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We have studied the effect of static and dynamic pair breaking on the normalized-specific-heat jump of
a superconductor. We find that in contrast to the static impurity case, dynamic pair breaking enhances
the specific-heat jump. We have employed functional-derivative techniques in order to gain some under-

standing of this result.

I. INTRODUCTION

There is a substantial amount of experimental evidence
that indicates that magnetism is important in the high-T,
oxide superconductors.! ”® There have also been several
theoretical proposals in which antiferromagnetic order or
spin fluctuations have been incorporated.!®!! Varma
et al.”>”1® have proposed the marginal Fermi-liquid
(MFL) model in which the electrons are supposed to in-
teract via both charge and spin fluctuations. The charge
fluctuations are attractive and the spin fluctuations are
repulsive. Using this model, various normal and super-
conducting properties have been calculated.’>~2° The
normal-state results are in very good agreement with the
experimental data. This is perhaps not too surprising, as
the model was constructed explicitly to describe the
normal-state properties. The results for the supercon-
ducting state are also quite interesting. There is some
disagreement over the expected size of the specific-heat
jump that such a model would produce. Kuroda and
Varma predict that the normalized-specific-heat jump,
AC /Cy=0.7, smaller than the BCS value of 1.43. In ad-
dition, they also predict that the slope of the specific heat
at T, will be unusually large, although they do not make
a quantitative prediction for this value. Williams and
Carbotte!® have calculated the specific-heat jump and
slope in a model in which there are two competing
dynamical interactions, one which causes the supercon-
ductivity, and one which suppresses the superconductivi-
ty. Such a model is a generalization of the model of Ref.
14. In contrast to the results of Ref. 14, Williams and
Carbotte find that while the slope is larger than the BCS
value, the specific-heat jump is also enhanced over the
BCS value.

In this paper, we extend the results of Williams and
Carbotte to the extreme low-frequency limit for the spin
fluctuations. We find that in the limit of the characteris-
tic spin-fluctuation frequency tending to zero, the
specific-heat jump is still enhanced over the BCS value.
We employ functional-derivative techniques to gain some
understanding of why the jump is enhanced for the dy-
namic pair breaking and suppressed for static pair break-
ing.

In Sec. II, we present the formalism used for the rest of
the paper. Section III contains the numerical results for
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the specific-heat jump and the slope of the specific heat at

T,. In Sec. IV, we present the functional-derivative cal-

culations, and our conclusions are in Sec. V.

II. FORMALISM

The isotropic Eliashberg equations, written on the
imaginary axis, including spin fluctuations are?6~2°
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E () and P(w) are the electron-boson (phonon, charge
fluctuation, etc.) and electron-spin fluctuation spectral
densities, respectively, and iw,=iwT(2n —1), nel are
the Matsubara frequencies. In our numerical work we
have set the Coulomb pseudopotential u* to zero for sim-
plicity, although we retain it in Sec. IV for the analytic
work. Throughout we will denote the critical tempera-
ture of a pure system (no pair breaking, either static or
dynamic) as T2 and T, will be used to denote the critical
temperature of a system with pair breaking.

For both the boson and spin fluctuations we have em-
ployed Einstein spectral densities of the form

E

g\
E(w)= Slo—wg),

(2.4)
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with A and AP the mass enhancement parameters for
E(w) and P (w), respectively.

Plw)= S(o—wp)
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In order to calculate thermodynamic quantities we uti-
lize the Bardeen-Stephen expression for the free-energy
difference between the normal and superconducting
states>?
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The specific-heat jump is readily obtained from the free-
energy difference through the standard thermodynamic
relations and is given by

AC _ T d*AF(T)

— 2.6)
yT, vyT. dT?

III. SPECIFIC-HEAT JUMP

We have solved Egs. (2.1) and (2.2) numerically and
used the results to calculate the specific heat given by Eq.
(2.6). We chose a critical temperature of 200 K for the
system with no spin fluctuations. We then added
sufficient spin fluctuations to suppress the critical temper-
ature to 100 K. We fixed T2/wz;=0.1 and let
0<T%/wp< . We use the parameters T./wy and
T?/wp to discuss the results. It has been shown for ma-
terials that are well described by the Eliashberg formal-
ism that the parameter T, /), can be used to character-
ize the superconducting properties of a material.’! o, is
the Allen-Dynes parameter,3? and for Einstein spectra,
a),nEw E-

In Fig. 1, we show numerical results for the normalized
specific-heat jump, AC /¥ T, plotted versus T°/wp. The
curve starts off at 1.70, slightly above the BCS value of
1.43. This is due to the fact that T?/wg=0.1, and for
such a coupling strength, one expects to see an enhance-
ment over the BCS value.’® As T?/wp increases, the
specific-heat jump continues to increase, and appears to
saturate at a value of ~4.84 as T /wp approaches
infinity. In order to investigate the trend as T, is
suppressed, we fixed wg, Ag, and wp and then increased
Ap in order to suppress 7,.. The results of these calcula-
tions are shown in Fig. 2 where the solid curve shows

Ac /Ac(T®) versus T,. Ac=-2C and Ac(T%)=2.06.

(4
As the amount of pair breaking is increased, the curve in-
creases, reaching a value of approximately 2.9 for
T,/T2=0.38. The curve appears to be increasing more
rapidly as T, /T? decreases. We had to stop at this point
due to numerical difficulties.
The dotted curve in Fig. 2 shows the Abrikosov-
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FIG. 1. Specific-heat jump vs T?/wp. For this case,
T,/T°=0.5, T?=200 K, and T?/wz;=0.1. The curve appears
to saturate at approximately 4.8 as TC/wp— . Hence, the ex-
treme low-frequency limit for the pair breaking does not go over
to the static limit.
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FIG. 2. Ac/Ac®vs t=T,/T°. Ac=AC/yT, and Ac® is the
jump at ¢ =1. The solid curve is for the case where the pair
breaking is frequency dependent, while the dotted curve shows
the Abrikosov-Gorkov results for paramagnetic impurities. For
the dynamic case, the jump is everywhere enhanced over the
pure value, while for the static case the jump is everywhere
suppressed relative to the pure value.
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Gorkov** results for Ac /Ac(T?) versus T,/T? of a su-
perconductor whose critical temperature is suppressed by
static paramagnetic impurities. These results are valid in
the BCS limit of T?/w;=0. Note that the trend is for
AC /yT, to decrease as T, decreases, exactly opposite to
what occurs for the dynamic pair breaking.

| 8(AC/T,)
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IV. FUNCTIONAL DERIVATIVES

In order to gain more insight into the results of the
previous section, we now consider the functional deriva-
tive of the specific-heat jump with respect to the spectral
density

(AC/T)[A(Q)+ed(Q—w)]—(AC/T, ) A(Q)]

1
vy b8A4(w) Y 1611n> €

A (w) could be either E(w) or P(w). This quantity tells
us about the sensitivity of the specific-heat jump to de-
tails of the spectral density function. Functional-
derivative techniques were first employed in Eliashberg
theory by Bergmann and Rainer,® who studied the
derivative of the critical temperature with respect to the
spectral density function. Since that work, the functional
derivatives of many other superconducting properties
have been studied.>®

In this work, rather than use full numerical solutions
to calculate the functional derivatives, we will employ a
square-well approximation®”® (1% model)

[

where wp is the maximum frequency associated with the
electron-boson interaction. In the case of the electron-
phonon interaction, o, would be the Debye frequency.
This model has the advantage that it yields analytical re-
sults which are largely independent of material parame-
ters.

We will first calculate the derivative of AC/yT, in a
model in which there is a single attractive dynamical in-
teraction and a static repulsive interaction, due to
paramagnetic impurities. For this case, P(w)=0 and
hence A" (m —n)=A"(m —n)=A(m —n). The Eliash-
berg equations which we start with are
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t~=1/2%r, where 7 is the magnetic scattering lifetime. - lolio,)Aliow,) 1 _ |lélio,)|Alie,)
The calculation of the functional derivative of the Aliw,)~~— = E’" . “4
l@(io, )|+t [@tio,)|+mt ]

specific-heat jump is done for temperatures near the criti-
cal temperature. Near T,, the order parameter ap-
proaches zero and one may expand in powers of A, /@,,.
To calculate the derivative at T it is sufficient to include
terms up to second order in the Eliashberg equations.
When expanding the free-energy equation, one must re-
tain terms up to fourth order.
For this calculation it is useful to define

Tt

V3w, +aio,)

1....

(4.2)

Aliw,)=A(iw,)

Expanding Eq. (4.2) to third order in A, /@, one obtains
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which is solved iteratively to obtain

(4.4)

Rather than give complete details of the calculation,
which are given elsewhere in the literature,*® we will just
give the main points. Within the A% model one finds that
the gap function is independent of frequency, A(iw, )=A.
Solving (4.1a) and (4.1b) to lowest order, using Eq. (4.4),
one obtains

1=(A +eB)+(C +eD)A? , (4.5)

where A4, B, C, and D are given in the Appendix.

It is useful at this point to carefully define the notation
to be used for the various critical temperatures in the
problem. The critical temperature for an impure materi-
al with a perturbed spectrum will be denoted by T¢. The
critical temperature for an impure material with an un-
perturbed spectrum will be denoted by 7,. Finally, the
critical temperature for a pure material with an unper-
turbed spectrum is denoted by T?.

We now seek an expression for the free energy. The
expansion of (2.5) to lowest order yields (after some
straightforward but lengthy algebra)
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F—F, _ 1
N(0) 2(A—pu*)
with C and D as in Eq. (4.5).
Equation (4.5) can be solved for A* and inserting this
result into Eq. (4.6) and expanding about T, one obtains,
to first order in €,

Fs_Fn _ (T_TC)2 .’4,2

(4.6)

{C(T)+eD(T)}A*

N(0) 2(a—u*) C
B’ 1D A"B
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+e- . .
€S 1C rer, 4.7)

It then follows from equation (3.1) that the specific heat
jump at T, is given by

G—C__NO_ 1 47

Cn Y },—-—‘u,* C
B 1D _A"B
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€ 4’ 62 C € A’2
1 BC'
+e—28 . :
“274C ||r=r, “.8)

Defining Ac =(C;—C,)/C,, (4.8) may be written as
Acf=Acy+eAc,

with the definitions of Acy and Ac; obvious from (4.8).
The functional derivative of the specific-heat jump at T,
is then given by

SAc

=A s
SE(@) !
72
Acl__N(O) - 1 _ AC
r a 4.9)
«|B._1D_ A4"B 1 BC
A’ 2 C A 2 A'C T=T,
If we write y = 272N (0)(1+1), (4.9) becomes
, "
Aclz_i > 1 4
2 P2(1+A)A—u*) C
«|B._1D_A4"B 1 BC
A" 2C 47 2 4C||r=1°
(4.10)

Equation (4.10) appears to have an explicit 1/(A—pu*)
dependence, however, there is a factor of A—u* in the
sums, which cancels the prefactor. The cutoff has been
relaxed as all the sums converge. This function is plotted
in Fig. 3 versus w/T? for various impurity concentra-
tions, with T, /Tc°=1.0, 0.9, 0.75, and 0.5 for the solid,
dotted, short-dashed, and long-dashed curves, respective-
ly. The function is everywhere positive definite, and goes
to zero in both the large and small limits of o /T limits.
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FIG. 3. Functional derivative of the specific-heat jump vs fre-
quency, normalized to the critical temperature. The curves are
all everywhere positive. The various curves are for different im-
purity concentrations, with T,/ T°=1.0, 0.9, 0.75, and 0.5 for
the solid, dotted, short-dashed, and long-dashed curves, respec-
tively. The derivatives increase in size as the impurity concen-
tration increases. This indicates that the suppression of the
specific-heat jump increases more rapidly as the impurity con-
centration increases. This makes the added spectral weight
more effective at larger concentrations.

The peak occurs for @ /T2~4 in the pure case. This peak
softens as the impurity concentration is increased. The
derivative also increases in size as the impurity concen-
tration increases. This is understood by considering the
dotted curve in Fig. 2, a plot of Ac/Ac® versus T, /T?.
AcP is the specific-heat jump of the pure material. The
specific-heat jump is being suppressed by the impurities
and adding to the pairing spectral weight is somewhat
analogous to reducing ¢ .

We now contrast these results with those obtained in a
model in which the pair breaking is dynamic rather than
static. Marsiglio and Carbotte®® have calculated the
functional derivative of the specific-heat jump in such a
case. They considered the derivative with respect to both
the pairing and the depairing mechanism within the A%
model. In their calculations, they treated the two mecha-
nisms as distinct. Again, the details of the calculations
are omitted, and we simply show their results in Fig. 4.

The solid curve is the functional derivative of the
specific-heat jump with respect to the pairing spectra
density [i.e., E(w)]. It is everywhere positive, with a
broad peak at approximately «/7T,.=3.5. This result
shows that adding spectral weight at any frequency will
enhance the specific-heat jump. The dotted curve shows
the functional derivative of the specific heat with respect
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FIG. 4. Functional derivative of the specific-heat jump. The
solid curve is the derivative with respect to the pairing spectral
density. It is everywhere positive, indicating that adding spec-
tral weight at any frequency will enhance the jump. The dotted
curve is the derivative with respect to the pair-breaking spectral
density. It is also everywhere positive, indicating that adding
spectral weight at any frequency will enhance the jump. Adding
spectral weight at low frequencies is particularly effective.

to the depairing mechanism. It is everywhere positive
definite, and diverges to positive infinity at low frequen-
cies. This indicates that adding paramagnon spectral
weight will also enhance the specific-heat jump, but that
adding weight at low frequencies is particularly effective
in enhancing the jump.

Williams and Carbotte®® have numerically calculated
the functional derivative of the specific-heat jump in a
model where the same fluctuations couple the electrons
via both charge and spin, as in the MFL model. In this
case, the spectra function, say 4 (@), for both the pairing
and the depairing is the same, with the exception that
they have different weights. To be explicit, if we define
the parameter g =(A, —Ap)/(Ag+Ap) then

Plo)=2"8E (o) @.11)

1+g
and

1 8(AC/T,) | 8(AC/T,)

1 1—g 8(AC/T,)
y 84(w) v B8E(0)

v 1+g 8P(w)
4.12)

We show the results of these calculations in Fig. 5. These
curves are essentially a combination of the curves from
Fig. 4, with different values of g corresponding to

5[4/ 71,1/ 6A()

“00 5.0 10.0 15.0 20.0
/T,

FIG. 5. Functional derivative of the specific-heat jump for a
model in which the pairing and pair-breaking spectra densities
are the same. The solid, dotted, short-dashed, long-dashed, and
dash-dotted curves correspond to g =1.0, 0.95, 0.9, 0.8, and 0.7,
respectively. These derivatives are everywhere positive definite,
indicating that in such a model, the specific-heat jump will be
enhanced over the value for a model in which there is no pair
breaking.

different relative weights of the two curves in Fig. 4.

Hence, in a system where there is both pairing and
depairing, adding spectral weight to either spectral func-
tion will enhance the specific-heat jump. This is con-
sistent with the results shown in Fig. 1. Note also in Fig.
5 that the derivative is suppressed at higher frequencies.
This is due to the fact that the specific-heat jump is al-
ready enhanced and enhancing it further becomes
difficult.

V. CONCLUSIONS

In Sec. III, we showed that for a model in which the
pair breaking is dynamic, the normalized-specific-heat
jump is enhanced over the value that one would obtain if
there was no pair breaking. This is in contrast to the case
where there is static pair breaking, as with paramagnetic
impurities. In such a case, the normalized-specific-heat
jump is depressed over the pure value.

These results can be understood in terms of the func-
tional derivatives of the normalized-specific-heat jump
with respect to the spectral density functions. For the
dynamic case, the functional derivative of the
normalized-specific-heat jump is positive definite at all
frequencies for both the pairing and the depairing mecha-
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nism. This means that both mechanisms tend to enhance
the normalized-specific-heat jump. The positive diver-
gence at low frequencies of the derivative with respect to
the depairing mechanism shows that low frequencies are
particularly effective in enhancing the jump.

The derivatives for the static case are again everywhere
positive definite. They increase in size as the amount of
pair breaking increases. This indicates that the
normalized-specific-heat jump is being more rapidly
suppressed with larger impurity concentration, and add-

P.J. WILLIAMS 47

ing the spectral weight becomes more and more effective
in enhancing the jump over its suppressed value.

There are available experimental results*® in which the
specific-heat jump is studied as a function of T,. In these
experiments, T, is being suppressed by adding Fe and Zn
in place of Cu in YBCO materials. The specific-heat
jump decreases as T, decrease. We would interpret this
as meaning that Fe and Zn are acting as paramagnetic
impurities and are not leading to any dynamical pair-
breaking effects.

APPENDIX

Below are given the functions 4, B, C, and D which appear in the T, equation as well as the expansion for the free

energy given in Sec. IV:
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NG 1 1 N 1
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