
in the sense that they can be characterized by, a mean
effective diameter "a". However, there will be a spread
of loop foldings or radial fluctuations over a core region
of size -a, around this constant-a circle. (Note that by
"core" we do not mean to imply' "any new repulsive
short-range interaction. ) The loop configurations would
thus be in a toroidal region with a small hole [Fig. 1(a)].
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Such configurations would have nonzero dipole moments,
just as a planar "current" loop would. A family of
decreasing-diameter loops could be nested, with conse-
quent screening of the larger loops driving the transition.

The maximum such loop size is a -g —~e~
' where

~
e~ =

~
T T, ~

—/T„and v= —,
' for circular loops alone. If

a, /a ~0 for I=l:—In(g ) —+ oo, then the loop crinkling
would be irrelevant, and would not change the critical ex-
ponents. We have made a critical-behavior ansatz for
l &l, the largest dressed loop, a, (l )/a =K&, where K& is
the dressed coupling and x =0.6 is the Flory self-
avoiding walk exponent in 30. Then for l=l
a, /a =a, (l )/g =(K*) =const, and a, is relevant,
yielding an exponent v=0. 672. The investigation of this
ansatz or model for the core size and of the effective di-
ameter is the subject of this paper.

In what sense can a complex, current loop distribution
be characterized by a single length a? We consider non-
crossing and SAW loop configurations, for reasons given
later. The potential at a point r from the topological
current distribution [J(r')] depicted in Fig. 1(a) is
—J(r) +„,J(r')/~r —r'~, with origin at the center of mass,
say. Not all the segments comprising the perimeter P
will contribute appreciably to the potential at large
r »r'. Consider contributions from segments which are
on the adjacent sides of long narrow radial Auctuations of
width 8 h, that start and end at the mean circle of diame-
ter "a." For r »a »8&, the contribution will tend to
cancel, falling off rapidly with distance. The potential
will be approximately from uncanceled segments that do
not have canceling partners in the (total) vector sum of
J(r') in the fiuctuation. Those uncanceled segments pre-
cisely span a total distance equal to the separation of the
open ends of the fj.uctuation. If a best-fit sphere is drawn
of a diameter "a"chosen to minimize the deviation of the
squared radial distance (o /2)=g~, (r —a/2) /P of all
the segments, then the uncanceled azimuthal contribu-
tions from each radial Auctuation will be scattered on or
around this surface [Fig. 1(b)]. If these directed segments
are moved radially to the sphere surface and added vec-
torially, they will form a closed curve -a «P) [Fig.
1(c)]. For points far away from the current distribution,
a/r «1, the potential from the complex current pattern
will be approximately that from this quasicircular loop

I

The 3D XY model on a cubic lattice (of lattice constant
ao= 1) is

/3H = —Ko g cos(8; —8J ), —m. & 8; & rr .

It can be mapped' via a dual transformation onto
directed vortex loops, with topological current
J„(r)=0,+I, . . . , and directions p=1,2, 3. The loops
interact via a Biot-Savart law with Hipped sign:

(2.1)

PH=(~KO/2) g J(r).J(r')U(r —r'), (2.2)

where U(R)=—U(R) —U(0), and V U(R)= —4mB(R)
with U(R) —R '. The topological current is locally con-
served, 6 J(r) =0, V r, i.e., the loops are closed.

The loops can be labeled by L, with interacting seg-
ments on different loops LWL' entering the loop-loop in-
teraction:

from which long narrow radial Auctuations have been el-
iminated. As far as the outside world is concerned, the
complex vortex-loop configuration could be represented
only by a loop of effective diameter a.

The diameter "a"will increase with the total perimeter
P, but only as P-a, 5 & 1, with the remaining length in
the perimeter going into radial fluctuations that do not
affect other or far-away loops. The value of 5 is not im-
portant for the loop-scaling argument above, that deals
with loops L of various effective diameter [aL ] and not
actual perimeters [PL j. However, we find 5-0.4.

For calculations of the self-energy of large loops, the
dominant contribution will also be from these uncanceled
segments, that mimic a circular loop, of scaled self-
energy E-aln[a/a, (l)]. The cut-off a, (l) is a length
outside of which one may ignore the detailed radial Auc-
tuation structure and represent the configuration only by
its effective circular loop. The paired segments of long,
narrow radial Auctuations have only a short-range in-
teraction with other parts of the same, or other, radial
fluctuations. It is thus not unreasonable that this region
-a, might be related to the random-walk exponent of a
short-range repulsive polymer.

We now briefly review the renormalization procedure
that leads to the scaling equations, presented in detail
elsewhere, and clarify the meaning of the effective scale
a.

Z= g Qyo exp —(nKO/2) g g J' ~(r) J' ~(r')U(r —r')
LAL. ' r, r'

config

(2.3)

where closure, g„J„' '(r) =0 has been used. The fugacity
yo

' of loop L is determined by the loop self-energy
segment-segment interaction on the same loop (L =L ')

yo '=exp (mKO/2) g J' '(—r) J' '(r')U(r —r')
rWr'

(2.4)

For circles of perimeter P, the self-energy -P lnP/P„
with the -g[J' '(r)] U(0) —U(0)P contribution ab-
sorbed in the cutoff P, . We consider similar, relatively

y' ="=y&-—exp[ n. K&a In(a/a, (l))—] . (2.5)

This is the small-expansion parameter in the problem,
y& «1. For the bare original scale, the smallest circle. is

I

opened-out (but crinkled) quasicircular configurations, of
positive total interaction energy. The nonbacktracking
loop configurations are characterized by a length aL with
aL a, the minirnurn-size loop diameter, defining the
scale a —=e'. As discussed above and in the next section,
for L =1 (smallest loop size, a, =a) the fugacity can be
written as
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chosen to fit into the smallest square plaquette of side
a0=1, so that the minimum separation of circular vortex
loops is the lattice constant. The bare cut-off is chosen to
be a, (0)=0.5652, based on the calculation of helium
vortex-core energies, and this lattice match.

The partition function is evaluated in the Kosterlitz-
Thouless low-density approximation, by successively in-
tegrating out nested configurations in the scale range
a, a+da, starting from ao ~ This is schematically depicted
in Fig. 2(a). Note that we integrate out the smaller loops
at all distances from larger segments, including zero sepa-
ration. Loop crossing can occur, with locally perpendic-
ular segments. ' However, for consistency in the succes-
sive integration of scales, a large loop that involves a
self-crossing forming a small bubble must be classififed as
two simple noncrossing loops, one large, one small, that
happen to touch. We can thus, without loss of generality
and to avoid double counting consider only noncrossing
simple loops as the basic units in the scaling. The
configurations considered in the self-energies are, thus
closed, nonbacktracking, vectorically labeled and self-
avoiding (SAW) random walks. The XYmodel is mapped
onto a polymer-type problem.

We formally separate the partition function Z contri-
butions into those (Z~ &) only of minimum loop separa-
tion )a, and contributions (5Z) from interactions of the
smallest a, a+da loops with these:

Z=Zi, +nz . (2.6)

The incremental partition function contributions, ex-
panding the Boltzmann factor, and with r& 2 locating seg-
ments in a shell, a, a +da, are given by

(b)

FIG. 2. (a) Schematic diagram to show the loop scaling at
each interaction. Loops are incrementally integrated out, start-
ing from the smallest loop size. Note that complex loops
formed from crossing are regarded as simple loops that are
touching. (b) Diagrammatic representation of screening of far-
off segments through loops of smaller size. Note that for every
J at p measured from the center of mass, there is a —J in the
small loop at position p . There is a similar interaction with
another segment J(r'), not shown.

d 725Z= g y& f f Q Q [I (~/2)K&J' '(r—) J'"(ri)X I U(r —r, ) —U(r —r*, )]]
J=+) a a L,+L', '(Q, )

X [ I —(n /2)K& J' '(r') J"'(r2 ) X I U(r' —r2) —U(r' —r2 ) ] ], (2.7)

where in (2.7) y& is the smallest loop fugacity at a general
scale, starting from yl O=yo and we have suppressed
writing weight factors of direct J(r ) J(r') interactions of
loops larger than a+da.

The screening configurations are as shown in Fig. 2(b).
In (2.7) we have used the fact that for a closed loop, for
every directed segment J„(r,), there is somewhere an op-
positely directed segment at r*, , of maximal separation

~ r, —r*, ~, such that J„(r, ) = J„(r,* ) [see Fig. 2(b)].—For a
planar circular loop, where Ro locates the center of mass,
and r&=Ro+p& there is an opposite segment across the
diameter, at rI =Ro+ p&

=Ro —p, . Thus, from the
closed loop nature of screening one has a "derivative"
U(r —r, ) —U(r —r*, )= —(r, —ri ) V„U(r —r, ) occurring
in (2.7). Integrating out configurations in (2.7), the first-
order -VU terms vanish by symmetry, over all loop
orientations, and only —V U-VU terms survive, with the
average ( (r, —r*, ) (r2 —r2 ) ) —( (r, —r*, ) ) —a, defining
a mean-equivalent "diameter" even for crinkled, wander-
ing loops. The "diameter" or loop scale is thus a "best-
fit" to the actual loop configuration, as discussed, and
found in computer-generated loops later.
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FIG. 3. Renormalization Aows of yI vs K& for case I (without
ansatz) and case II (with ansatz).

With a partial integration, the -VU. VU terms go as
—UV U- U, since the interaction is essentially the in-
verse Laplacian U-V . The whole procedure is a
straightforward generalization of the 20 vortex-point
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—0.1 core ansatz Li=1 —xln(Ki) is of central importance in
obtaining the critical values close to accepted ones.

III. THE CORK ANSATZ IN THE SELF-ENERGY

—1.6 —3.3

3 ~ 2

—4.8—6.8

FIG. 5. Here ln(p, ) [p, =tlattened out value of superfluid
density pi as E(&1,] and In(I/g ) [g =correlation length
-a/In(y, ) at l=l »I] are plotted vs Inle) [e=(T,—T)/T, ].
In both the plots curves (I) and (II) are without and with the an-
satz.

gives the qualitative behavior. The scale-dependent
core-size model only provides an adjustment that gives
better quantitative results.

We define a quantity Si=(dKildl) +(dyildl) that
vanishes only when both coupled scaling equations have a
fixed point, (dKi/dl)=0=(dye/dl). This occurs asymp-
totically, both with and without the ansatz, at critical
values Kp =0.4535 and Kp, =0.5858, respectively, as
shown in Fig. 4(a). The renormalized coupling Ki in-
creases with I for Ko )Ko, ( T & T, ). [From the first term
in (2.9a), Ki-Koe'. ) For Ko (Ko, (T) T, ), the coupling
Ki —+0 asymptotically vanishes [see Fig. 4(b)], i.e., there is
screening of the 1/R segment potential. The helicity
modulus (that is a superfluid density in the case of He II,
of the same universality class) is proportional to
pi—=Kie '. In Fig. 4(c) we see that pi flattens out to a
nonzero constant (p, ) for Ko )Ko, . For
(Ko —Ko, )/Ko, —=(T, —T)/T, =@&(1,p, decreases to
zero at the transition temperature as p, —e" where
u =0.67 or u =0.5, with and without the ansatz. Figure
4(d) shows that for Ko )Ko„where the bare interaction
prevails, the loop fugacity y&

—+0 and the loops are ir-
relevant at large separation. For Kp (Kp, the fugacity
increases, i.e., loops proliferate at large scale, yl~ ~,
providing the screening of KI as above. The fugacity falls
off exponentially below transition, defining the largest—a //g

loop size g, yi —e . This loop size diverges,
—

~e~
' as e—+0. Figure 5 shows log-log plots of

1/g =1n(yi)/a versus ~e~ as well as p, versus ~e~ yielding
exponents u =v=0. 679 and u =v=0. 499, with, and
without, the ansatz. The series solution' value
v=0. 678+0.005 is close to the exponent, from vortex
loop scaling. The critical vortex coupling Kp, =0.4535 is
fortuitously ' ' close to the series solution'
(Ko, =0.454+0.001) and MC' (Ko, =0.4539) values.

Thus while LI=1 gives the qualitative features of the
transition as a first approximation, the scale-dependent

The ansatz for the core size a, in the self-energy may
be restated, in separate steps, as follows.

(i) Basic length scale: Topological current
configurations that dominate vortex-loop unbinding have
a typical length scale "a"associated with them, related to
the total perimeter P by a -P where 5 & 1. This length
scale a is associated with the net azimuthal vorticity left
after cancellation between segments that double back and
forth in radial fluctuations. It is the diameter of the
effective directed loop, as seen by far-off segments of oth-
er loops.

(ii) Scale-dependent cut-off': The fluctuations around
this mean length produces a scale-dependent cut-off' a, (1)
in the self-energy

PEi =rr~Kia In[a/a, (l )] . (3.1)

If each part of the effective length contributed a constant
value, the energy would be -a. The logarithmic factor
comes from the I /R interaction between effective (uncan-
celed) segments, that are swept from between a minimum
"a, ( I)" and maximum "a" separation.

(iii) Coupling-constant dependent core ansatz: The na-
ture of the interaction, and the crinkling of the loops,
yield a core size that is dependent on the coupling at that
scale, such that, for l near the critical value I ))I,

13Ei =~ Kia ln(Ki ")=~K*E . (3.2)

where x =0.6, the same as the SAW exponent in 3D.
(iv) Asymptotic energy-diameter proportionality: For

large loop diameters, a-g ~ m the scaled self-energy E
is proportional to the loop diameter

E/a ~sr ln(K*) "=1.78 . (3.3)

Computer generation of single irregular loops must
necessarily ignore the nested many-loop screening that
renormalizes the coupling Kp~KI, and drives the transi-
tion. Thus one can test only (i) and (iv). One expects
E/a to be smaller than (3.3), since more energy-lowering
crinklings are accessible, in the absence of other nested
loops, that would block some of these.

We start with a square loop in the XZ plane of a 3D
cubic lattice. Each time, we introduce an elementary ra-
dial fluctuation to the old configuration at a ran-
domly chosen bond, according to rules stated below.
We determine the segment interaction energy
E =—,'Q„~„J(r) J(r')I}r r'~, the diameter —of the best-fit
circle "a" and the rms deviation around it. The key idea
of a random loop as a regular seed, plus randomly insert-
ed radial fluctuations, was used by Chorin" in the con-
text of hydrodynamic vortices and turbulence.

Figure 6(a) shows the (elementary) radial-fluctuation
insertion rules. A preexisting bond is erased if it falls be-
tween the ends of an inserted fluctuation, that can ap-
proach the bond from any of three directions. If the open
ends of an inserted radial fluctuation fall on an existing
bond that is part of a step, then the superimposed side is
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FIG. 6. (a) Diagrammatic representation of the radial Auc-

tuation insertion rule as followed in cases of computer-
generated loops. (b) (E)/P is plotted vs ln(P), P=perimeter.
The straight line is for square seed configuration with increasing
P (E)/P .falls off with the insertion of radial fiuctuations, for
different regular starting configurations P=16(~ ), P=24(*),
P =32( L ).

also erased. Elementary radial fluctuations can pile on
top of each other, and generate long, crinkled, and wind-
ing structures, that we also call (complex) radial fiuctua-
tions. In all the transformations from the square seed,
the following overall constraints are enforced: (i) bonds
may not cross, so only simple, noncrossing loops are gen-
erated, as in a SAW; (ii) the direction of the original seed
J flow is maintained, with V.J=0 conservation, at every
site, and

~
J

~

=0, 1.
Since many trials have to be rejected, the runs have to

be long. As an example, for E cut-off=0. 0 we run our
program with 7050 elementary radial fluctuations being
inserted to a seed of perimeter 24, out of which 5400 runs
are acceptable. This takes about 74 h of C.P.U. time on a
Microvax II. As the run goes on, and the structure gets
more involved, the probability that an insert is accepted
goes down, and the diameter and core size do not change
much. For example, the last 200 acceptable radial fluc-
tuation inserts change the rms value o by -2%.

Because of the J„J„ factor in the interaction, an in-
crease of total perimeter need not result in an increase of
energy. In fact the radial fluctuations have antiparallel
sides, and hence give a negative correction to the seed en-

ergy. The energy expression in the exponent of (2.4) gives

&a &=P', fi=0.4+0.003 . (3.4)

A similar result has been found by Epiney, ' " in MC
simulations. Figure 7(c) gives a plot of 5 =in((a ) )/ln(P)
versus P.

We now sort configurations (of varying P) into
a, a +da bins of bin width da -0.25. This defines fixed-a
configurations for averaging purposes. Radial fluctua-
tions are found to be proportional to the diameter for
large loops [Fig. 7(d)] with (o. )/a =0.49+0.01. The
maximum fluctuation inward to the center, avoiding fluc-
tuation from the other side, is o. ~0.5a. Thus fluctua-
tions are close to maximal, in the absence of multiple
loop nesting. Figure 7(e) shows a loop configuration, gen-
erated in 2D for illustration, with its mean diameter, and
fluctuation. The actual loops are of course, generated in
3D.

As a cross-check on the role of the geometric length,
we calculate the dipole moment ~p~

= fd r rX J(r). For
a strictly planar loop of diameter a, the moment would go
as p —diameter Xperimeter for current flow, so that
p -a . If the loop wandered totally randomly around the
spherical surface, without even having the memory of a

E-P ln(P), i.e., E/P-ln(P) for regular seeds of perime-
ter P. The positive slope straight line of Fig. 6(b) in E/P
versus ln(P) plot confirms this. We then repeatedly insert
radial fluctuations at random positions and orientations
to regular seed loops of various perimeter values, and find
that E/P then starts dropping. We restrict ourselves to
E )0 configurations, as discussed earlier, since only the
opened-out, higher energy nestable configurations will
lead the transition. If by the core-size model, E actually
scales as an effective diameter "a" then eventually
E/P-1/P', accounting for the asymptotic decrease
of E/P in Fig. 6(b). There is a large scatter of E/P in
Fig. 6(b) for large P, indicating that the total perimeter is
a poor parameter to characterize the self-energy. Very
different perimeter loops can have the same energy, be-
cause of vector cancellation effects. The effective diame-
ter a physically pictured in the previous section, is a more
suitable length scale to parametrize classes of loop
configurations.

We consider the various loop configurations generated
on the computer. Figure 7(a) shows that the scatter of
the distance

~
r

~
from the center of mass to the segments,

is peaked around a mean value a /2. Defining a diameter
scatter o by o. = ((2~r

~

—a ) ), averaged uniformly over
the segments of a given configuration, one finds in Fig.
7(b) that o. has a minimum at a "best-fit" diameter "a"of
that configuration. This a is found by rotating the plane
of the circle on either side of the original planar seed, un-
til a lowest minimum is reached, for that configuration.
(Of course, over many configurations, this angle is as
often positive as negative, since the radial-fluctuation in-
sertions are random. ) Henceforth, "o" and "a" for a
given loop, denote these optimized values. The mean di-
ameter (a ) is found by sorting configurations into
groups according to the perimeter P, and averaging over
generated configurations with the same P. One finds that
the mean diameter increases as a power of the perimeter
P
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FIG. 7. (a) Histogram showing the distribution of ~r~ (magnitude of the distance of each segment from the center of mass) of a
given computer-generated configuration. The distribution peaks around 6.0 which is consistent with the best-fit value a = 12.0 for the
present configuration. (b) Root-mean-square fluctuation o. is plotted vs chosen "a*' (diameter) values for difFerent chosen polar an-

gles. "a" corresponding to minimum o is taken as best-fit diameter a of the configuration. (c) Plot of In((a ) )/In(P) vs P, showing
exponent behavior. (d) Plot of (o ) /a vs a, showing proportionality of diameter fluctuations and mean diameter. (e) A crinkled-loop
configuration in case of 2D square lattice with best-fit circle and corresponding o..
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planar character, then the dipole moment p would be
zero. For the crinkled vortex, fluctuating over a finite
fraction of the spherical surface of diameter a,

~ p ~

-diameter X area crisscrossed by current, or [M
-a .

One finds from the generated configurations that the
mean moment goes as p-P', where the exponent is
close to the expected value of 36=1.2. A histogram of
p/P' has a dominant peak, showing that a family of ex-
citations, scaling in the same way, does exist. In the spir-
it of the discussion in Sec. II this band of current region
is replaced by a planar loop, for large distance potentials.

The partition function, that is originally a sum over
loop configurations characterized by perimeters [PI ],
can then be considered as a sum over configurations
characterized by diameters [aL ], with all possible fiuc-
tuations around them. The averages over all fluctuations
around [aI ] are then taken as equally probable. The
scaling procedure is then as given previously.

The cutoff a, (l) is essentially the transverse loop Quc-
tuation, o., as can be seen by a rough estimate of the self-
energy. The scaled self-energy, averaged uniformly over
all configurations with the same mean diameter, is

(. d r d r' J(r) J(r')
g g [r2+r' —2pr'pgg(e —e')]~~ )

(3.5)

=m.aln(a/a, ) . (3.6)

The energy diverges, logarithmically, for segments of
angular separation y tending to zero requiring introduc-
tion of a cutoff a„ i.e. a lower bound a, /a to the angular
separation. Notice from (3.5) however, that the sharp
rise in 1/R for neighboring segments is suppressed if the
segments on the lattice are perpendicular to each other,
J(r ).J(r') =0. Radial-fiuctuation formation is thus, ener-
getically favored. If there is a purely radial excursion
-o., linking two azimuthal direction current segments
with J(r) J(r')%0, then the divergence is again
suppressed: even though y'=0, the distance between the
azimuthal segments is ~r —r'~ -o. Thus the form of the
J(r ) J(r') interaction plays a role both in generating fiuc-
tuations, and providing a natural cut-off a„related to the
radial fluctuation —o..

With ~r~
=r=a/2+r, and p—erforming crude trunca-

tions in (3.5), r ~(r ), (rr') = (r )(r') =0. With
cosy~(cos(y)) =exp( —y/2Ko) by a Gaussian average,
there is an effective upper cutoff A=2EO to the angular
separation y. So for a crinkled loop,

where J(r) J(r')=cosy, and y—=8—0', with r=r'=a/2,
for a planar circle, when

(E ) =rra f dycos(y)/y
C C

with the prefactor of correct order of magnitude, and less
than the nested-loop ansatz value, as expected. This
means that in[a/a, (l)] is indeed a constant, rather than
diverging with ln( a ) as it would, if a —P in the regular
case. The crinkling produces a scale-dependent core size
a, (l) ~a. Of course, as mentioned earlier, we cannot
here simulate the full statistical mechanics to check that
the detailed model a, /a = (EC& ) .

The importance of having closed loops was stressed in
the derivation of the scaling equations. Closure is also
important, in order for the self-energy to be constant for
T & T, . The potential is long range, and there is a
difference between closed loops and open chains. To
check the impact of closure, we have generated open-
chain self-avoiding random walks using the computation-
ally e%cient pivot algorithm. The walk will wander
around isotropically about the starting point, and a pure-
ly formal "best-fit" circle to the segments around the
center of mass can be defined. The geometrical o/a is
not changed much. But the average energy (E)/a is
drastically different: it does not level off as a increases,
but keeps rising. Thus closure is important: the ansatz is
for vortex loops.

Thus numerical support has been provided for the core
model, clarifying the concepts involved. A simple Flory-

2.0
(E ) =ma ln[(a/(o ) )(A/'[/2)

X [1++1/2+1/A ( /( )) ]] .

From (3.6), one gets an expression for a, (l) as

(3.7)
1.5—

= [(a /((T ) )(A/&2)
a, (l )

X [1+'t/1/2+1/A (a/(o )) ]] . (3.8)

1.0—

0.5—

(E ) /a =0.40+0.25 (3.9)

Since (o ) /a is a constant, so is a/a, (l), and from (3.8),
energy is proportional to the effective diameter, E ~a,
within this crude approximation.

A plot of (E ) /a versus a in Fig. 8 shows that the ener-
gy is indeed roughly proportional to the mean diameter,
as in (3.3), with

0.0
6 10 12

FICx. 8. Plot of (E ) /a vs a (for positive energy
configurations).



15 168 CHATTOPADHYAY, MAHATO, AND SHENOY 47

type polymer argument may also be provided for a, (1).
In a classic argument, Flory had' """provided an

estimate of the rms end-to-end distance R of a polymer of
length P, by extremizing the free-energy contribution
with respect to R. By the vector cance11ation arguments
of Sec. II, a radial Auctuation can be treated as a short-
range interaction polymer. We follow the Flory argu-
ment closely. Consider a cylindrical region of length a,
around the best-fit circle path, passing approximately
along the axis and with radius a, /2. The volume of
V=a," contains randomly walking radial fluctuations of
spatial extent -P&, where P& is the average segment
length available for radial Auctuations, taken to be a finite
fraction of the total perimeter, PI, -P. Thus the cutoff a,
is the length outside of which one can ignore Auctuation
details. The radial Auctuation density is then

p —Ph /a,". The radial Auctuation interaction is
then short ranged of strength'@' Wp —( fd R (1—~K J J/R—e '

) ), where ( ) denotes an angular average.
Change of variables yields 8'p -(ttICt ) I, where I is an in-
tegral of order unity. The interaction energy for radial
Auctuations is, foIlowing Flory, U- fV0p V and the en-
tropy of the fluctuations is ——TS=a, /PI, . The free en-
ergy is then

I(rtK )"Pt, a,+
d p (3.10)

Extremizing, one gets, with PI, -P,
~d/(d+2)p2/(d+2) ~0.6P0.4

C
(3.11)

for d =3. This is in agreement with the ansatz with an
effective diameter a —P '"+ '-P as in our numerical
estimation.

A more rigorous argument will require a scaling out of
radial fluctuations in a path integral representation' by a
systematic decimation procedure. This would need a
separate treatment. We have here clarified the meaning
of the ansatz, and provided numerical and physical argu-
ments to support it.

for the 3D XY model, has been given partial support,
through numerical simulations and physical arguments.
The importance of the ansatz in yielding quantitatively
correct critical exponents is reemphasized by numerical
solutions of the scaling equations. Crinkled loop
configurations are generated by adding radial fluctuations
randomly in 3D to regular, planar, seed configurations.
Since only single loops are generated, multiloop renor-
malization of the coupling constant is not considered.
The results are as follows. A length scale a -P can be
associated with the vortex loop configurations. The self-
energy scales linearly with the mean diameter. The cut-
off a, (1) can be related to fiuctuations of the loop around
the "best-fit" diameter "a." The constant (E)la for
large scales is of the same order of magnitude as required
by the ansatz. The ansatz a, (l)/a =ICt can be justified
by a simple Flory-type argument for the self- and mutual-
ly avoiding radial fluctuations.

A more detailed proof would require use of polymer
methods, ' suitably generalized. MC simulations have
been done of the angle representation of the 3D XY mod-
el, ' ' ' as was done for the 2D XY model. In the 2D
case vortex points or Coulomb charges were used as the
basic variables in MC simulations. This was found to
be more efBcient, as each charge is a collective descrip-
tion of all spins. A similar MC simulation of the interact-
ing [J(r)I loop segments, and their long-range interac-
tion, would be of much interest, especially if the mean-
loop diameter and loop self-energy at various scales are
monitored.

Topological scaling ideas could be useful in other mod-
els, such as the anisotropic 3D XY model, ' of interest in
high-T, superconductors, ' capacitive charging effects in
the (2+1)D Josephson arrays and films, hydrodynamic
vortex loops in turbulence, " and dislocation loop pic-
tures of melting. ' ' We hope to report on some of these
applications elsewhere.
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