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Insight in the dynamics of quantized vortex lines has been obtained by performing NMR measure-
ments in uniformly rotating superAuid 'He-B. Compared to superAuid He, in He-B the viscosity of the
normal component is three orders of magnitude larger and the pinning of vortices is weaker. The collec-
tive modes governing the hydrodynamic response of an array of vortex lines are highly overdamped.
Two distinct modes are identified: (1) a relatively fast mutual-friction-resisted mode, which controls the
redistribution of the vortex density on a time scale of a few seconds, and (2) an exponentially relaxing
slow mode with a time constant of a few minutes, which governs asymptotically the approach to equilib-
rium at nearly constant vortex density. Measurement of the fast motion allows us to extract the dissipa-
tive mutual friction. The slow mode is dominated by the elastic tension along the vortex line and by
weak pinning at the top and bottom surfaces of the rotating container. With increasing vortex density
the surface pinning becomes a collective process, in which coherently moving groups of vortices are
pinned in unison. Collective pinning is a result of the shear elasticity related to the crystalline order of
the vortex lattice. Our measurements on the slow mode indicate that the crystalline correlation extends
over many lattice spacings.

I. INTRODUCTION

A. Vortex motion inrotsting He and He suyer8uids

The simplest case, where quantized vortex lines are
abundantly formed and can be studied, is uniform rota-
tion of the superAuid at constant rotation velocity: Here
vortices exist as a response to rotation, allowing the irro-
tational or curl-free superAow to accommodate to solid
body rotation on an average scale, ' Quantized vortices
have been studied for four decades in superAuid He,
where their structure is simple and their properties in the
equilibrium state are well established. In superAuid He
they have been investigated for the past ten years; here
their structures are varied and complicated, but many of
their equilibrium characteristics are now understood.
Quantized vortex lines have also been invoked as an ex-
planation of the rotation characteristics of pulsars, i.e.,
rapidly rotating gravitationally collapsed stars where
matter is compressed to a neutron superAuid. In most
experiments a large number of vortices has been studied,
but quantization of circulation has been unambiguously
proven in experiments with a single vortex trapped on a
vibrating wire both in He (Ref. 9) and in He. '

In the uniformly rotating superAuid at constant rota-
tion velocity 0 vortices form an array of rectilinear lines
with homogeneous density. Our central theme here is the
following question: %'hat is the dynamic response of the
array to an externally applied disturbance, such as a step
change in Q? A generally accepted consensus on the dy-
namic response of a vortex array and the nature of its col-
lective modes is dificult to And in the existing literature
on the hydrodynamics of quantized vortex lines in
superAuid He. " ' SuperAuid He is generally regarded
as more complicated and diverse in its structure and
properties than He-II but there are several aspects which

promise that studies on vortex dynamics in the He
superAuids may provide new understanding. '

(1) Measuring techniques Wit.h He powerful measur-
ing techniques have become available for the investiga-
tion of the superAuid state, foremost NMR and zero
sound transmission. NMR is generally regarded as a
method for structural studies, but here we shall make use
of an NMR measuring technique, ' applicable in the B
phase, which has proven most efFicient for analyzing the
dynamic properties of a vortex array. ' In contrast, in
superAuid He the most successful dynamic measuring
techniques have been based on ion methods. ' The ions
trapped to vortex cores can be driven and monitored' '
and even imaged. Due to the large vortex core size in
He, the ionic trapping potential is much lower and it has

not yet been possible to reach a satisfactory sensitivity.
(2) High nucleation threshold. In superAuid 3He the

critical Aow velocity for the nucleation of singular vortex
cores turns out to be relatively high. ' In these cir-
cumstances uncontrolled nucleation and annihilation of
vortices can be totally eliminated in the measurements,
i.e., experiments can be carried out with a strictly con-
stant number of vortices even if 0 is varied within wide
margins.

(3) Regime of superfluid hydrodynamics. Compared to
He, in He the viscosity of the normal component is

more than 3 orders of magnitude larger: the kinematic
viscosity v of He is roughly 10 ~ cm2/s (T= 1 K) while
that of He is 1 cm /s (T= 1 mK). As a result difFerent
types of slow vortex motion, i.e., motion with frequencies
m &(0, are available for experimental observation in He
than in He. In He the normal and superAuid com-
ponents and the vortices move together during the slow
motion, i.e., all three are glued to each other by mutual
friction. In contrast, in He the normal component
can be considered to be clamped to corotation with the
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container. '

(4) p eak sttrfac8 ptntttttg. Ill Hc pllllllllg ls expected
to be weaker than in He due to the much larger core
size. The radius r, of the singular core is well above 10
nm, unlike in He where the core radius is of atomic size
(a few A).

B. Central conclusions and outline of contents

Q (t)
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FIG. 1. The response of a vortex array to a rotation drive,
which varies with time, is an overdamped relaxation in He.
Here the rotation velocity Q is rapidly increased by an incre-
ment AQ (inset). Two different well-separable modes can be dis-
tinguished in the response: (1) The fast mutual-friction-resisted
mode first approximately corrects the vortex density with a
characteristic decay time ~F-1 s. (2) Next the slow vortex
mode with exponential relaxation and a time constant z, —100 s
governs the approach to the new equilibrium state. The average
displacement of the vortices from their final sites is here
schematically illustrated as a function of time during the relaxa-
tion.

The central result of this report is to conclude that the
response of a vortex array to a perturbation can be de-
scribed by two modes: a fast and a slow response, which
are well separated in time. The existence and characteris-
tics of these modes in superAuid He-B we derive in-
dependently from the measured response and from the
theoretical argumentation. These two modes are (I) a rel-
atively fast mutual-friction-resisted mode, which governs
the motion over large displacements with a time scale ~F
of order the rotation period, and (2) an exponentially
damped slow mode with a relaxation time ~„which is re-
sponsible for small adjustments during the asymptotic ap-
proach towards new equilibrium sites. These two modes
of vortex motion are present in the response of a vortex
array to any disturbance, such as a step change in the ro-
tation velocity A, as shown schematically in Fig. 1.

The fast and slow modes are fundamentally different.
In the fast mode of importance is the radial motion which
is responsible for equilibrating the vortex density. The
slow motion is predominantly azimuthal in character and
corresponds to the final relaxation of the deformed vortex
pattern at equilibrium vortex density. Both motions are
damped by mutual friction: The fast mode is dominated
by mutual friction alone while the slow mode is addition-
ally controlled by the elastic tension of the vortex lines
and by surface pinning.

A long-standing problem is to what extent one should

treat the array as an ordered vortex lattice. The pin-
ning parameter derived from the measured exponential
relaxation time of the slow mode displays a dependence
on the density of vortices. We interpret it using the con-
cept of collective pinning, developed for bulk pinning in
type-II superconductors. Collective pinning is possible
only if crystalline order exists in the vortex lattice; our
observations are thus evidence for crystalline order which
extends over many lattice spacings.

Our identification of the two modes is derived from the
time dependences of the observed NMR signals. The ex-
istence of these modes with the time dependences and the
time scales, which agree with the NMR results, unambi-
guously follows from existing hydrodynamic theory
without any new assumptions, as we show in the present
work. However, it is much less evident why the NMR
signal is influenced by hydrodynamic motion during the
exponential relaxation of the slow mode when the num-
ber of vortices is kept constant. We describe some
features of this phenomenon, ' but we are not yet
prepared to present a complete analysis of the connection
between the slow mode and the amplitude of the mea-
sured resonance signal. The experimental identification
of the slow vortex mode is dictated by the time depen-
dence of the NMR signal: we know of no process except
for the hydrodynamic slow vortex mode that has a
characteristic time relevant to the observed time scale.

The plan of the paper is the following. We start with a
short description of the experimental setup in Sec. II and
an account on vortex nucleation in Sec. III. An impor-
tant precondition for measurements with a rotation drive
varying in time is that the number of vortices can be kept
constant. This is the case here, since nucleation is inhib-
ited in the range of rotation velocities, where the slow
mode is studied. Our NMR method is described in Sec.
IV, where we characterize the resonance signals, which
are measured as a response to fast and slow vortex
motion.

The rest of the paper is devoted to the hydrodynamic
theory and its comparison with the experiment. We start
from a general introduction to vortex dynamics (Sec. V),
then derive the fast (Sec. VI) and slow (Sec. VII) modes,
which allows us to identify the experimental modes by
comparing the results of the theory with measurements.
Section VII is central for our present work. Here, on the
basis of well known and widely used ideas of the elastic
forces acting on a vortex (the line-tension force and the
force from shear deformation of the ordered vortex ar-
ray "' ), we discuss the concept of and the experi-
mental evidence for the collective surface pinning, which
is related to the shear rigidity of the vortex array in the
boundary layers near the top and the bottom of the rotat-
ing container.

A number of appendices are included in the report.
They are devoted to those experimental results which
need better quantitative theoretical interpretation or to
the discussion of other questions which are not vital to
the chain of arguments leading to the main conclusions of
the present work. In Appendix A we discuss the cou-
pling between the NMR signal and the slow vortex mode;
it is based on the broken cylindrical symmetry of the vor-
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tex core. The interaction of the peripheral vortices of the
equilibrium vortex cluster with the cylindrical container
wall leads to peculiar NMR absorption behavior, which
is described in Appendix B. New phenomena will be-
come observable when vortices interacting at superfluid
interfaces are studied: He-B above a mixture of
superfiuid He with 6.4% of normal He will be briefiy
discussed in Appendix C. Next in Appendix D we dis-
cuss the bulk liquid contribution to the slow mode from
the shear rigidity of the vortex lattice. In He this contri-
bution is responsible for the Tkachenko wave. In He
the Tkachenko wave would transform into an over-
damped mode. In the present experiment it was not ob-
served; a positive identification of its existence would re-
quire a different experimental geometry.

Finally it should be pointed out that our general hydro-
dynamic considerations apply to both the 3 and B phases
of superfluid He. It is simply our experimental tech-
nique which has made these hydrodynamic features in
the B phase more amenable to measurement: The partic-
ular NMR mode, which we use, couples with the slow
vortex motion (see Sec. IV). Consequently, while our
measurements and considerations are explicitly for He-B
in this work, no differences of fundamental nature
separate the hydrodynamics of He-B and other He
superfluids. In fact, our results pertain to any rotating
superfluid with a large normal viscosity.

II. EXPERIMENTAL SETUP

The measurements are performed in a rotating cryostat
which consists of a He- He dilution refrigerator for
precooling and a copper nuclear demagnetization stage
for cooling the liquid- He chamber. The upper section of
the He chamber is shown schematically in Fig. 2. It is a
cylindrical epoxy tower with its axis aligned along the
vertically oriented rotation axis of the cryostat. The
tower is constructed on a copper lid which is, in turn
secured with an indium 0 ring on a silver chamber. This
chamber houses the sintered silver heat exchanger for
thermal contact to the nuclear stage. The tower is divid-
ed in two sections with an epoxy wall, which incorporates
an orifice (diameter =1 mm, length =0.5 mm) and a tu-
bular channel (diameter =1.5 mm, length = 5.5 mm).
This division isolates the NMR sample cell (diameter
2R =length L =7 mm) from the lower parts of the He
volume, but provides a still acceptable thermal connec-
tion.

The transversely oriented rf coil around the NMR cell
consists of two square sections, which are thermally an-
chored to the mixing chamber. The two sections of the
coil each have 40 turns of copper wire giving the coil an
inductance of 60 pH. One end of the coil is grounded in-
side the cryostat while the other end is fed via a coaxial
cable to a room-temperature tuning capacitance. This as-
sembly provides a Q value of 100 at 1 MHz. The rf exci-
tation is fed directly in the He-NMR coil from a con-
stant current source. For compensating the large voltage
induced by the excitation current, a second similar tank
circuit is placed inside the cryostat. Each of the two tank
circuits is connected to one input of a differential
preamplifier. The preamplifier is followed by a lock-in
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FIG. 2. Upper section of the He sample chamber. The
NMR cell on the top of the tower is isolated with an orifice and
a tubular section from the main He volume. The bottom sur-
face of the main He volume is the sintered heat exchanger (not
shown), which provides thermal contact between the liquid- He
sample and the copper nuclear refrigeration stage.

amplifier, which is used as the readout instrument. With
careful frequency tuning of the two tank circuits and ad-
justment of the relative phase and amplitude of their exci-
tation currents, a compensation of up to a factor of 100 is
achieved.

The rf coil for pulsed platinum NMR thermometry is
immersed in the liquid below the division between the
NMR cell and the rest of the He volume. The steady
NMR field, which is common for both the He and ' Pt
NMR, and a linear field gradient are produced with
large-size superconducting solenoidal coils, located in the
liquid-He bath outside the vacuum jacket. The tempera-
ture is determined from the integrated intensity of the

Pt free-precession signal, which is calibrated at T, . A
second convenient calibration temperature is T„the tem-
perature of the second-order phase transition in the
vortex-core structure (see Sec. IV B). Most of the present
measurements have been performed with the liquid pres-
sure at p =29.3 bars, where T, =0.60T, .

The dividing plug in the He tower with its narrow
orifice prevents the leakage of vortices from the lower
volume into the NMR cell. The NMR cell has relatively
smooth epoxy walls and a smaller diameter, while the
lower part has a rough heat exchange sinter as the bot-
tom surface and a maximum diameter of 28 mm. The
silver powder in the sinter has a nominal grain size of 70
nm, which roughly matches with the core size of singular
vortices. The critical rotation velocity for vortex nu-
cleation is thus reduced to ~0. 1 rad/s in the lower part
of the cell. In contrast, in the NMR cell the critical rota-
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tion velocity Q, (T,p) for the nucleation of singular vor-
tices in the B phase is 1 —3 rad/s, depending on pressure p
and temperature T. ' This provides a possibility to per-
form measurements on the dynamics of the vortex array
in the presence of time varying rotation drives without
complications from nucleation or annihilation of vortices.

III. VORTEX NUCLEATION
AND A METASTABLE VORTEX CLUSTER

The critical rotation velocity Q, (T) for the nucleation
of v'ortices in the B phase is shown in Fig. 3 at 21.0 and
5.0 bars. Q, translates to a critical Aow velocity
v„=Q,R of up to 1 cm/s at the cylindrical cell wall,
where the nucleation takes place. This is approximately
one-tenth of the bulk liquid pair-breaking velocity.
Below the critical line Q, (T) vortex-free counterflow pre-
vails and no vortices are nucleated. Above the critical
line vortices are nucleated such that the counterAow ve-
locity at the cylindrical cell wall ~v„. Q, (T) can be
identified from NMR measurements by scanning the Q vs
T plane by either increasing Q isothermally or by sweep-
ing T at constant Q. During such a sweep a traversal of
the critical line is indicated by an abrupt change in one of
the several possible features in the NMR spectrum,
which depend on the relative magnitude of counterAow
compared to the total number of vortices. ' Close to T,
on exceeding the critical rotation velocity Q, vortices are
created essentially one by one. Towards lower tempera-
tures the nucleation process transforms to a burstlike
phenomenon, in which a large number of vortices are
formed sim. ultaneously. At the lowest temperatures

T &0.4T, it appears that almost the entire NMR cell is
filled at the nucleation threshold.

In the equilibrium vortex state the number of vortices is
determined by minimization of the free energy in the ro-
tating frame (see Sec. IV C). However, our measurements
on the slow vortex mode relaxation have been performed
at Q &Q, on a metastable Uortex cluster state, where the
number of vortices is less than the equilibrium number.
The procedure for creating such a metastable vortex clus-
ter with a known number of vortices is the following:
First, Q is rapidly accelerated to our maximum rotation
velocity of about 3.5 rad/s. This is larger than Q, and an
unspecified number of vortices is created. Next Q is re-
duced to some lower value Q„so that some vortices are
observed to annihilate. In uniform rotation at constant Q
the density of vortices is n„=2Q/a, where
~=h/2m3=6. 65X10 cm /s is the superfluid circula-
tion. Thus, the deceleration to Q„adjusts the number of
vortices to the value N„=2nR Q„/~. The final step is
then to increase Q again, whereby a vortex cluster is
formed. The cluster is isolated by an annular vortex-free
counterflow layer from the cylindrical cell wall (Fig. 4).
During the increase in Q the vortex number remains con-
stant at N, =2mR, Q/Ir, where R, =R QQ, /Q is the di-
ameter of the vortex cluster. This metastable vortex clus-
ter state can now be examined at different Q, within the
limits Q, ~ Q & Q, +Q„without change in the number of
vortices as long as the How velocity at the cylindrical
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FIG. 3. Measurements on the critical rotation velocity 0, for
the nucleation of singular 8-phase vortices in the NMR cell of
Fig. 2 in the vortex-free state, plotted as a function of norrnal-
ized temperature. Nucleation takes place on the cylindrical side
wall of the rotating container, thus Q, (left vertical axis) corre-
sponds to a critical counterAow velocity U„=Q,R (right vertical
axis). Measurements are shown at 21-bars (circles) and 5-bars
(triangles) pressures. The solid curves represent
v„=e[1+,'F,'F(T/T, )]bz(T/T—,)/pF (see Ref. 30). Here
c -0.1 is a constant factor. It represents the fraction by which
the bulk liquid pair-breaking velocity is reduced by surface
roughness, which catalyzes the nucleation of the singular-vortex
core.

TO REFRIGERATOR

FIG. 4. NMR cell and the vortex cluster. The measurements
on the slow vortex mode are performed in the rnetastable vortex
cluster state: Here the vortices are contained inside a cluster in
the center of the rotating container and are isolated by macro-
scopic vortex-free counterAow from the side wall. In this case
the interaction between the peripheral vortices and the side wall
is avoided. Also the rotation velocity can now be varied within
the limits Q, 0 & O, (T,p)+ Q„and no vortices are annihilated
or new ones nucleated.
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IV. MEASURING TECHNIQUE

A. Homogeneously precessing domain (HPD)

The present NMR measurements have been performed
using a particular resonance mode of He-B, which is
known as the homogeneously precessing domain. ' ' In
this dynamic spin domain the total nuclear spin magneti-
zation M =yzH, induced by the static polarization field
H, precesses coherently with the transverse rf excitation
field H, (co,f) with a tipping angle, which with respect to
the direction of H is roughly 104'. In the continuous (cw)
mode, the HPD can be maintained indefinitely in the ar-
rangement shown in Fig. 5. Here a linear field gradient is
superimposed on the static magnetic field H such that the
total field increases towards the orifice of the NMR cell,
i.e., H (z) =Ho —z

~

V'H ~. A horizontal domain boundary
separates the precessing domain (HPD) above the bound-
ary from the nonprecessing domain below the boundary.

VW

WPD

M

Z f3

M

FIG. 5. (a) The NMR cell in the HPD measuring arrange-
ment, with a magnetic field gradient VH and a large rf field
transverse to H. The precessing domain (HPD) in the upper
part is separated from the static domain in the lower part. (b)
Orientation of the magnetization M, the axes n and I =RM/M
in the HPD: I is perpendicular to H, I is parallel to H, and M
is tilted by the angle P= 104' in relation to H so that
M.H= —4MH and M =y&H.

wall R ( II —II„)(R 0, ( T)=U„.
Summarizing we note that vortex nucleation occurs in

the NMR cell on the cylindrical container wall, indepen-
dently of the size of the central vortex cluster, at
0=II, ( T)+II, . The nucleation of a vortex takes place
when the How velocity exceeds a critical velocity. Due to
surface roughness this critical velocity is reduced from
the bulk pair-breaking value by a factor of = 10. The nu-
cleation process is associated with a high-energy barrier.
In contrast, the annihilation process involves no essential
barrier when the vortex is pushed back towards the wall
during deceleration. These two situations do not involve
the same phenomena and are therefore far from sym-
metric on the 0 axis.

After nucleation the vortex is pulled by the
counterAow towards the center of the cell; this motion is
driven by the Magnus force and damped by the mutual
friction forces (Sec. V A). Both in the annihilation as well
as in the nucleation process the bottleneck in the ob-
served time dependence is the mutual-friction-resisted
motion of the vortex, which occurs on a time scale of a
few seconds and conceals the other faster processes.

The location z =zz of the boundary is defined by the con-
dition that here the precession frequency, i.e., the rf fre-
quency co,r, equals the Larmor frequency yH(zz ), where

y is the gyromagnetic ratio.
The two-domain structure is supported by the inter-

play of the Zeeman and the dipole-dipole energies. In the
static (nonprecessing) domain, where H )co/y, the total
free energy is minimized when M~~H. In the HPD, where
H (co/y, the free-energy minimization favors an M
which is tilted in relation to H such that the tilting angle
P is approximately equal to the value of the Leggett angle
8=arccos( —

—,
'

) = 104'. In the HPD the torque from the
dipole-dipole interaction compensates the torque from
the Zeeman energy, so that uniform precession is possible
in spite of AH. The B-phase order parameter includes
the rotation matrix R(n, o) which specifies a relative rota-
tion of the orbital and spin coordinate systems around
the axis 8' by the angle 0. In the HPD, the order parame-
ter also participates in the precession: 6' precesses in the
plane perpendicular to H, such that the orbital vector
I =R M/M is rotated to a stationary orientation along H.

When H is increasing towards the bottom of the NMR
cell, then the HPD is first formed at the top of the cell.
In this case no spin currents are leaking from the HPD
and a more stable configuration is obtained than with VH
oriented in the opposite direction. By sweeping Ho one
can change the volume of the HPD. For the absorption
measurements it is advantageous to reduce Ho so that the
domain boundary is positioned at or just below the
orifice. In this position the boundary and thus the relaxa-
tion from spin diffusion across the boundary are mini-
mized. Also, any drift in the magnitude of the polariza-
tion field H has a minimal effect on the stability of the
continuously monitored absorption level with the bound-
ary at this location. These considerations on the stability
of the HPD absorption provide one of the reasons for iso-
lating the NMR cell with the epoxy plug from the rest of
the tower. The second reason is to prevent the leakage of
vortices from the lower parts of the chamber, as was ex-
plained in Sec. III.

As a result of the spin precession in the HPD, a strong
signal is induced in the NMR pickup coil, which is pro-
portional to the volume of the HPD while its phase is
determined by the energy dissipation in the precession.
Unlike in conventional NMR, the magnitude of H, (co,&)

does not inAuence the absolute value of the measured sig-
nal, but it is present in the phase difference between the
signal and the rf field. These features have some conse-
quences of technical nature, which are discussed below.

For sustaining the HPD mode, a large rf excitation
field is required: in the setup of Fig. 2 a minimum field of
H, )4X10 mT is needed in order to compensate for
the resonance absorption losses in the temperature range
of our measurements. Conventional B-phase NMR spec-
tra are recorded at an excitation level which is a factor of
10 or more lower. In the HPD mode the energy absorp-
tion dE/dt ~H, M~ =const, where M~ is the transverse
part of the total spin component rotating in the xy plane
and proportional to the absorption signal. For maximum
resolution of the absorption signal it is useful to use a rf
excitation which is as small as possible.
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A reliable in situ temperature reading of the He-NMR
sample in the HPD mode is obtained by calibrating the
amplitude of the measured cw resonance signal from the
homogeneously precessing spins, when the domain fills
the NMR cells. This signal is proportional to the corn-
ponent of the magnetization, which is precessing in the
transverse plane, QMjj+Mj ys(T)H, where Mjj is
proportional to the out-of-phase signal and M~ to the in-
phase signal at the lock-in amplifier output. The absolute
value of the signal can be calibrated at some temperature
below T„e.g. , against the B-phase NMR frequency
shifts, which are measured from a conventional NMR
spectrum of the Gare-out texture. ' The temperature
dependence of the 8-phase susceptibility y~(T) has been
measured in Ref. 32 and is used here to provide the tem-
perature scale.

B. HPD resonance absorption measurement
in the rotating state

A number of mechanisms contribute to magnetic dissi-

pation in the HPD of interest to us are only those
which appear in the rotating state when vortices are
present. CounterAow and vortices both produce their
characteristic signal behavior in the HPD resonance and
can be distinguished from each other with good resolu-
tion. ' Here we are only concerned with vortices. Lo-
calized inhomogeneities in the superAuid order-parameter
field, such as a vortex core, are found to produce addi-
tional dissipation. ' Since the cores are small compared
to the intervortex distance, this absorption contribution
is additive and can be used as a signal for monitoring the
number of vortices. Furthermore, the magnitude of the
additional absorption depends on the vortex core struc-
ture. In He-B a first-order phase-transition line
T = T, (p) separates vortices with two different singular
core structures. At higher pressures and temperatures an
axisymmetric vortex core is stable and exhibits small ad-
ditional HPD absorption. At lower pressures and tem-
peratures a nonaxisymmetric vortex core displays larger
absorption. In addition, the absorption from the nonax-
isymmetric vortices depends not only on their number,
but also on their motional state, i.e., whether they are sta-
tionary or in translational motion. The latter feature is
crucial for the existence of the HPD signal from the slow
vortex mode, which is observed only in the case of the
nonaxisymmetric vortices. It will be discussed in Sec.
IV E.

In all of the present measurements the static polariza-
tion field is oriented axially (HjjQ), which maximizes the
HPD absorption losses from vortices and is, moreover,
the only useful orientation of the field for the measure-
ment of the slow mode signal (see Sec. IV E). Most of the
present HPD absorption measurements have been per-
formed at co,f/(2m. )=460 kHz (which corresponds to
H=14. 2 mT), where the amplitude resolution in the
measurement of the slow mode signal is best. ' In Fig. 6,
an example of the cw HPD resonance absorption signal
at the lock-in output is displayed as a function of time,
while the rotation velocity is reduced in a steplike
manner. The total reduction in the rotation-dependent

30.2

22.5

—0.59

(-"0.44—
I

4
t (min)

FIG. 6. Response of the cw HPD resonance absorption level

P, to a reduction in Q. The measurement is performed on the
nonaxisymmetric He-8 vortices with HjjQ. Both the initial
and final states are equilibrium vortex states with the maximum
number of vortices at these 0 values, i.e., there is no macroscop-
ic counterQow. P, (upper trace) is here recorded as a function
of time t, while 0, (lower trace) is reduced from the initial state
at 0.59 rad/s to the final state at 0.44 rad/s. This reduction cor-
responds to the annihilation of =170 vortices. With a signal
averaging time of 0.1 s the peak-to-peak noise of the recorder
trace corresponds to =14 vortices. The absorption response
P, (t) goes through three stages which are interpreted as follows:
(1) The initial increase immediately after t =0 is a characteristic
of the HPD absorption mechanism of the nonaxisymmetric vor-
tices when they are forced into motion (see Appendix A). (2)
The increase is soon eliminated by a rapid drop in the signal lev-

el during the next 30 s, which is caused by the annihilation of
the excess vortices at the cylindrical wall of the NMR cell. The
time dependence here is dictated by the mutual-friction-resisted
motion of these vortices and by the rate of deceleration of Q (a
choice of a more rapid deceleration would have obliterated the
initial absorption maximum). (3) The final slowly varying signal
response, extending over several minutes, is an exponential re-
laxation. Here the time dependence is governed by the slow
mode while the HPD absorption amplitude is controlled by the
same dissipation mechanism as during the initial increase j(1)
above].

absorption from the initial state at 0.59 rad/s to the final
state at 0.44 rad/s is a 7-pV drop in the rf voltage of 12
mV across the tank circuit, which here has a Q-value of
54. The voltage drop translates to an 8-pW absorption
loss and corresponds to the annihilation of =170 vor-
tices. With a lock-in amplifier time constant of 0.1 s, the
peak-to-peak noise of the recorder trace corresponds to
= 14 vortices.

The present experimental results are extracted from
the Q-dependent HPD absorption signal; its time-
dependent properties are illustrated in Fig. 6. In the
starting situation the rotating container is filled here with
an equilibrium number of vortices N, =2~R 0;/~ at the
initial rotation velocity 0;=0.59 rad/s and the absorp-
tion level is constant. When 0 is reduced in a linear
sweep, the absorption signal displays a time-dependent
transient and then settles to a new stable level, which cor-
responds to the equilibrium state at Qf =0.44 rad/s and
N„=2mR Qf/a. The transient displays as a function of
time three different processes, which we interpret as fol-
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lows.
(1) Rapid initial increase after switching on the de-

celeration of 0, which sets the nonaxisymmetric vortices
into motion: The HPD absorption increase here is caused
by the same mechanism which is responsible for the sig-
nal amplitude during the slow mode [see (3) below]. The
increase takes place during the time-dependent 0 drive
which forces the vortex motion. (Forced vortex motion is
discussed in Appendix B.)

(2) Rapid decrease. The second process is a rapid de-
crease in signal level. The time dependence here is a
characteristic of the fast mutual-friction-resisted mode
(Sec. VI), while the amplitude is governed by the annihi-
lation of the excess vortices at the cylindrical container
wall.

(3) Exponential relaxing tail. The final process
represents the slow vortex mode (Sec. VII). The signal
amplitude is here governed by a dissipation mechanism of
the nonaxisymmetric vortices; its discussion is postponed
to Appendix A.

Summarizing, we note that the analysis in this paper is
concentrated on the time dependence of the decreasing
part of the signal in Fig. 6. It consists of two distinct
phases (as was schematically shown in Fig. 1): the initial
fast motion and the slow asymptotic phase at long times.
These can be isolated from each other by simple experi-
mental procedures and can thus be analyzed separately.
This analysis will be discussed in Secs. IV D and IV E.

C. Measurement of the number of vortices

The HPD resonance absorption contribution P, from
vortices has been found to be proportional to the number
of vortices X, within the precessing domain, which is
given by X, =~R, Q/x for a metastable vortex cluster. '

In Fig. 7, the 0-dependent component P, in the HPD ab-
sorption level has been plotted for equilibrium vortex
states as a function of Q. These equilibrium vortex states
have been created by first accelerating the cryostat rapid-
ly to 3.5 rad/s, which exceeds the critical rotation veloci-
ty 0, for nucleating vortices and essentially fills the
NMR cell with vortices. Next 0 is reduced to sortie
value where P, starts to decrease, which is a sign for the
fact that the NMR ceH is completely filled with vortices
and a further reduction in 0 causes the surplus of vor-
tices to move to the wall and to be annihilated. Now the
data collection for Fig. 7 is started by reducing 0 step-
wise and by recording the corresponding reductions in
the equilibrium value of P, (Q). Figure 6 is an example of
such a recording following a rapid reduction of 0 by AQ.

At low rotation velocities the plot in Fig. 7 deviates
from the dependence P, ~ Q, which would correspond to
a horizontal line in the plot. The following considera-
tions should be noted in this context.

(1) Remnant vortices Decelera.tion to a lower Q value
may not necessarily lead to the equilibrium vortex nurn-
ber, i.e., the final state could deviate from the minirnurn
energy state. A small surplus of remnant vortices may be
left behind which are not annihilated at the wall. There
are no indications for the presence of remnant vortices in
our He-NMR cell within our resolution of +10 vortices
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FIG. 7. Measurement of the number of vortices in the NMR
cell as a function of Q. The HPD resonance absorption contri-
bution P, from vortices has been plotted in the normalized form
P„/0 as a function of 0 in the equilibrium state (0=0, ). Here
the cryostat is decelerated in a steplike fashion from one equilib-
rium vortex state to the next, as shown in Fig. 6, and P, moni-
tors the change in the number of vortices. (The two stable ab-
sorption levels at 0.59 and 0.44 rad/s in Fig. 6 are among the
data points in this figure. ) The two curves represent fits
to Eq. (4.2): solid curve (best fit to P, vs 0 ),
P, /0=57. 8(1—+0.0056/Qi~ pW; dashed curve (best fit to
P„/II vs 0), P„ /I=1542(1—+0.0027/II) pW. In this plot
the deviation from a constant P, /Q value at low Q emphasizes
the inhuence from the vortex-free region. Here the measure-
ment is performed at low temperatures on nonaxisymmetric
vortices. It can also be performed at high temperatures on ax-
isymmetric vortices, but with poorer resolution because of their
smaller P, .

a. rvln—
4+0 r,

(4.1)

which is roughly equal to one intervortex distance
+a/(&3Q) in He-B and between one and two intervor-
tex distances in He. For convenience here we simply set
r, =+a./(&3Q ), while r, is a measure of the vortex-core
radius. Because of the vortex-free region, the strict pro-
portionality X„~0 is not obeyed in the equilibrium state.
The equilibrium number of vortices then becomes

[21] while for superfluid He this has been reported from
numerous experiments of different kinds.

(2) Suppression of the HPD absorption signal by the
wall interaction. This efFect is discussed in Appendix B 3.
It depends strongly on the distance of the outermost vor-
tices from the wall and applies only to the nonaxisym-
metric vortices. At small rotation velocities, i.e., at large
intervortex distances, where the relative deviation from
the dependence P„(Q)~ Q is largest, this eft'ect is not im-

portant.
(3) Vortex free region E-ven in .the equilibrium state a

narrow annular vortex-free layer isolates the vortices
from the container wall. We shall analyze Fig. 7 in
terms of this phenomenon.

The width of the vortex-free region is given by
1/2
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N, = 2~Q(R —d)~

K

2mQR 1—
4 QR

1/2 2

(4.2)

This result, which is derived for the continuum limit, is
well obeyed even at small vortex numbers X, &100, as
has been shown by numerical simulations. Roughl
speaking, these studies in superAuid He have shown that
the effect of the wall is to suppress the formation of one
outermost ring of vortices.

In Fig. 7, our measurements on the number of vortices
as a function of 0 have been plotted in the normalized
form with P„/0 on the vertical axis. In the fitting pro-
cess we have neglected the 0 dependence from the term
In(r„/r, ) and have used a formula P (Q)V

=POQ(1 —+Q'/Q) with the fitting parameters P and0
Q . Two fits are shown which give Q*=5.6X10 rad/s
(solid curve) and Q =2.7X10 rad/s (dashed curve),
which exemplifies the precision with which the vortex-
free region can be resolved from the measurements. The
expected value in Eq. (4.2) is

Q* =v/(4vrR )ln(r, /r, ) =3 X 10 rad/s .

cylindrical container wall by a wide vortex-free region, as
shown in Fig. 4. If the cluster is not in contact with the
wall at any time during the measurement, then the num-
ber of vortices is maintained unchanged and also any in-
teraction of the outermost vortices with the wall is avoid-
ed.

A simple and reproducible procedure for exciting the

dT
slow relaxation response with a harmonic hydrodynam'r ynamic

varyingrive is illustrated in Fig. 9. Here a harmonically varyin
component is superimposed on the steady rotation drive
at Qo= 1.5 rad/s, such that the rotation velocity becomes
Q(t)=QO+bQ(1 —costa t). The modulation frequency
is co~ /(2m ) = 1/30 s ' and its amplitude b, Q =0.05
rad/s. The modulation is switched off when a new steady
absorption level is reached and then the relaxation back
to the initial state with Q(t)=QO is monitored. After
stopping the 0 modulation, the vortex density first rapid-
ly adjusts by the fast mutual-friction-resisted motion
close to its equilibrium value. This process is only impli-
citly present in the response in Fig. 9 as a brief initial
nonexponential phase of the relaxation decay and we may
neglect it completely. The slow decay of bP„(t) in Fig. 9
can then be fitted with one exponential time constant ~,
which is 2 orders of magnitude slower than the time scale

From this comparison displayed in Fig. 7 it follows
that one can count the number of vortices correspondin g
to any value of Q, . At present our resolution is limited
in this measurement to +20 vortices.

D. Measurement of the fast motion 120—

( (

&=20 i

p = 29.3 bar
049 Tc

H = 14.2 mT

In the first rapidly decreasing part of the HPD absorp-
tion response in Fig. 6, the amplitude of the signal P, (t)
monitors the number of vortices N, (t) in the NMR cell,
while the vortex cluster expands and the excess vortices
annihilate at the wall. The time scale of this process is
dominated by the motion of the vortices to the wall and
not by their annihilation. Thus, the time dependence can
be exploited for extracting the mutual friction (Sec. VI).

The fast mutual-friction-resisted relaxation is most
effectively displayed and measured by suddenly stoppinpping
rotation from a high initial 0 with a large number of vor-
tices and by then recording the evolution of N„(t) while
all the vortices move to the wall and annihilate. The
measurement is illustrated in Fig. 8. In this case the final
state is the 0=0 state with no vortices and the tail of the
fast relaxation signal, which is of the form
N„~ 1/(1+t/rF), is not masked by the slow relaxation,
as is the case of Fig. 6.

E. Measurement of the slow vortex mode

The HPD signal from the slow mode is a characteristic
of the nonaxisymmetric B-phase vortex. The amplitude
of the slowly relaxing signal response b,P, (t) in Fig. 6 is
also ~ X„but this process takes place while N„ is alread
essentially constant. Thus, the absorption mechanism
here is different. It is discussed in Appendix A. Our
measurements on the slowly relaxing signal have been
performed on vortex clusters which are isolated from the
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FIG. 8. Mea surement of the fast mutual-friction-resisted
motion after stopping the rotation: Q(t) and P, (t) are plotted as
a function of time during a rapid linear decelerati f 0 f

ra /s to a total stop. The rapidly relaxing signal is plotted
in the rniddle on a coarse amplitude scale showing the complete
time response and on the bottom on a five times amplified scale,
which illustrates the final phase of the signal decay, after the
cryostat has been brought to a complete stop. This part of the
signal decay at t ) to has been fit to Eq. (6.5), which gives for the
characteristic decay time ~F =3.5 s. Here the solid curve
represents the fit while the data points are from the trace shown
in the middle.
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~F of the fast mutual-friction-resisted motion.
The slow signal is thus obtained while the vortex densi-

ty is already close to its final equilibrium value, but the
positions of individual vortices still deviate from those in
the final equilibrium state. The time dependence of the
exponentially relaxing signal, which is here observed in
the absence of any external perturbations, we associate
with the slowest collective mode of the vortex array, i.e.,
the mode which is responsible for the asymptotic ex-
ponentially slow approach to the equilibrium
configuration. We call it the slow vortex mode. In con-
trast, the first transient part of the response in Fig. 9 fol-
lowing the switch on of the Q modulation is a sum of
both the fast and slow modes and will not be analyzed
here in detail. The steady-state motion during the har-
monic rotation drive, which corresponds to the stable
maximum signal level in Fig. 9, is analyzed in Appendix
B.

Figure 9 shows that the resonance amplitude EP, (t) is
associated with hydrodynamic motion: It appears when
the vortices are forced into translational motion and it
disappears exponentially when the vortices settle down to
their pinned equilibrium sites. Another example of the
coupling of b,P, (t) at constant vortex number to the hy-
drodynamics is the interaction of the peripheral vortices
with the cylindrical container wall and its dependence on
the distance from the wall, which is discussed in Appen-
dix B.

1.50 rad/s

1.40
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FIG. 9. Measurement of the slow vortex mode. P, is moni-
tored as a function of time while a sinusoidal component is ei-
ther subtracted from [trace Q, (t)] or added to [trace Q2{t)] the
constant rotation Go=1.5 rad/s. The measurement is per-
formed on a vortex cluster, whose equilibrium state is at
Q„=1.0 rad/s (i.e., at 0, the cluster fills the whole NMR cell).
The responses P„(t) and P,2(t) to the two drives Q&(t) and Q2(t)
are identical; the absorption increase hP, does not depend on
whether the cluster starts to contract or expand and is thus a
function of only the modulus of vortex displacement. The har-
monic component in the drive enforces a relative change in vor-
tex density, which is ~ hQ/DO=7% peak to peak. When the
harmonic component in the drive is switched off, the signal de-
cay to the final state at 00 is, for the most part, controlled by
the slow vortex mode, since w, &)~F. This exponential relaxa-
tion of EP, (t) is fitted with a time constant ~, =106 s, equal for
both responses; the quality of the fit depends primarily on the
stability of the base line for the absorption increase AP„(dashed
horizontal lines). Here the base lines have a finite slope due to a
slow drift in the electronics.

In addition to the hydrodynamic drive, the slow mode
can be excited by any means which disturb momentarily
the equilibrium state. A short transient perturbation is,
e.g., a thermal pulse, which is introduced by overheating
the Pt NMR coil with a number of large transmitter
pulses. The thermal pulse is accompanied by a hydro-
dynamic disturbance since it involves some redistribution
of the angular momentum. A temperature transient
changes the ratio of the normal and superAuid com-
ponents and, as a result, an exchange of angular momen-
tum takes place between them. Similarly, a magnetic dis-
turbance can be used to excite the slow mode. This can
be effected by simply switching on the HPD, i.e., by
sweeping the steady field 0 down, such that the HPD is
formed. On the other hand, if this operation is per-
formed by starting from an existing HPD, i.e., by sweep-
ing the field first up, such that the HPD is removed, and
then after a time interval At back down again, the signal
amplitude is a function of At: if the time At is small com-
pared to the time ~„ the interruption of the HPD has no
effect on the signal, it returns back to the former level be-
fore the interruption (two operations in rapid succession
cancel each other). When b, t »r„ the signal becomes in-

dependent of when the former HPD was switched off.
When H is tilted beyond a critical inclination angle g,

with respect to the rotation axis 0 (at II=14.2 mT,
r), =17'), neither hydrodynamic, thermal, nor magnetic
drives are observed to excite any changes in the HPD ab-
sorption level. This excludes a thermal process as a pos-
sible explanation of the slow relaxation. On the other
hand, the tilted magnetic field suppresses the absorption
mechanism, suggested by us for the exponentially relax-
ing signal AP„(t) (see Ref. 16 and Appendix A).

From the measurements of the exponential relaxation
we have found that v; does not depend on the perturba-
tion, which is used to initiate the slow mode, but instead
it is controlled by the hydrodynamic conditions. Nor
does w, appear to depend on the tilting angle g in the
range 0~ g & q, where the relevant absorption mecha-
nism is present or on the fact whether the vortex cluster
is in contact with the cylindrical cell wall or not. Also, as
seen from Fig. 9, the slow response is insensitive to
whether the change in 0 corresponds to acceleration or
deceleration: In fact, a stepwise increase or decrease in
0, acting on a vortex cluster isolated by macroscopic
counter Aow from the cell wall, produces identical
responses.

The chain of mechanisms, which connects the slow
vortex mode to the HPD absorption, is not yet clear in all
details (see Appendix A). However, this is not of primary
concern to us here since we study the time dependences,
which are governed by hydrodynamics. Among the
several reasons, which dictate a close connection between
the measured exponential relaxation of EP„(t) and the
hydrodynamic slow mode, the most compelling argument
is the long time scale of ~, -100 s: no other process at
constant temperature has a time scale relevant to the ob-
served time variations. Magnetic relaxation phenomena
are all at least 4 orders of magnitude faster, i.e., a few ms
or faster. Also, the readjustment of the vortex array to a
new equilibrium vortex density is 2 orders of magnitude
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faster. We therefore believe that the time dependence in
the exponentially relaxing part of the absorption signal is
of hydrodynamic origin and is caused by the slow vortex
mode, since asymptotically at large time scales only the
slowest mode survives and is expected to display ex-
ponential time dependence. From the experimental
point of view it is fortunate that the time scale of the slow
mode is well separated from that of any other relevant
mode. The remaining part of the main text of the paper
is devoted to an analysis of hydrodynamic motion, which
is then compared to the present experimental results.

V. SUPERFLUID VQRTEX DYNAMICS:
GENERAL PRINCIPLES

A. Equation of motion: Mutual friction

As already known from the 19th century, the motion
of a single vortex in a classical incompressible perfect
fluid is governed by the dynamic equation

~p[zX(v~ —v)]=f . (5.1)

Here the vortex line is taken to be parallel to the z axis,
vL is the velocity of the vortex line in the xy plane, v is
the velocity of Auid Aowing past the vortex line, p is the
Auid mass density, a is the circulation around the vortex,
and f is the transverse external force per unit length act-
ing on the vortex line. If there is no external force, the
vortex moves with the fiuid velocity: v~ =v (Helmholtz
theorem). Equation (5.1) shows that an external force
acting on a vortex is balanced not by the inertial force
proportional to acceleration as in Newton's second law
for the motion of a particle, but by the Magnus force pro-
portional to the velocity of the vortex in the frame mov-
ing with the Auid.

According to the two-Auid hydrodynamics of
superAuids, only the superAuid component is a perfect
inviscid Auid and superAuid vortices are singular lines in
the superAuid velocity field v, . This means that the den-
sity p and the velocity v in Eq. (5.1) should be replaced by
the superAuid density p, and the superAuid velocity v, .
On the other hand, the vortex interacts with excitations
or quasiparticles in the normal component of the Auid;
this interaction gives rise to the mutual-friction force f„,
which plays the role of the external force f in Eq. (5.1).
So one can write the equation of superAuid vortex motion
as

Kp, [zX( vLv, )]=f„, . (5.2)

The mutual friction force per unit length of the vortex
line is proportional to the relative velocity of the
superAuid and the normal components (i.e., the
counterflow v, —v„) and is generally expressed in the
Hall-Vinen form

which is written in terms of a dissipative component
parallel to the counterAow v, —v„with the coe%cient B

~PsPn
f„, — IBz X [z X(v, —v„)]+8'[zX(v, —v„)]],

2p

(5.3)

and a reactive perpendicular component with the
coeKcient 8'. From Eqs. (5.2) and (5.3) one obtains the
basic equation governing the motion of a vortex line in
the two-Auid hydrodynamics:Pn, Pn
vL =v, 8—[z X(v, —v„)] 8'— (v, —v„) . (5.4)

In superAuid He at any experimentally practical fre-
quencies the normal component can be considered to be
clamped to corotation with the container. In a step
change of 0 the normal component adjusts to the new ro-
tation velocity exponentially with the time constant of a
classical viscous Quid r„=(R/3. 83) /v~ 10 ms (where
R =0.35 cm is the radius of our NMR cell, 3.83 is the
first zero of the Bessel function Ji(x), and v is the kine-
matic viscosity of the normal component). This is 2 or-
ders of magnitude faster than the fastest times character-
izing the experimentally observed vortex motions in
super Auid He. Therefore, the normal component is
clamped to corotation with the container, as is assumed
throughout this paper; then in the frame rotating with
the container v„=O and the vortex moves with the veloc-
ity

, Pn Pnv = 1 8' v—B[zX—v ].
2p 2p

(5.5)

Equations (5.2) —(5.5) are derived for a single straight
vortex line, but remain valid also for a deformed vortex
or a system of deformed vortices even if the deformations
are rather strong, as in the Berkeley experiment on the
precession of a single vortex in superAuid He-B. Then
v, and v„are velocities in the vicinity of an element of
the vortex line moving with the velocity vt, all three ve-
locities lying in the plane normal to the element of the
vortex line. The only conditions restricting their appli-
cability are (i) the radius of curvature of the vortex line
must be much larger than the vortex core radius r, and
(ii) the distance between vortex lines must be much larger
than r, . The superAuid velocity v, includes the velocity
field induced by all other vortex lines as well as by other
elements of a given deformed vortex line. Thus, all col-
lective efT'ects due to long-range interaction of vortices
are present in the superAuid velocity v, . Later we shall
see how the vortex interaction manifests itself in the
superAuid velocity field.

In the pioneering work by Hall and Vinen, the mutu-
al friction force was considered to arise from the scatter-
ing of noninteracting quasiparticles by vortices (for a re-
view of later progress see Refs. 1, 11, 13, and 41). Be-
cause of broken time invariance (clockwise and counter-
clockwise rotations are not equivalent due to the presence
of circulation), the scattering leads not only to a dissipa-
tive force ~ 8, but also to a reactive force ~ 8' [see Eq.
(5.3)]. Since there are no quasiparticles at T=0, the pa-
rameters B and B' should approach zero when the tern-
perature decreases to zero. The problem with the theory
of mutual friction in the regime of noninteracting quasi-
particles in both He and He is that it predicts values of
B much smaHer than is obtained from experiment. Mu-
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tual friction of singular vortices in superAuid He has re-
cently been discussed by Kopnin and Salomaa. They
found that at low temperatures, including the region of
the present measurements around 0.5T„ the dominant
contribution arises from the mutual interaction between
the bulk quasiparticles and quasiparticles localized in the
singular vortex core. The estimated value of B from the
bound-state contribution in the core was found to be in
qualitative agreement with experiment. At the same time
the value of B' turned out to be comparatively small.

At increasing T the approach based on the scattering
theory of noninteracting bulk quasiparticles becomes in-
valid since the mean free path of the quasiparticles be-
comes shorter than the relevant length scale, on which
the scattering from the core occurs. Close to T, another
approach to mutual friction may be used: the hydro-
dynamic equations for the normal component are solved
together with the time-dependent Ginzburg-Landau
equations for the order parameter (see discussion for su-
perconductors in Ref. 43). In He, the renormalized
Ginzburg-Pitaevskii theory (the analog of the Ginzburg-
Landau theory) (Ref. 44) has been used to perform this
analysis. This approach is justified if the radius of the
vortex core exceeds the mean-free-path length of quasi-
particles. It is worth noting that mutual friction for the
large continuous vortices in He-A (Ref. 46) may be treat-
ed purely within the hydrodynamic approach at any tem-
perature.

The dissipative mutual friction Bp„/p can be extracted
from the analysis of the measured fast relaxation signal
(Sec. VII); the result is displayed in Fig. 10. The line
through the measured data extrapolates smoothly to ear-
lier measurements, performed at 20 bars close to T, .
The latter measurements, in which the dissipation of os-

cillatory superAow was studied in the rotating state,
showed that Bp„lp increases steeply from 4.9 at 0.88T,
to 8.7 at 0.97T, .

B. Collective effects: Columnar motion

In order to complete the system of equations describ-
ing the motion of vortex lines, one needs an equation con-
necting the superAuid velocity U, and the vortex velocity
UL. This is the Euler equation, which can be written in
the coordinate frame rotating with an arbitrary constant
angular velocity 0 as'

dVs Us+ [20, XvL ]= —V Iu, +
2

(5.6)

Here

0, =0+I V Xv, ]/2 (5.7)

is the superfiuid vorticity in the laboratory frame and p is
the chemical potential. The superAuid is taken to be in-
compressible: V.U, =O. The linearized version of Eq.
(5.6) (0, =0) is

dUs

dt
+[20Xv ]=—Vp .L (5.8)

Equations (5.6) or (5.8) account for the collective effects:
the velocity field v, is induced by other vortices.

Let us consider the implications from collective e8'ects
in a simple case in the absence of mutual friction, when
vL =v, in Eq. (5.8), namely, the inertial wave as an illus-
tration of columnar motion of the Quid. This wave was
well-known in the hydrodynamics of rotating classical
Auids. " In columnar motion, Bow is restricted to the
transverse plane and any component along z is uniform.
We look for a solution in the form of a plane wave
~exp(ipz+iq r itut), with —p and q being the com-
ponents of the wave vector along the z axis and in the xy
plane, respectively. Here r is the position vector in the xy
plane. Introducing the components (v, )„(u, )~, and (u, ),
of U, along z, q, and the axis normal to both z and q, one
can rewrite Eq. (5.8) (note that vL =v, now) in the
Fourier representation for these components:

0.4—
I I

0.48 0.52 0.56 0.60

ice(v, ),—= ip5p, —
—ico(v, ) —20(u, ), = iq6p, —
—ico(v, ), +20(v, ) =0 .

(5.9)

T/Tc

FIG. 10. Measured temperature dependence of the dissipa-
tive mutual friction coefficient Bp„/p. The data points have
been extracted from the measurements of the fast mutual-
friction-resisted decay time ~F of the nonaxisyrnmetric vortex at
29.3 bars (see Sec. VI): the relation Bp„/p=(~~Qo) ' is used,
where Qo corresponds to the number of vortices
N„(to) =2m.R Qo/~ at t =to from where the fit to the measured
signal decay is started, as indicated in Fig. 8. The dashed curve
represents a smooth average through the present data and those
of Ref. 48, measured at 20 bars and high temperatures
0.88 ~ T/T, ~0.97.

—ice(v, ) —20(v, ), =0,
2+q2

ice(u, ), +2—0(u, ) =0 .
(5.10)

The solution of these equations yields the spectrum of the
inertial wave:

Here 5p is the variation of p induced by the wave.
Excluding ( u, ), and 5p from these equations
with the help of the incompressibility condition
V v, =ip (u, ), +iq(v, ) =0, one obtains a system of
equations for the in-plane components:
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2
4~2 p

p +q
(5.11)

(U, ),
(u, ), 2Q

(5.12)

Thus, the polarization of the inertial wave varies from
linear for in-plane propagation (p =0) to circular for axi-
al propagation (q =0). The spectrum of the inertial wave
is strongly anisotropic and singular in the limit p, q~0.
If the wave vector does not belong to the plane normal to
the rotation axis (pXO), the frequency is finite. A finite
frequency (i.e., the existence of a gap in the oscillation
spectrum) represents the collective eff'ect from the long-
range interaction of vortices and is similar to the gap in
the oscillation spectrum of a plasma due to the long-
range Coulomb interaction. For the collective effects un-
der discussion quantization of circulation in quantum
fluids is not relevant, since they are determined only by
the circulation density VXv, (which is exactly equal to
2Q) and are preserved in the classical limit, when the cir-
culation quantum ~—+0. ' '

Both the fast (Sec. VI) and slow (Sec. VII) vortex
modes involve columnar motion of rectilinear vortex
lines, which is restricted to the xy plane. Mutual friction
provides the damping in the inertial wave, in the next sec-
tion mutual friction is incorporated in the analysis when
we discuss the fast mutual-friction-resisted mode.

VI. FAST MUTUAL-FRICTION-RESESTED
MOTION

The fast mutual-friction-resisted mode is responsible
for the readjustment in vortex density of the rectilinear
vortex lines in an expanding or contracting vortex clus-
ter. This mode is displayed in the fast initial decay of the
HPD absorptions signal in Fig. 6. Here the motion of the
vortex lines is impeded by the drag from mutual friction
while the driving force is produced by the vortex density
attempting to achieve equilibrium with the momentary
rotation velocity A.

The mutual-friction-resisted mode of a vortex array
has been worked out in Ref. 51. It has also been applied
to a measurement of continuous vortices in the A phase
in a "rapid stop experiment, " similar to the one illustrat-
ed in Fig. 8. In the A phase each continuous vortex,
which lacks a singular hard core, contributes an equal ab-
sorption increment to an absorption line which is known
as the vortex satellite line and is shifted from the bulk A
liquid cw NMR line. However, compared to the HPD
resonance measurement of vortices in the B phase, the

This spectrum illustrates the Taylor-Proudman theorem:
The slow motion of the rotating ffuid (co «Q) is always
columnar, i.e., p «q and the velocity varies weakly along
the z axis so that the vortex lines remain straight. This is
the simplest illustration on how columnar motion of vor-
tex lines arises due to collective effects in a vortex array.
The concept of columnar motion is of utmost importance
in the analysis of the slow vortex motions.

In the inertial wave motion the ratio of the in-plane
velocity components is according to Eq. (5.10):

resolution is poorer in the measurement of the 3-phase
vortex number.

In order to describe the rearrangement in vortex densi-
ty, when the initial state is far from equilibrium, we refer
to the nonlinear Euler equation (5.6). Vortex lines are as-
sumed to remain strictly rectilinear during their motion;
thus, there is no motion along z~~Q. This allows us to as-
sume that the velocity v, close to the vortex line, which
enters Eq. (5.5), does not differ from that in Eq. (5.6),
when averaged over the unit cell of the vortex array.

On taking the rotor of Eq. (5.6), one obtains the con-
tinuity equation for vortices:

dQ,
+V (Q, vL )=0,

dt
(6.1)

V v, =O, V [zXv, ]=—z [VXv, ] . (6.3)

We then obtain a nonlinear equation for the superAuid
vorticity:

dQ, p„+ BQ, (Q, —Q)=0 .
dt

(6.4)

In fact, this equation of motion for the superAuid vortici-
ty is more general than can be appreciated from our
derivation: As long as v„ is clamped to corotation at the
rotation velocity Q (expressed in the laboratory frame), Q
may here also depend explicitly on time, i.e., Q=Q(t) if
its time dependence is sufficiently slow to preserve the
corotation of the normal component (see Appendix B 3).
As depicted in Fig. 8, we concentrate on the relaxation
decay after stopping the cryostat; in this case Q=O and
the solution of Eq. (6.4) gives the decay of Q, =~n, /2: '

Q, =Q0/[ I+(r ta)/r~] . — (6.5)

Equation (6.5) yields the time dependence of the total
vortex number in the NMR cell given by
X, =~R 2Q, /~, which corresponds to the measured sig-
nal in Fig. 8. Here rz=(BQ~„/p) is a decay time,
which depends on the vortex density n,0=0,0/~ at some
arbitrary time t =ta after stopping rotation.

One may now determine the experimental decay time
~F by fitting the measured signal decay to the time depen-
dence expressed by Eq. (6.5). In Fig. 10, the result has
been plotted in the form (r+Q0), i.e., as the dissipative
mutual friction parameter (p„ /p)B. It appears to be con-
sistent with earlier measurements close to T, . Presently
the resolution in the measurements is not sufficient for a
reliable estimate of a discontinuity in the value of B on
traversing the vortex core phase transition (in Fig. 10 at

or, assuming that the vortex cluster remains spatially
homogeneous,

dQ,
+Q, (V.vL )=0 .

dt

Remember that the normal component is assumed to
maintain the solid body velocity U„(r)=Qr We .use a
frame fixed to the rotating vessel, where v„ is taken to
vanish. There one can exclude vL from Eq. (6.2) with the
help of Eqs. (5.5) and (5.7) and the relations
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p =29.3 bars T, =0.60T, ). Likewise, it will be interest-
ing to study the dependence of B on pressure p and mag-
netic field H, which both effect gradual changes in the
size and structure of the core. The influence of these
variables on B is also present in the slow collective mode
response, which will be discussed in Sec. VII C.

It is interesting to note that the fit of the measured fast
response to Eq. (6.5) explains all of the time delay in the
disappearance of the vortices in a "rapid stop experi-
ment. " This means that the final annihilation process at
the side wall is short and dominated by the time required
for the vortices to reach the wall. Consequently, there is
no symmetry in this respect between annihilation and nu-
cleation, since in nucleating a singular vortex core a large
critical velocity is involved, which is related to the bulk
liquid pair-breaking velocity. '

In assuming that the normal component is clamped to
corotation with the container, we neglect the torque from
moving vortices on the normal component. This is a
good approximation if the viscosity of the normal fluid is
large compared to mutual friction (rF ))r„). The equa-
tions coupling the motion of the superAuid and normal
components can be found in Ref. 51; our numerical
analysis of these equations shows that in our experimen-
tal conditions Eq. (6.5) describes accurately the decay of
vorticity.

VII. SLOW VORTEX MOTION

A. Kelvin wave and superAuid Ekman layer

d ll
Kp, [z X (v~t

—
v~ ) ]= —Eo

dZ

The local superfluid velocity can then be written as

(7.1)

u
Vsl Vs+Vs ZX

dZ
(7.2)

where

vs=
ps K

~vln-
4m r,

(7.3)

If vortex motion is accompanied by deformations of
the vortex array, then the superAuid velocity v, close to
the vortex line, which enters Eq. (5.5), differs from the
average superffuid velocity v, in Eqs. (5.6) or (5.8); the
former will be called the local superAuid velocity and not-
ed as v,I. One form of deformation is the bending of vor-
tex lines, when the displacement u(z) of the vortex line
from its equilibrium position depends on z. Bending of a
vortex line increases its length and, correspondingly, its
energy. As a result, a line-tension force Eod u/dz —ap-
pears which tries to restore the straight configuration of
the vortex line. Here Eo = (p, ir /4m)ln(r„/r, ) is the. ener-
gy per unit length of the vortex line. This line-tension
force is similar to that of a string under tension; however,
contrary to the latter, it is balanced not by the inertial
force acting on the unit element of the line, but by the
Magnus force proportional to the difference of the aver-
age superfluid velocity v, and the local superAuid velocity
v I'.

is the line-tension parameter. Equation (5.5) for vL in the
clamped regime should now be rewritten in terms of the
local superAuid velocity v, l ..

, pn
vt = 1 —8'

2p

pn
v t B IzXvqt]

2p
(7.4)

A solution of Eqs. (5.8), (7.2), and (7.4) in the form of a
plane wave ~ exp(ipz in—t ) propagating along the vortex
lines gives the spectrum of the Kelvin mode:

co=+(20+v,p ) 1 — 8'+i 8pn , .pn

2p 2p
(7.5)

2Q
vs

(7.6)

This leans that the low-frequency Kelvin mode does not
penetrate into the bulk Auid, but is restricted within a
layer with the width

l~=+v, /2Q . (7.7)

This layer may be called the superfluid Ekman layer in
analogy with the classical Ekman layer into which the
viscous motion of a rotating Auid penetrates. The width
of the superfluid Ekman layer involves the quantum pa-
rameter v, =(v/4')ln(r, /r, ) while in the width of the
classical Ekman layer it is replaced by the kinematic
viscosity v. ' Correspondingly, the superfluid Ekman
number @=I@/L =v, /(2QI. ) may be introduced. The
term "superfluid Ekman number" was suggested by Al-
par while analyzing empirical expressions for the relax-
ation time of superfluid He after a sudden spontaneous
spin up of the container. This question arose in the con-
text of the measurements by Tsakadze and Tsakadze,
who attempted to establish a connection between vortex
motion and pulsar glitches with their measurements.
However, Alpar used the circulation quantum ~ instead
of the line-tension parameter v, .

The Ekman layer is a result of long-range interaction
between vortices, like the Debye layer in a plasma is due

The gap in the Kelvin spectrum (frequency in the long-
wavelength limit p —+0) arises from the collective effect
due to the long-range vortex interaction, as in the case of
the inertial wave in Sec. V B. The Kelvin mode is a circu-
larly polarized wave propagating as a helical wave along
an isolated vortex line. ' The Kelvin mode influences the
oscillations of a pile of disks immersed in a superfluid,
which were studied intensively in the case of He and
contributed essentially to our knowledge of the hydro-
dynamics of rotating superAuids. ' The Kelvin mode
might be observed even in superAuid He. It does not in-
volve motion of the normal component and the large
viscosity would have no effect, as damping is determined
by mutual friction. Mutual friction decreases rapidly to-
wards low temperatures and one might then expect to
find well-developed Kelvin oscillations.

The Kelvin mode does not propagate as a wave if
co (20, as is seen from Eq. (7.5). In the limit of very slow
motion co (&0 the imaginary wave number of the Kelvin
mode is given by the relation
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to the long-range Coulomb interaction: Deviations from
quasineutrality in a plasma are restricted to the Debye
layer. Similarly, deviations from columnar slow motion
of vortices are possible only within the Ekman layers at
the top and bottom walls of the container. '

The superAuid Ekman layer is important also for vor-
tices in the mixed state of type-II superconductor s.
When the external magnetic field is not normal to the
surface of a superconductor, the vortex lines should be
parallel to the magnetic field in the bulk superconductor,
but normal to the surface. As a result of these two com-
peting tendencies, the vortex lines are bent within some
surface layer. When the magnetic penetration length is
much larger than the intervortex distance, i.e., the mag-
netic field is well above the lower critical field, the width
of this layer in terms of the intervortex distance and the
core radius is identical to that of the superfiuid Ekman
layer (see Ref. 56). Thus, the superQuid Ekman layer is a
general concept, which is relevant for a vortex array in
any superAuid or superconductor. Here it is explicitly in-
troduced for the discussion of collective pinning in Sec.
VII D.

B. Surface pinning

Vortex motion in the superAuid is resisted by pinning
at the top and bottom walls of the rotating container.
The pinning force originates from the roughness of the
solid surface. Suppose that the surface profile is given by
the height distribution h (r), measured from some aver-
age level along the z direction (h is negative for a bulge
on the surface). Here r is a position vector in the xy
plane. Consider a single vortex line in a large container
(Fig. 11): How does its energy vary with its position on

the pinning surface? If pinning is weak, a moving vortex
remains approximately straight and its energy varies pro-
portional to the energy Eo per unit length:

bE=Eoh(r) . (7.8)

The elastic force on the vortex (the elastic-pinning force)
1S

dh (r)
dr

(7.9)

The pinning force attracts the end point of the vortex to
summits of surface protuberances. However, this is
resisted by forces on the vortex line in the bulk. The
momentum transferred by the bulk forces to the vortex is
then transported to the surface by the elastic momentum
Qux Eod u—/dz proportional to the line-tension Eo.
Here U is the displacement of the vortex line, measured in
the xy plane. The balance of forces at the top and bottom
surfaces is

f—=+Eo at z=+L/2 .
du' dz

(7.10)

The signs + correspond to the top (z =+L/2, the upper
sign) and the bottom (z = L/2, th—e lower sign) of the
container, respectively. With the help of Eq. (7.9), this
gives the boundary conditions

dh(r) du
d I dz

(7.11)

Suppose that the end of the vortex line is not very far
from the summit of the protuberance [the minimum of
h(r) at r=ro in Fig. 11], so that one can expand
h(r)=h(ro+u). For simplicity we assume that the pro-
tuberance is axisymmetric. Then

1 d2h
h(r)=h(r )+— u2d (7.12)

and the linearized version of the boundary condition Eq.
(7.11) is

dU = +AU
dz

(7.13)

FIG. 11. Pinning of an isolated vortex line on the bottom
surface of the rotating container. In the linear pinning regime
surface roughness is characterized by a protuberance with a ra-
dius of curvature 1/b: the pinning force f~ = —bu depends on
the displacement u from the summit of the protuberance. This
gives a harmonic pinning well for the pinning energy as a func-
tion of displacement. In the weak pinning limit the pinning
strength b is small, the radius 1/b is large, and the resulting cur-
vature of the vortex line is small. In writing Eq. (7.9), the small
curvature of the vortex line is neglected.

=+(b,vL+bI[zXvr ]) .
dz

(7.14)

In the case of the slow mode governed by weak pinning
the transverse viscous surface force ~ [z XvL ] is of no
importance, since vortex motion is linearly polarized
throughout the whole Quid (both the displacement u and
the velocity vL =Bu/Bt are azimuthally oriented). In this
case we can generalize the boundary condition to incorp-

with b =d h /dr being equal to the inverse of the radius
of curvature of an axisymmetric protuberance, as
sketched in Fig. 11. Equation (7.13) gives the elastic-
pinning condition. It is reminiscent of the boundary con-
dition, which was suggested by Hall for the slippage of
vortices relative to the solid surface in terms of a viscous
surface force. In a more general form proposed by
Bekarevich and Khalatnikov ' the slip boundary condi-
tion is
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orate both elastic and viscous surface forces, but no
transverse components:

dimensional position vector u(t). Then the difference be-
tween the local and average superAuid velocities is

du =+(bu+b, vL) .
dz

(7.15) 2v, b 2v, b]
v, &

—v, = — ' [zXu] — [zXvL] . (7.17)

While applying the boundary condition Eq. (7.15) to
the analysis of the slow vortex mode in the next section,
we shall find that the two parameters b and b& affect the
vortex dynamics differently: while b is crucial for the ex-
istence of the slow vortex mode, governed by pinning, b,
only contributes to the overall losses from bulk mutual
friction. Thus, the presence of the elastic-pinning contri-
bution leads directly to the existence of the slow mode.
The only measurement on the pinning parameters b and
b&, which we know of, is an experiment by Tsakadze
on the slow vortex mode response. He recorded the
damped oscillatory rotation decay of a freely rotating
light container filled with He-II and extracted the result
b-20 —40 cm ', depending on the surface preparation.
Our result for He-B on an epoxy surface is b —1 cm
(Sec. VII D).

C. Slow vortex mode

~s
vsl vs + du duzX

dz
L, /'2 dz

(7.16)

The inclination du/dz of the vortex line near the top and
the bottom of the container is determined from the phe-
nomenological boundary condition Eq. (7.15) imposed on
the vortex displacement. If pinning is weak, vortex bend-
ing is weak not only in the bulk Quid but also in the Ek-
man layers [we shall derive the condition of weak pinning
later, see Eq. (7.35)], i.e., moving vortices remain nearly
straight throughout the whole container. For now we
may simply assume that the vortex displacement at the
transverse wall, given by Eq. (7.15), does not differ seri-
ously from the displacement anywhere in the bulk Quid,
i.e., the displacement u(z, t) only weakly depends on z and
the position of the vortex line is defined by one two-

In slow vortex motion bending is confined to the Ek-
man layers adjacent to the top and the bottom walls of
the container; a study of the slow mode thus has to ad-
dress separately the regions outside and inside the Ekman
layers. In the bulk vortices perform columnar motion
and remain straight with good accuracy; within the Eck-
man layers Kelvin modes, which involve vortex bending,
are excited due to surface pinning. This analysis has been
done for He (Ref. 22) (see also Ref. 13). It yielded a slow
mode with a frequency much lower than the angular ve-
locity of rotation: cu «A. Here we present the analysis
for He, which differs from that for He in two aspects.

(1) In He, vortices perform slow motion in the
clamped regime: vn =0 in the frame of the rotating cryo-
stat.

(2) In He surface pinning is expected to be weaker.
The latter feature of slow motion in He permits us to

simplify the analysis of the slow motion essentially.
Averaging Eq. (7.2) over the z axis, we have

Thus, all the z variations of the Quid parameters are ex-
cluded and the problem becomes two dimensional. The
next step is to find a solution in the form of a plane wave
-exp(iq r iso—t), similar to the derivation given in Ref.
13. However, we consider the limit q —+0 here. In fact,
the wave vector q is only necessary for pointing the direc-
tion in which an incompressible Quid cannot move: the
component of v, along q should vanish since T v, =0. In
a cylinder it is the radial component of v, . On excluding
the average and the local superAuid velocities v, and v, l
from Eqs. (5.8), (7.4), and (7.17), one obtains a system of
two equations for the components of the vortex velocity
along the wave vector q (the component uL~) and normal
to it (the component uL, ):

VLq l CO
Pn BQ +vLt~r 1

Pn

p 2p
(7.18)

Pn , . Pn
2A 1 — B' +v~, im — Bm~ =0 . (7.19)

The frequency

2v
co~= (b i cob~ )— (7.20)

incorporates both the elastic and viscous surface forces.
This frequency is much smaller than the angular velocity
Q. In the case of axisymmetric vortex motion in a cylin-
drical container, the q component and the t component
correspond to the radial and azimuthal components of
the vortex velocity, respectively. The set of Eqs. (7.18)
and (7.19) can now be used to characterize both the fast
mutual-friction-resisted motion and the slow mode. The
dispersion equation for this system of two equations is

co +&co B2Q —2Qco&
Pn

2p

'2
Pn Bt + Pn

2p 2p

2

=0.

(7.21)

(7.22)

and represents exponential relaxation, ~ exp( —t /7. F ),
which describes the approach of the vortex density to its
new equilibrium value in the spin-up or spin-down experi-
ments. Indeed, one can see from Eq. (7.19) that

ECO

20[1—(p„ l2p)B']
(p„ /2p )B

(7.23)
1 —(p„/2p)B'

Let us first briefly consider the fast mutual-friction-
resisted mode in its linear regime at finite 0, =Q. This
mode corresponds to the larger value cu-0 of the two
roots of the dispersion equation (7.21). Neglecting the
elastic frequency co+, this root is
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Here a new pair of mutual friction parameters is intro-
duced:

(p„ /2p)8

[1—(p„/2p)8'] + [(p„/2p)B ]

1 —(p„ /2p)B'

[1—(p„ /2p)8'] + [(p„/2p)8 ]

(7.25)

Since cuz depends on the frequency co of the slow mode in
Eq. (7.20), Eq. (7.24) is a linear equation for co. Its solu-
tion yields

2v, b

PL+2v, b,
(7.26)

This equation shows that the elastic pinning force
bEpu is responsible for the slow vortex mode, even

though it is weak. However, the weak pinning force is of
minor importance in the case of the last frictional mode:
the frequency characterizing the pinning force cuz is large
in comparison to 1/~, but small when compared to 1/~F.
The elastic pinning force exists only in the pinned state of
the vortex array, when any vortex moves in vicinity of
some pinning site. At large drives vortices are depinned
and have no tight connection with any individual pinning
site. Then their interaction with a rough surface pro-
duces only a viscous force as in the Bekarevich-
Khalatnikov boundary condition Eq. (7.14) and the slow
mode does not exist. In the measurements we frequently
make use of a harmonically modulated rotation drive. It

is helpful to think about pinning in this context as
exemplified in Fig. 12. Here the strength of the pinning
force is shown as a function of the amplitude hQ of the
harmonic component in 0 at a drive frequency cu

which couples to both modes, 1/~, (co ( 1/~F. At
small AQ the vortex displacements are small and the pin-

ning force is proportional to the displacement (linear re-

gime). With increasing b,Q this linearity is lost, the
e8'ective pinning parameter decreases and the pinning
force increases more slowly with displacement, as the end
of the vortex line approaches the edge of the potential
well associated with a given pinning site. Eventually at
still larger AQ the vortex slides over the edge of the well

i.e., the ratio of the normal to the transverse components
of the vortex velocity depends on the relative magnitude
of the mutual friction parameters only. Since the dissipa-
tion parameter B is not equal to zero anyway, the fast
frictional mode always involves the radial motion in a cy-
lindrical container (the velocity component Uz ), i.e., an
expansion or contraction of the vortex array ultimately
leads to a rearrangement of the vortex density towards a
new equilibrium value. At the same time, the vortices
move spirally in general, since the azimuthal component
vl, is also present, excluding the special case
1 —(p„ /2p )8' =0.

The smaller root of the dispersion equation (7.21) gives
the slow mode. In order to find the low-frequency branch
of the spectrum we may neglect the term m . Then

lNy
(7.24)
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FIG. 12. Vortex motion and pinning in the presence of a
sinusoidally varying rotation drive. At very small EQ the slow
mode is excited in the linear pinning regime where the restoring
force is the harmonic pinning force f~= —bu It .depends
linearly on the displacement u of a given vortex from the center
of its pinning well. When the drive amplitude AO is increased
pinning becomes weaker and in the other extreme the vortices
are in a depinned state. Here the ends of the vortex lines slide
over the top and bottom surfaces of the rotating container in a
manner which resembles the plastic Aow of dislocations in a
crystalline solid under stress.

7 c

—l 67—
2v, b

PL
(7.27)

and becomes depinned. In the depinned state the vortex
slides relatively freely over the top and bottom surfaces of
the container, in a manner which might be called "plastic
How. " In the plastic Row regime the elastic-pinning force
vanishes and the slow mode does not exist. The thresh-
old between the pinned and depinned states may be
viewed as a phase transition in a random system. As op-
posed to the slow mode, the fast mode is not sensitive to
pinning and exists at any drive amplitude AA. However,
at small AQ and low drive frequency co it is shadowed
by the slow mode. The dependence of the amplitude of
the measured resonance signal on AQ is discussed in Ap-
pendix B.

The viscous pinning force —b, EpvL is not of crucial
importance for the existence of the slow vortex mode: it
simply adds to the bulk mutual friction losses ~ pL, since
the total losses are proportional to pL+2v, b, . We may
estimate the relative importance of the surface losses
v, b, /(pL) using a value for the slip parameter 1/b, mea-
sured by Tsakadze for superQuid He: His most reliable
pair of pinning parameters appears to be b -40 cm ' and
b

&
10 s/crn . This yields a rough estimate

v, b, /(PL)- —,
' at about T-T, /2 in He-II. In He pin-

ning forces, both elastic and viscous, are expected to be
weaker while mutual friction is higher. In fact, using
b, —10 s/cm, we obtain v, b, /(pL)- ~i for the compa-
rable ratio in He-B. Thus, it appears that we may
neglect b, . The exponential relaxation time of the slow
mode is then given by
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Referring to Eq. (7.18) we may again determine the ra-
tio of the radial and azimuthal components of the vortex
velocity:

(p /2p)B icop'

vL, 20 (p„ /2p )B 2Q
(7.28)

Pn Pn
+UL

2p 2p
(7.29)

Pn Pn
ULzcoy 1 B + UL& Lcd Buoy —0 .

2p 2p
(7.30)

Since now there is no superAuid velocity v, induced by
other vortices, there is no preferable direction q. In or-
der to emphasize this we use components x and y instead
of q and t. The eigenfrequency of the single-vortex mode
is

Q) —+Q)y 1 B + E BPn , .Pn

2p 2p

and the relation between the velocity components is

ULy + 'UL,x .

(7.31)

(7.32)

Equation (7.31) is the frequency of the Kelvin mode, Eq.
(7.5), with the collective effect neglect (Q=O) and the
wave number p determined by the boundary condition
from pinning. Thus, the time dependence and trajectory
of motion are different for the slow collective mode and
for the single-vortex mode. Whereas the motion of a vor-
tex in the slow collective mode is azimuthal, in the
single-vortex mode a vortex approaches the pinning site
along a spiral trajectory: the vortex rotates around the
pinning site with the angular velocity

Pnco„=co+ 1 — B'
2p

2v, b Pn

2p
(7.33)

and its distance from the pinning site is exponentially de-
creasing as exp( t/r, ') with the relaxation —time given by
[cf. Eq. (7.27)]

S

pn p„2v, b
Bco~= B

2p 2p L (7.34)

Thus, the radial velocity is smaller by the factor
co@/A«1 than the azimuthal velocity. In contrast to
the elliptically polarized fast frictional mode and the cir-
cularly polarized Kelvin mode, the polarization of the
slow mode is close to linear: in a cylinder it involves
predominantly azimuthal motion at nearly constant vor-
tex density.

During the slow mode the stable pattern is restored in
the vortex array, determined both by pinning and by the
interactions between vortices. The character of this col-
lective process is essentially different than the case when
a single vortex is approaching a single pinning site. The
latter process may be described by the equations of this
section assuming that the liquid as a whole is at rest, i.e.,
v, =0, 0=0. After inserting Eq. (7.17) into Eq. (7.4) one
obtains, instead of Eqs. (7.18) and (7.19),

Let us next derive the condition for the validity of the
weak pinning assumption, which is the basis for our
analysis of the slow motion. The vortices are assumed to
be straight, but owing to their binding in the Eckman lay-
ers there is a difference between vortex displacement in
the bulk and that on the surface; the difference is of order
lEdu/dz=blEu. Pinning is weak when this difference is
smaller than the displacement u itself. This gives the
condition of weak pinning:

b«
E

(7.35)

The conditions restricting the validity of weak pinning
are very different for the slow mode of a vortex array
(co«Q) and the Kelvin mode of a single-vortex line
(to))A, when collective effects are not important). For
the single-vortex Kelvin mode given by Eqs. (7.31) and
(7.32) bending is not confined to the superffuid Ekman
layer: the difference between vortex displacement in the
bulk and that on the surface is of order Ldu/dz=Lbu.
Then the condition of weak pinning is b « I /L, which is
much stronger than Eq. (7.35), if L ))lz. The Ekman
layer is not directly represented in the frequency of the
slow vortex mode in the weak pinning limit, but it is ex-
plicitly present in the condition which defines weak pin-
ning.

In associating the measured exponential relaxation
time r, with Eq. (7.27) we note that the amplitude of the
HPD absorption signal is insensitive to the sign of the
driving perturbation, i.e., whether the drive corresponds
to acceleration or deceleration of Q, as can be seen from
Fig. 9. Invoking linear hydrodynamics with linear
responses, we relate the observed time constant with
quadratic response, i.e., the measured ~, corresponds to
r, /2, with r, given by Eq. (7.27). Next suppose B' is
small enough to be neglected, then we find that the
measured temperature dependence of (p„/p)B (dashed
curve in Fig. 10) adequately accounts for that of r, (solid
curve in Fig. 13).

The measured ~, proves to be only weakly dependent
on the liquid pressure, as shown in Fig. 14. Obviously
here the reproducibility and precision of our measure-
ment is not sufhcient to discern a pressure dependence.
In contrast, the dependence on the external magnetic
field appears to be larger, as shown in Fig. 15. This
dependence may, perhaps, be explained in the framework
of the discussion presented in Ref. 42. It has been shown
there that the most important mechanism contributing to
the mutual friction parameter B is the scattering of the
quasiparticles in the bulk liquid by the quasiparticles lo-
calized in bound states in the hard vortex core. It is
dificult to imagine that comparatively low magnetic
fields in the experiment are able to affect the bound states
in the hard core, but probably bound states in the soft
vortex core also contribute to mutual friction (these
states were not analyzed in Ref. 42). On increasing the
magnetic field the radius of the soft core decreases. This
might explain the increase of ~, with H in Fig. 15. One
might think that the soft core also contributes to the sur-
face pinning constant b. However, on increasing the
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FIG. 13. Temperature dependence of the measured time con-
stant ~, of the slow vortex mode. The solid curve shows the ex-
pected temperature dependence according to Eq. (7.27), using
for (p„/p)8 the dashed line in Fig. 10 and 8'=0. The line is
thus a one-parameter fit for the pinning strength, yielding
b =0.84 cm

FIG. 15. Magnetic field dependence of the measured time
constant ~, . The solid line is a linear fit through the data points
and illustrates a strong dependence at these low magnetic fields,
which are only up to an order of magnitude larger than the di-
polar field.

magnetic field the soft core radius decreases, b increases
and ~, is expected to decrease, which disagrees with the
observed dependence.

D. Collective pinning
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FIG. 14. Pressure dependence of the measured time constant
The solid line is an average through the data points and il-

lustrates that no dependence can be distinguished within the ex-
perimental resolution.

An important outcome from the present work is clear
evidence for collective effects in pinning. If isolated
noninteracting vortices are pinned at the solid wall of the
cell, the pinning parameter b does not depend on vortex
density n, or angular velocity Q. Then, according to Eq.
(7.27), the relaxation time r, =r, /2 of the slow mode de-
pends only weakly on 0 via v, ~ InQ [see Eq. (7.3) where
r„~ 1/&Q]. However, experimentally it is found that r,
does depend on 0 and this dependence is opposite to that
from the weak logarithmic dependence of v, . The resolu-

tion in the time constant measurement and the existence
of the dependence on 0, is demonstrated in Fig. 16, show-
ing two pairs of consecutive measurements, obtained in
the same measuring session immediately one after anoth-
er with a minimum of changes in the experimental set-
tings.

In this case the resolution in the measurement of the
time constant ~, is better than +10 s. Figure 17 shows a
compilation of the measurements on the time constant ~,
as a function of the vortex density n„=20/v. Here with
data from many different runs the overall precision in the
time constant measurement is poorer, perhaps +30 s, but
the central conclusion nevertheless survives: The time
constant ~, increases with increasing density, indicating
that the vortices become less rigidly fixed to their pinning
sites and that the pinning parameter b in Eq. (7.27) de-
creases with increasing density. We regard this experi-
mental conclusion as very reliable, in spite of the fact that
the measuring uncertainties may cast some doubt on the
quantitative amount of the increase in ~, with n, .

The decrease in pinning with increasing density we as-
cribe to collective effects. Only at very low vortex density
can one talk about isolated vortex lines, which are pinned
independently. When the density increases, pinning be-
comes collective: correlated groups of vortices move
coherently over a random distribution of abundant pin-
ning sites. The correlated motion is brought about by the
binding from the increased rigidity of the vortex array
with respect to shear deformations in the transverse xy
plane. The increased rigidity at higher density means
that coherence, extending over a correlation length l„be-
comes increasingly important and causes a reduction in
the pinning strength. This implication from Figs. 16 and
17 allows us now to speak of a vortex lattice with crystal-
line order extending over a length scale of order I, .

Collective pinning was invented for the bulk pinning of
quantized flux lines in superconductors, where their pin-
ning at the defects of the crystalline lattice is similarly re-
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duced with increasing density of the Aux line lattice.
Collective efFects in the pinning of vortices in superfiuid
He have not been explicitly discussed, but their presence

is suggested by at least the measurements of the ther-
morotational efFect by Yarmchuk and Glaberson. Here
we thus report the first quantitative experimental evi-
dence for long-range order and collective surface pinning
in a vortex lattice.

Let us now work through some qualitative scaling ar-
guments which provide a simple semiquantitative ex-
planation for the results in Figs. 16 and 17 in terms of
collective pinning. At very low 0 the pinning strength
b =b, is the static pinning parameter of a single isolated
vortex line. %'ith increasing 0 the emergence of the vor-
tex lattice is manifested by the increasing correlation in
the motion of the vortices, characterized by a correlation
length l, . The number of vortices within a correlated
group is given by the areal ratio N, =(l, lr, ) where
r„=n, ' is the intervortex distance. Assuming that the
density of pinning sites exceeds the vortex density, then
each vortex interacts mainly with its own nearest pinning
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FIG. 17. Measurement of the dependence of the time con-
stant ~, on vortex density. Here ~, is measured as a function of
Q for vortex clusters of varying size, but well isolated from the
cylindrical container wall. The solid curve represents the fit
~, =110&A s. The increasing trend of ~, we connect with a de-
creasing pinning strength with increasing vortex density, as ex-
pected in collective pinning. The overall accuracy in the deter-
mination of ~, is +30 s in this plot with measurements from
many different experiments.
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site. Thus, X, coherently moving vortices interact with
approximately X, pinning forces. Because of the random
directions of these pinning forces, the resultant random
force on the N, correlated vortices is of order +N, and
not N, times larger than the typical pinning force acting
on a single vortex. This is illustrated in Fig. 18 and
means that in collective pinning the pinning per one vor-
tex is reduced by the factor 1/QN, . The pinning pa-
rameter b is now estimated as

200
t (s)

400 600 b,b= (7.36)

FIG. 16. Demonstration of the increase in w, with increasing
vortex density. Four sets of measurements of the exponential
relaxation time ~, have been plotted in terms of the normalized
absorption increment log, o(b,P„/0, ) as a function of time. All
four measurements have been performed in as similar condi-
tions as possible, immediately following each other, in order to
reduce scatter introduced from changes in external conditions.
The high-density data have been measured with the number of
vortices corresponding to 0„=1.78 rad/s: 8, , 0=2.22 rad/s
and ~, =137 s; ~, Q =2.02 rad/s and ~, =145 s. They should be
compared to the low-density measurements, for which the num-
ber of vortices corresponds to Q„=0.389 rad/s and their densi-
ty to 0=0.487 rad/s: H, ~, =106 s; Q, ~, =100 s (for these
latter data the t =0 point has been shifted by 150 s to the right).
The measurements have been performed as shown in Fig. 9; the
zero point on the horizontal axis corresponds to the moment
when the sinusoidal modulation of the drive is switched off (am-
plitude of modulation AQ =0.20 rad/s and period 30 s). On the
vertical scale hP, is given in pW. The relative precision in the
measurement of ~, in these four examples is estimated to be
better than +10 s. The conclusion from this comparison is that
~, increases by 40% when the vortex density increases by a fac-
tor of 4.

The correlation length l, is defined by the balance be-
tween the energy gain from selecting the best position for
the correlated group of vortices in their random pinning
sites and the loss incurred from the inevitable deforma-
tions of the vortex lattice. The pinning energy per one
vortex is proportional to the increase in vortex length and
is of order

E -~EoI ~o- —"b,Eo 2o .
C

(7.37)

BQp BOY+
2 c)g Bx

is given by'

@,)=p, ~Be

(7.38)

Here uo is the static vortex displacement, in contrast to
the dynamic displacement u (t) discussed earlier (see Fig.
18). The elastic energy density of the vortex lattice per

unit volume with respect to shear deformations in the xy
plane, i.e.,
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Only shear deformations of the form defined by Eq. (7.38)
participate in collective pinning, since compression of the
vortex lattice is energetically very expensive. In the
correlated vortex group the single-vortex displacement uo
is smeared out over the coherent region and thus the
scale over which the displacement varies becomes -I,
and e=uo/l, . Shear deformation of the vortex lattice
near the top and bottom surfaces is inevitably accom-
panied by vortex bending which heals the distortions of
the vortex lattice. The healing length is the Ekman layer
width 1z =Qv, /20 [Eq. (7.7)] as shown in Fig. 18.
Thus, elastic deformation is confined within the Ekman
layer and the elastic deformation energy per vortex line
can be written as

u 0 IEEO
E,~

= C,ilzr„=P, K
~ lz ~ Qo

l, l, ln(r„ /r, )
(7.40)

The correlation length I, is determined by minimizing the
sum of the pinning energy E(ne—gative) and the elastic
energy E,i (positive). Their sum is minimized, when

.E -E,&, and one then obtains the coherence length
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FICx. 18. Collective pinnning of vortex lines in the slow vor-
tex mode. (a) Viewed from the side, three vortex lines are
pinned to the top surface of the cell, shown with dashed lines in
their displaced positions during the slow motion and with solid
lines in their final stationary positions. In the weak pinning lim-
it the bending of vortex lines is much less than illustrated here.
(b) Viewed from above, the pinning forces act randomly in a
correlated group of X, vortices. (c) The randomly oriented pin-
ning forces can be united to give a resultant random pinning
force, which acts on a group of vortices glued together by the
shear elasticity of the vortex lattice over the correlation length
I, . Here u (z, t) is the dynamic displacement of the vortex from
its equilibrium position while uo measures the displacement of
the end of the vortex line from its position in the bulk regular
lattice. The displacement uo is determined by the pinning relief
averaged over the scale I, and does not correspond in general to
the position of minimum pinning energy at any pinning site.
The displacement u, is measured from the minimum pinning en-

ergy position for a single vortex line (like u in Fig. 11 in Sec.
VII 8).

I

r, b, 1n(r, /r, )
(7.41)

which is independent of Q if the slowly varying logarith-
mic term is neglected. Keeping in mind that according to
Eq. (7.36), b ~ I/&0 (since r, ~ I/&0) and that accord-
ing to Eq. (7.27), r, =r, /2 ~ 1/b, we thus see that
r, ~ &0, which justifies the curve fitted through the data
points in Fig. 17. Collective pinning is a valid concept
when the number of correlated vortices is sufficiently
large, i.e., when I, &)r„. It is not diScult to show that
this condition, in fact, coincides with the condition for
weak pinning in Eq. (7.35). Thus, weak surface pinning is
always collective.

Summarizing our qualitative analysis we note that with
increasing 0 a crossover from the pinning of isolated vor-
tex lines with b =b, ) 1/Iz takes place at rather low 0
and one then passes in the range of collective pinning
with b = r, b, ln(r, /r, )/lz (& I/1z. If we compare the
fitted square-root dependence r, =110+0 s in Fig. 17
with Eq. (7.27) we obtain for the pinning parameter
b =0.8 cm ' at 0=2 rad/s. This satisfies the weak pin-
ning condition b (&1/lE =100 cm, in other words the
radius of curvature associated with pinning is 2 orders of
magnitude larger than the width of the Ekman layer and
the bending of the vortex lines is restricted to a very low
level indeed. The estimate for the correlation length I, is
of order ten lattice spacings, on the basis of these simple
scaling arguments.

The slow mode, being governed by pinning, is related
to surface roughness on some appropriate scale, irrespec-
tive of collective e6'ects. To define this scale we need the
single-vortex pinning parameter b, in Eq. (7.36). With
b, —bl, /r„= 10 cm ', the scale of roughness is
—1/b, =1 mm. This estimate shows that the scale 1/b,
is very large compared to the core size and, in fact,
exceeds the typical intervortex distance. The latter may
be explained as an artifact from the approximations in
the scaling arguments. The displacements of the vortices
during the observation of the slow mode are well within
the length scale 1/b„ i.e., a vortex moves within one and
the same pinning site. This is an important property: it
allows the observation of the slow mode over a time span
of several time constants ~, .

It is interesting to note that weak pinning is also indi-
cated by the fact that remnant vortices have not been ob-
served in our NMR cell after rotation has been stopped
and the vortices have been allowed to annihilate over a
waiting period of a few minutes in stand still. ' This
means that the amount of remnant vorticity at that point
is below our sensitivity threshold, i.e., the equivalent of
20 rectilinear vortices or less. In superQuid He, where
pinning is stronger, remnant vorticity has been reported
in various situations after a history of rotation and even
in the absence of rotation, simply after cooling through
the X transition.

The fact that pinning is stronger in He than in He-B
is also indicated by a comparison of their respective slow
vortex mode responses. In He a measurement of the
slow vortex mode has been carried out by Tsakadze in
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experimental conditions comparable to our case where no
contribution from bulk shear elasticity is expected (Ap-
pendix D). In a container with an aspect ratio
L/(2R) ~2. 3 he found a damped oscillatory response,
governed by surface pinning. At 0=6 rad/s he extracted
a pinning strength of b-30 cm '. This result means
that with an Ekman layer width of l& —10 cm the ratio
(l, /r, ) -3 is not large and He only barely qualifies for
the weak pinning limit. Thus, an observation of collec-
tive pinning would seem to require higher rotation veloci-
ties. Nevertheless, thermorotation measurements up to
10 rad/s have suggested decreasing surface pinning with
increasing vortex density. Thus, one should perhaps not
exclude the possibility of observing collective surface pin-
ning also in He in the present experimental range of ro-
tation velocities. In later experiments Tsakadze ' in-
creased the aspect ratio of his cell to L/(2R) ~ 13, which
allowed him to identify from the slow vortex mode
response also the elastic shear contribution from the vor-
tex lattice in the bulk liquid, in a manner which is ex-
plained in Appendix D.

In view of the large vortex core size in He-B it might
become feasible to cover the top and bottom surfaces of
the rotating container with an ordered lattice of pinning
sites, prepared with microfabrication techniques. Collec-
tive unpinning of a vortex lattice from a commensurate
lattice of pinning sites would then pose an interesting ex-
perimental task to observe. Perhaps such unpinning
events might lead to sudden speedups in the rotation of a
freely rotating light container. Presumably randomly
occurring momentary rotation anomalies or glitches, fol-
lowed by a slow relaxation recovery, might bear some re-
lation to similar effects observed in the rotation decay of
the fastest pulsars. Some calculations and experi-
ments have suggested that a spindown of a freely rotat-
ing light container filled with superfluid He might not be
perfectly monotonous, but collective unpinning was not
invoked in these cases.

VIII. CONCLUSIONS
In conclusion, we note that we have described both ex-

perimentally and theoretically two dynamic modes of
quantized vortex lines in a vortex array under uniform
rotation. These modes are a characteristic of any
superfluid, but take different forms, depending on the hy-
drodynamic conditions. In the peculiar hydrodynamic
environment of superfluid He the motion of vortex lines
in an array of vortices is always strongly overdamped: (1)
a large-scale redistribution in vortex density involves the
relatively fast mutual-friction-resisted motion, while (2)
small deviations from equilibrium at nearly constant den-

sity are controlled by a slow vortex mode. The fast
motion is impeded only by mutual friction, the weak sur-
face pinning in He is not involved. The measurements of
the fast motion allow us to extract the dissipative part of
mutual friction. The slow vortex mode, in turn, is
governed by the elastic vortex line tension and collective
weak surface pinning, which is manifested as reduced
pinning at increasing vortex density. Collective pinning
implies crystalline long-range order in the vortex array;
the effective correlation length is found to be of order ten
vortex lattice spacings.

Note added in proof. Further work on the phase-shift
analysis in Appendix B 3 has removed some of the inade-
quencies listed in connection with Eq. (B3). In Ref. 71 we
have proposed that the torque, which suppresses twisting
and is proportional to vortex displacement (and thus to
the time-dependent size of the vortex cluster), should be
supplemented by a torque proportional to vortex velocity.
The latter arises from the orientational influence of the
superflow past the nonaxisymmetric vortex core in the
perturbed vortex array. As a result Ay varies between 0
and 180' [instead of 0 and 90 in Eq. (B3)] and a more sa-
tisfactory fit to the experimental data in Figs. 24 and 25 is
obtained, using for ~z values from the independent mea-
surement on the fast mutual-friction-resisted mode in
Fig. 10.
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APPENDIX A: HPD ABSORPTION
MECHANISM

FOR NONAXISYMMETRIC VORTICES

Here we discuss the mechanism, which couples the
HPD absorption to vortex motion and is responsible for
the exponentially relaxing component of the signal
response b,P, in Fig. 9 (Sec. IVE). The mechanism has
been described in Ref. 16 in the context of an isolated
double-core vortex and is schematically reproduced in
Fig. 19.

There exist two different singular vortex-core struc-
tures in the B phase: the axisymmetric core at high tem-
peratures and high pressures, in a region bordering to the
A phase in the pressure vs temperature phase diagram,
and the nonaxisymmetric "double-core" at low tempera-
tures. At the first-order phase transition from the ax-
isymmetric vortex to the asymmetric vortex at T= T, (p),
the HPD absorption increases discontinuously by a factor
of 3. The jump is caused by a new dissipation mecha-
nism, which is a direct consequence from the broken cy-
lindrical symmetry of the core, and arises from the weak
spin-orbit coupling between the orbital nonuniformity in
the core and the coherently precessing spin magnetiza-
tion. The spin precession forces the nonsymmetric core
orientation in rapid rocking oscillation at twice the Lar-
mor frequency. The oscillation of the nonaxisymmetric
core cross section in the xy plane is resisted by mutual
friction. It accounts for =—', of the total HPD absorption
loss from these vortices. '
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FIG. 19. Pictorial summary of the mecha-
nisms involved in the HPD absorption of the
nonaxisymmetric "double-core" vortex. The
resonance losses originate from viscous dissi-
pation, produced by the oscillation of the core
cross section at twice the Larmor frequency at
2'. This "rocking oscillation" is resisted by
mutual friction [the damping coefficient

f ~p„B/(2p)]. The amplitude of the oscilla-
tion is modulated by the amount of helical
twisting of the core cross section along the
axis. The pitch of the twisting and the absorp-
tion from the oscillation are at minimum when
the vortex is stationary at constant Q. When
the vortex is in translational motion the pitch
is increased, the amplitude of the rocking os-
cillation grows and leads to an increase in
HPD absorption.

The average orientation in the xy plane, about which
the core performs its rocking oscillation, is undetermined
in an axisymmetric environment. A second consequence
from the interaction with the coherent spin precession is
a slow drift of the average core orientation in the direc-
tion of the precessing spins. The drift takes place on a
time scale which is 2 orders of magnitude longer than the
period of the Larmor precession. ' The drift of the
vortex-core orientation is resisted by a torque acting at
the top and bottom walls at the pinned ends of the vortex
line. It may be characterized as "rotational pinning, " in
contrast to a usual pinning force which resists transla-
tional motion. Rotational pinning and the slow drift will
cause the core to become helically wound along its axis.

The winding increases the tension along the core due
to the increase in gradient energy. The winding also par-
tially restores cylindrical symmetry since, after averaging
over the winding pitch, the orbital inhomogeneity of the
twisted vortex core becomes less pronounced than in the
untwisted state. For these reasons the mutual friction
resisted dissipation from the 'rocking" oscillation of the
core decreases when the vortex line becomes rotationally
pinned i.e., when the core of the vortex becomes twisted.
Conversely, when rotational pinning is weakened, the
twisting uncoils and the absorption increases. A vestige
from the uncoiling of the twisted cores is the initial in-
crease in absorption in Fig. 6, following immediately after
the reduction in 0 before any vortices have been expelled
from the container. According to our numerical calcula-
tions with parameter values fitted to the experimental ob-
servations, the pitch in the twisting is -0.4 mm and the
time of its uncoiling is a few milliseconds. The equation
used in this analysis is given in Fig. 19.

This picture is based on the broken cylindrical symrne-
try of the vortex core in the cylindrically symmetric sur-
rounding. The cylindrical symmetry of the surrounding
can be broken by tilting the magnetic field, by disturbing
the equilibrium state of the vortex array, or by the in-
teraction with image vortices in the vicinity of the cylin-
drical cell wall (Appendix B). If the cylindrical symmetry
of the environment is broken, then a torque acts on the
core and attempts to orient it. If the torque is weak, it
suppresses twisting and the absorption increases. But a

stronger torque will eventually suppress the "rocking"
oscillation of the core and the absorption will then start
to decrease. This twofold influence of the external torque
is clearly displayed by the dependence of the absorption
on the inclination angle g of the external field. The non-
monotonous rj dependence of the NMR signal (see Ref.
16) provides the most convincing justification for our
model of the absorption AP„.

The single-vortex absorption model of the nonaxisym-
metric vortex satisfactorily illustrates how the state of the
vortex core influences the observed HPD absorption.
However, a dif5cult problem is the coupling between the
state of twisting of individual vortices and the motion in
the vortex array, i.e., how the single-vortex absorption
behavior is connected with the hydrodynamic eigen-
modes of the vortex array and, in particular, its slowest
mode. One possibility is that deformations of the vortex
array during the slow vortex motion decrease symmetry
and produce an additional weak torque acting on the
double core. As discussed above, a weak torque
suppresses twisting and increases the absorption. Anoth-
er possibility is the interplay between the pinning in vor-
tex translation and rotation. Different scales of rough-
ness should be associated with these two types of pinning.
Our estimate of the pining parameter b, in Sec. VIID
showed that a rather large roughness scale of order the
intervortex distance accounts for the observed slow
translational vortex motion. Roughness on such a scale
is not able to pin the core rotation: only pinning sites of
roughly the same size as the vortex core can be effective
for rotational pinning. This means that during transla-
tion the ends of a vortex line move past a lot of rotational
pinning sites. Then the pinning torque acting on the
asymmetric vortex core randomly varies in time. One
can expect that time averaging reduces this torque, in a
similar manner as space averaging weakens the pinning
force in collective pinning, i.e., rotational pinning is ex-
pected to be most effective when the vortex is at rest and
settled to a fixed pinning site. A weaker pinning torque
leads to weaker twisting and, as a result, to larger absorp-
tion. Thus, this model may explain why translational
vortex motion triggers a HPD absorption increase.

The absorption response AP, should be associated with
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an even power with respect to the effect of the external
drive: twisting is at maximum when the vortex velocity
and the vortex array deformation are zero, or the
response does not depend on the sign of the deformation,
as is shown by the experiment in Fig. 9. In the limit of
small drive amplitudes AQ we assume that the response is
quadratic, i.e., proportional to the square of the drive. In
Fig. 9, one might then expect to observe a periodic com-
ponent in AP„which would be a second or higher order
even harmonic of the alternating component in the drive.
However, if the phases of the second harmonic contribu-
tions from the different regions of the vortex array are in-
coherent, then the second harmonic is averaged out on
the global scale. Therefore, the response AP, is smooth,
as is the case in Fig. 9, where no harmonic component
can be distinguished within our experimental resolution.
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FIG. 20. The increase hP, from the sinusoida11y modulated
rotation drive, plotted as a function of the amplitude hQ of the
drive. Here AP„represents the increase in absorption from the
initial state at constant rotation Q0 to the state when the har-
monic drive has acted sufficiently 1ong to produce a steady out-
put level. The number of vortices is kept constant and corre-
sponds to the equilibrium state at Q, =0.99 rad/s. The rotation
drive Q(t)=Q0+EQ(1 —cosco t) has a period 2m/co =30 s
and an average velocity Q&, which is 1.34 (circles), 1.69 (trian-
gles), or 1.99 rad/s (squares). When the vortex cluster is first
formed, a large AP, value is measured for the virgin cluster and
the result lies on the limit curve, which is approximated by the
solid curve. If the measurement is repeated several times on the
same cluster by switching on and off' the harmonic component
in the drive, AP, may drop stepwise to 1ower levels, as shown by
the data points below the limit curve. This drop in hP, is well
outside the measuring uncertainty, which is limited by the base
line drift (Fig. 9) and is indicated by the vertical uncertainty
bars.

APPENDIX B: VORTEX MOTION
IN A HARMONIC ROTATION DRIVE

1. Amplitude dependences

Our analysis of the HPD resonance absorption is main-
ly concerned with its time dependence, but it is useful to
point out a few features of the HPD amplitude behavior.
In Fig. 20, the change in absorption level AP, is plotted
as a function of the modulation amplitude AQ of the har-
monic component in the rotation drive. Here the in-

crease in absorption AP, refers to the difference between
two stable states, the initial state at constant Q=AO and
the state when the harmonically modulated rotation drive
has been acting for a sufficiently long time for all tran-
sients to die out. The number of vortices is the same for
all measurements in this plot, while the average rotation
velocity varies from 1.3 to 2.0 rad/s. The characteristic
features of this plot are that a response at a measurable
level exists at very small drive amplitudes (the data points
in the extreme lower left corner of the plot have been
recorded with 50=0.0025 rad/s) and that a saturated
output level is eventually reached at drive amplitudes
beyond hQ =0.05 rad/s.

However, Fig. 20 reveals additional details about the
behavior of the HPD absorption contribution AP, which
can be characterized as follows: All data points, indepen-
dent of the vortex density at which they have been mea-
sured, fall below the same envelope curve, which displays
a steep initial rise and rapid saturation when AQ) 0.05
rad/s. The saturated absorption increase AP, is found to
be proportional to the number of vortices, independent of
vortex density, and its value corresponds to =20% of
the total vortex absorption P, . ' A virgin vortex cluster,
which has not been subject to 0 modulation, produces a
response whose amplitude falls on the envelope curve.
After having been repeatedly subject to a harmonic rota-
tion drive the AP, response drops below the envelope
curve, which is illustrated by the many data points well
below the envelope curve in Fig. 20: the response depends
on the prehistory. Memory effects are typical for random
systems, of which a system of surface pinning sites is an
example. We believe that after repeated slow relaxations
certain correlated regions in the vortex array find pinning
sites, to which they are locked more effectively than other
vortices on an average. In order to maximize the signal
amplitude AP, and to improve the resolution in the mea-
surement of ~, the slow vortex mode relaxation is record-
ed with a hydrodynamic drive which has been chosen to
lie in the range of saturated response in Fig. 20, i.e.,
b, Q =0. 1 rad/s has been used in most measurements.

The same change in absorption leve1 AP„which in
Fig. 20 is analyzed as a function of AQ, is plotted in Fig.
21 as a function of co . At low co the response in AP, is
small, but it increases with increasing co until it levels
off at the saturated value of the envelope curve in Fig. 20.
In Fig. 21, saturation starts at co =1/~„,. It is interest-
ing to note that ~„, is close to the fast mode relaxation
time r~ ~ I/(Qo+AQ), which depends on the average
vortex density [see Eq. (7.22)] and was measured in the
"rapid stop experiment" (Sec. VI). Two cases are shown
in Fig. 21 for which this identification is quite well borne
out (solid circle s „r,=5 s vs ~+=3 s; open squares,
~„,= 1.7 s vs rF = 1 s). The vortex-density dependence of
the saturation onset and of the absorption per one vortex
below the saturation onset hints that the absorption
mechanism is influenced by collective effects in the vortex
array.

The motion excited by the harmonic drive can a1so be
investigated from the properties of the HPD absorption
signal in the equilibrium vortex state. In all previous
measurements a metastable vortex cluster state has been
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FIG. 21. The absorption increase AP, plotted as a function
of the frequency co of the sinusoidally modulated rotation
drive. On the vertical axis is the normalized absorption increase
b,P, /Q„where EP„ is de6ned as the increase in absorption
from the initial state at 0& to the steady-state value in the pres-
ence of the harmonic drive Q,(t) =Go+50(1—cosa' t). On the
horizontal axis is log, o[co /(2n)], where co /(2') is the fre-

quency of the drive. Two cases are shown: o, 0, =1.01,
00=1.52 rad/s, and AQ=0. 03 rad/s; , Q, =00=0.68 rad/s
and 50,=0.025 rad/s. The onset for saturated response occurs
at m = 1/z„„ indicated in both cases with vertical arrows.
Since 7 t 7F and ~F is inversely proportional to vortex density,
i.e., ~F ~ 1/(Qo+bQ) [see Eq. (7.22)], the region of saturated
response starts at lower drive frequency for a vortex cluster of
lower density.

studied, which is well isolated from interactions with the
cylindrical cell wall by vortex-free counterfiow. Howev-
er, when the harmonic drive acts on an equilibrium state,
the steady-state response incorporates a periodic absorp-
tion component at the frequency co of the alternating
drive, but phase shifted by htp. A measurement of hy as
a function of co allows us to identify the time scale
which characterizes the motion of the vortices in the
presence of the alternating drive. This periodic com-
ponent in the steady-state HPD absorption signal in the
presence of the hydrodynamic drive is a second example
of the coupling between the resonance amplitude and
translational motion of vortices. The first example we en-
countered in the exponentially relaxing slow mode signal
(Sec. IV E).

2. Equilibrium vs metastable vortex states:
Differences in HPD signatures

The experimental basis for the harmonic component in
the HPD absorption of the nonaxisymmetric vortex can
be understood by inspecting Fig. 22. Suppose a vortex
cluster is contracted from its equilibrium state to smaller
size by accelerating 0 linearly. This measurement is
shown for the axial field orientation g=0 in the top part
of Fig. 22. The immediate response to the change in 0 is
the increase in HPD absorption, when the vortices are set
in motion and the winding of their cores is reduced.
When the linear ramp in 0, is stopped, the exponentially
relaxing signal from the slow vortex mode soon follows.
These features were discussed in Sec. IV E. Of interest to

us now is the fact that the final absorption level of the
contracted cluster is larger than that in the equilibrium
state: The absorption level P, has increased by the
amount P =3.3 pW in the contracted state at 1.68 rad/s
compared to the equilibrium state at Q, =1.49 rad/s.
The increase P is 4% of the total absorption P, =79.3
pW of the contracted cluster at constant Q or, if phrased
in a difFerent form, it corresponds to half of the absorp-
tion from the vortices in the outermost ring.

A similar, but more monotonous and thus more readily
measurable response is observed if the measurement is re-
peated with the magnetic field H tilted by more than the
critical angle g, from the axial orientation (g, =17' at
H= 14.2 mT). Then the twisting of the nonaxisymmetric
vortex core is prevented by the torque provided from the
coupling between 8 and the susceptibility anisotropy in
the core. The absorption response in this situation is
shown in the lower part of Fig. 22, where g=20. 4'. Here
the absorption increases during the linear acceleration of
Q until saturation is reached and the outermost vortices
have been removed su%ciently far from the cylindrical
wall to retrieve all of their absorption loss. This distance
corresponds to an increase in the rotation velocity by
AQ, =0.14 rad/s, when 0, =1.98 rad/s. In more gen-
eral terms we find that b0 =0.0710„in the conditions
of Fig. 22, and that it is independent of the tilting angle
g, when g ~ q, . The measured AA translates to a con-
traction 6=—,'R EQ„/Q„of the cluster radius R„which
is thus independent of 0, and approximately 0.12 mm.
For comparison the intervortex distance is 0.14 mm at
0= 1.98 rad/s.

In an inclined field with g=20. 4' the increase in ab-
sorption is found to obey the dependence
P = —0.45+2.490, pW at T=0.48T, . In the same
conditions the equivalent of the linear slope in Fig. 7 for
the equilibrium state absorption was measured to be
dP, /dO, =58.9 pWs/rad. Thus, we find again that P
is 4% of the total absorption of the contracted cluster.
The same conclusion is reached from the measured tilting
angle dependence of the absorptions: The absorption
from the contracted cluster is observed to depend on g as
P„(g)=8.19(1+8.66cos q) pW and that of P is found
to be P =3.07cos g pW (measured at T=0.52T, and

0, =1.48 rad/s). The dependences of the different ab-
sorption components on g, T, and 0 have been brieAy
discussed in Ref. 16.

We conclude from these measurements that the ab-
sorption contribution P originates from the interaction
of the vortex cluster with the cylindrical container wall.
The interaction vanishes when the vortex cluster is con-
tracted from its equilibrium state by a small constant
amount which is comparable to one intervortex distance.
The suppression of the absorption is 4% from the total
absorption in the contracted cluster state, which means
that the absorption of the peripheral vortices has
dropped to —, from that of other vortices in the equilibri-
um state.

In summary we note that in a contracted cluster all
vortices contribute an equal amount to the absorption
while in the equilibrium state the peripheral vortices in-
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FIG. 22. HPD absorption level P, (t) in the equilibrium vortex state, where the outermost vortices interact with the cylindrical cell
wall. P, is monitored as a function of time while 0 is linearly increased from the equilibrium state and subsequently decelerated
back to the equilibrium state Top. : axial field H~~Q. When the linear acceleration is started at t =0 from the equilibrium state
Q„=1.49 rad/s, the vortices are set in translational motion and the absorption level increases, similar to the response to the
sinusoidal rotation drive in Fig. 9. When the acceleration is stopped at 1.68 rad/s and 0 is maintained constant, the slow mode relax-
ation soon starts. The difference from Fig. 9 is now that the contracted cluster at 1.68 rad/s has an absorption level which is higher
by 4P =3.3 pW than that of the equilibrium state at 1.49 rad/s. During the deceleration back to the equilibrium state the same
behavior is repeated and the absorption returns to its previous value in the equilibrium state (which is P, =76.0 pW). In this second
case the slow mode relaxation is anomalously long; the relaxation is restarted with a small amplitude when the peripheral vortices
start interacting with the wall. Bottom: tilted geld, H is inclined from 0 by t) =20.4 & g, . When accelerating from the equilibrium
state at 0„=1.98 rad/s the absorption increases linearly until A=A„+hQ =1.98+0.14=2.12 rad/s and then remains constant
during further acceleration. The increase in absorption AP =4.5 pW represents approximately 4%%uo of the equilibrium state absorp-
tion P, =122 pW and corresponds roughly to one-half of the absorption of the outermost ring of vortices. We assume that all vor-
tices contribute equally to the absorption when 0 ~ 0, +AQ„(Sec. IV C).

teract with the image vortices associated with the cylin-
drical wall. This interaction imposes a torque on the
peripheral vortices, suppresses their rocking oscillation,
and thus reduces their absorption. In the presence of a
harmonic rotation drive the small loss in absorption
modulates the resonance absorption level when the outer-
most vortices travel in and out of the region, where their
absorption depends on the distance from the cylinder
wall. Again all magnetic relaxation effects are many or-
ders of magnitude faster and therefore any lag between
the drive and the absorption signal is entirely of hydro-
dynamic origin.

3. Equilibrium state response
to harmonic rotation drive

The suppression of the viscous dissipation component
in the HPD absorption near the cylindrical cell wall by
the amount P is a small effect. Yet it is readily distin-
guishable in the measurement and can be used to study
the motion of the peripheral vortices in the presence of a
harmonic rotation drive. The measurement is illustrated
in Fig. 23. The harmonic component in this absorption
signal arises from the motion of the peripheral vortices
into and out of the range of inAuence from the image vor-
tices associated with the cylindrical wall. It is observed
as a periodic loss and recovery of their dissipation by the
amount AP ~P .

Figure 23 has been measured with a 2'/m =30 s

modulation period of the rotation drive. The absorption
response displays a periodic component at the same fre-
quency co, but phase shifted by Ay from the drive. In
the measured response mini~urn absorption corresponds
to the minimum in the drive O(t), i.e., to the closest dis-
tance between the outermost vortices and the wall. This
half-cycle of the harmonic response is always a sharp im-
age of the drive while the second half-cycle correspond-
ing to the contracted cluster is often a more fuzzy repre-
sentation of a sinusoidal curve, if 260 )AQ . The
peak-to-peak value of the harmonic absorption com-
ponent 26P is half of the P absorption contribution
measured in Fig. 22. There are at least two reasons
which explain this smaller value: (I) The peak-to-peak
value of the drive amplitude 2hfL =0.10 rad/s is less than
the required AQ =0. 14 rad/s to recover all of the ab-
sorption P (see lower part of Fig. 22). (2) The dynamic
response at the modulation frequency ta =2m/30 s ' is
smaller than the dc response, i.e., the amplitude of the
harmonic component in the response decreases with in-
creasing co . With a modulation period of 15 s, the har-
monic response is still observable, but smaller than in
Fig. 23. When the period of the modulation is reduced to
3 s the amplitude of the harmonic component becomes
too small for an accurate measurement of Ay.

In Fig. 23, with a 30-s period of the drive, the response
is lagging behind by a phase shift hy =70 . The phase
shift Ay, by which the drive leads the absorption
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FIG. 23. Absorption response of the equi-
librium vortex state to a sinusoidally modulat-
ed rotation drive. Bottom: Rotation velocity
0( t) = 1.95+0.05( 1 —cosco t) rad/s, with
co =2~/30 s '. Top: HPD absorption level
bP, as a function of time. In the equilibrium
vortex state the periodic contraction and ex-
pansion of the vortex cluster produces a
periodic contribution in the HPD absorption
signal, where the principal component is at the
fundamental drive frequency, but phase shifted
by Ay. The periodic response originates from
the motion of the outermost vortices, when
their absorption depends on the distance from
the cylindrical container wa11. Here the
minimum of the rotation velocity Q;„corre-
sponds to the minimum in absorption and to
closest approach to the side wall; 0;„and the
minimum of EP„are used as reference points
for measuring the phase shift hy.

response, when measured at the minimum 0 value
( =Q„) where the periodic response is most clearly
defined, is a well-identifiable experimental observable.
From the measurements we find it to depend on the vor-
tex density n, cc: Q„and the modulation frequency co of
the rotation drive. These dependences are shown in Figs.
24 and 25, respectively. In comparison, the dependence
on the modulation amplitude AQ of the drive was found
to be much weaker. The measurements in Figs. 24 and
25 have been performed on the equilibrium vortex state
using a rotation drive Q( t) =0, + b,Q( 1 —cosco t), which
is found to preserve the total number of vortices. The
phase shift hq is measured after the sinusoidal drive has
been acting for a suKciently long time to reach a steady-
state response in absorption. This means that all tran-
sient time dependences have had a chance to decay and
the measurements should be compared to a steady-state
solution of the hydrodynamic equations.

For a qualitative description of the phase lag we simply
associate the sinusoidal response in AP with the oscillat-
ing cluster radius R, (t). The maximum cluster size
R, =R corresponds to the equilibrium state, where the
peripheral vortices have lost roughly half of their absorp-
tion and the minimum signal amplitude in AP„ is record-
ed. When the cluster subsequently contracts towards its
minimum size the absorption loss of the peripheral vor-
tices is regained and the maximum signal in EP„ is ob-
served. Since the number of vortices
N =n.R, (t)n, (t)=const, a small change AR, in the clus-
ter size drives a similar change in the vortex density
An, = —2n,'qhR„/R, where n,'q is the density in the equi-
librium state at 0„.

The vortex density n„(t) is controlled by Eq. (6.4)
which was derived for a constant rotation velocity. We
can take account of the harmonic component in Q(t) by
enforcing a small-amplitude oscillation in the normal
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FIG. 24. Measurement of the phase shift Ag between the
sinusoidally modulated rotation drive and the absorption contri-
bution AP close to the equilibrium state. Here Ay is plotted as
a function of the inverse vortex density at the closest approach
to the cylindrical wall, which is ~ 1/0;„. The results pertain
to the steady-state situation, where the harmonic component in
the drive has been acting sufficiently long to produce a stable
value for Ay. The solid lines are fitting curves
Ay=hotp+(180 /~)arctan( 8 /0;„) which di6'er from Eq. (B3)
by a constant shift hog. Two modulation frequencies co /(2m)
of the drive are shown: the open circles correspond to modula-
tion with a period of 30 s and are fitted by hop=53 and
3 =0.45 rad/s. In terms of Eq. (B3); it would correspond to a
mutual friction coefficient Bp„ /p =0.5. The solid circles are for
a modulation period of 60 s and their least-squares fit gives
Dog=44' and 2 =0.31 rad/s, which translates to Bp„/p=0. 3.
The amplitude 4Q of modulation in the rotation drive is
0.03—0.05 rad/s; its value does not aftect the phase shift in first
order.
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component of Eq. (5.4): it plays the role of an external
force if we set v„=bQ[zXr](1—cosco t). We then ob-
tain the equation of motion for the vortex density, name-
ly, Eq. (6.4),

(81)

where fl, =en, (t)/2 and Q(t) is the time-dependent rota-
tion drive expressed in the laboratory frame. In linear-
ized form Eq. (Bl) reads

dAn,

dt
+ 260 (1—cosco t),

1FK
(82)

where F=r(BQp„lp) ' is the decay time of the fast
mode. A naive approach is to equate the phase shift Ay,
by which the drive Q(t) leads the absorption response
AP„(t), with the phase shift between Q(t) and the cluster
radius R„(t), i.e., b n, . This gives a phase shift

6g —arctanco 'Tp (83)
This procedure assumes that mainly the fast mode con-
tributes to the response and determines the phase lag. It
displays some qualitative features of the dependences in
Figs. 24 and 25: it increases as n,'" decreases and ~ in-

creases. However, there remain discrepancies: (i) the cal-
culated Ay lies a constant shift of -40 lower in value;
(ii) the measured values are so high that they exceed 90,
which is unphysical for an overdamped mode. These
differences reAect the fact that not only the fast mode
contributes to the phase lag of the response, but it is a su-
perposition of the fast and the slow modes. Furthermore,
the phase lag is associated with the motion of peripheral

rom (rad/s)

FIG. 25. Measurement of the phase shift hy between the
sinusoidally modulated rotation drive and its absorption
response hI' close to the equilibrium state. Here hg is plotted
as a function of the drive frequency co /(2m). The different
symbols refer to different vortex densities, which are specified

by the minimum value Q;„of the rotation drive, where
0;„=0„.The solid curve is a fit to the open circles with
0;„=0.48 rad/s and Ay= 39'+(180'/m )arctan(6. 8' ), which
gives Bp„/p=0. 3. The amplitude of the modulation in the ro-
tation drive is AQ =0.10 rad/s, except for the data denoted with

open squares, which have been recorded with Q;„=0.57 rad/s
and AQ =0.05 rad/s.

vortices, i.e., Ay should be analyzed as a local rather than
a global phase shift. Nevertheless, this simplified analysis
of phase lags confirms that the motion in the presence of
the harmonic rotation drive is essentially driven by the
fast mutual-friction-resisted mode. (See note added in
proof. )

APPENDIX C: PINNING
AT SUPERFLUID INTERFACES:
He-B ABOVE He- He SOLUTION

Interactions between vortices and different boundaries
is an intriguing testing ground for probing the structure
and dynamics of vortices. At solid surfaces the inhuence
of surface roughness is expected to be an important com-
ponent in pinning. Different types of phase boundaries
can also be introduced in the rotating container and are
expected to raise new questions. At the free surface of
the liquid, bordering to the vapor phase, no pinning is ex-
pected, but a vortex still bends the interface creating a
shallow dimple of —10-A depth where the core intercepts
the surface. At the phase boundary between concen-
trated He-B and the 6.4% solution of He in superfluid
He, the inhuence of vortices in both phases is expected

to be m.ore serious on the interface profile. Finally, at
the first-order phase boundary, separating the 2 and B
phases of superAuid He vortices are expected to be inter-
locked.

Measurements on pinning with different kinds of solid
surfaces are time consuming. Therefore, one might
speculate that a simple alternative to vary the pinning
characteristics might be to include He in the rotating
container. If a small proportion of He is added, the
solid surfaces become coated with a superAuid He film at
pressures below 25 bars, the solidification pressure of
He. (At higher pressures the surface structure will

presumably depend on the temperature and the rate at
which the solidification point is exceeded. This case mill
not be considered here. ) It is not clear what efFect a thin
superAuid lining of ~ 300-A thickness would have on pin-
ning. It is possible that the central part of the He-B vor-
tex will penetrate through the film and maintain contact
with the solid wall, thereby effectively making it possible
to trap a circulation also in the He film around the He
vortex core. This possibility is suggested by studies on
vortices in pure superAuid He films.

When the proportion of He is further increased in the
sample chamber then the bulk 6.4% He- He mixture
phase is precipitated on the bottom. The solid surfaces
above the phase boundary are covered with a saturated
superAuid He film which contains dissolved normal He
with a concentration gradient perpendicular to the wall.
Eventually, if one continues replacing He with more
He, the phase boundary separating the bulk phases is

raised inside the NMR cell, providing now a lower pin-
ning surface for the He-B vortices above the interface.
The top surface of the NMR cell is coated with the sa-
turated superftuid He film. In this case one might expect
z, to increase by a factor of 2, if pinning at the interface
between the bulk phases approaches that at the free sur-
face of a superfluid, namely, is absent altogether.

We have performed measurements on the exponential
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v„=v, +v, zX + [zX[bu —2V(V u)]} .d u T

dz

(D 1)

Here V and 6 are operations in the xy plane and cT is the
Tkachenko wave velocity for a triangular vortex lattice
given by

KQCT=
8n

(D2)

relaxation time ~, of the slow vortex mode in three
difFerent situations at 23.5-bars pressure: (1) The refer-
ence case is obtained with pure He. In addition two
different concentrations of He- He mixture were used
such that in one case (2) the phase boundary is well below
the NMR cell while in (3) the second case it is inside.
The conclusion from these measurements is that within
the present experimental resolution no conclusive in-
crease in r, could be established in cases (2) and (3). This
means that neither a superQuid He film coating nor the
interface to a bulk He- He mixture phase change the
pinning of the He-8 vortices by more than 40% from the
value measured for the epoxy surface with pure He.

In fact, it may not be so surprising that pinning is not
absent at the interface between the two bulk superAuids
and is thus stronger than at the free surface. The dimples
formed by the He and He vortices from both sides of
the interface should interact which results in a coupling
of their motions. This coupling may be rather intricate,
since the vortex densities on the two sides of the interface
are related as n3.n4=K4.K3=3:2 and thus the vortex lat-
tices are incommensurate.

A more exact characterization of pinning at the inter-
face between the bulk phases of He-8 and the He- He
solution awaits measurements with improved resolution.
An additional bonus of such measurements is that they
provide a means to study the dependence of ~, on the
height L of the He-B layer by repeating the measure-
ments with the phase boundary at different heights. With
our present signal resolution it is not feasible to perform
measurements on the slow vortex mode in the presence of
a free surface at zero pressure.

APPENDIX D: BULK CRYSTALLINE
EFFECTS OF A VORTEX ARRAY

The slow collective mode, which we have observed, is
governed by the elastic tension of vortex lines and weak
surface pinning. Shear elasticity is important only within
the Ekman layers. On the other hand, the original
motivation for studying the slow vortex motion was to
find the Tkachenko wave, which arises from the shear
elasticity of the vortex lattice in the bulk liquid. Let us
now analyze the effect of the bulk shear rigidity on the
slow vortex mode.

Shear deformations induce a velocity field around a
vortex line in addition to that due to bending deforma-
tions. Then Eq. (7.2) is replaced by'

cu of the slow vortex mode, but now the elastic frequency
co+ is given by [cf. Eq. (7.20)]

2v cTq
COy 6+

L 2Q
(D3)

when the viscous surface force ~ b, is neglected. Equa-
tion (D3) incorporates the elastic effects both from line-
tension and pinning (the first term ~ b) and from the Tka-
chenko rigidity (the second term ~ cr ). The wave num-
ber q in the Tkachenko term is determined from the con-
ditions on the vertical border of the vortex cluster. For
the sake of simplicity we analyze the problem of the elas-
tic shear contribution to the slow mode in the absence of
surface pinning, when all motion is restricted to the xy
plane. Then the relaxation time of the slow vortex mode
is given by

2
g

2

2' Kg

16m.P
(D4)

13 + bill=0 .
at

(D5)

Here 5 is the Laplacian in the xy plane and the vector
potential 4 determines the field of the vortex displace-
ments u=V X% satisfying the incompressibility condi-
tion V.u=0. Here we consider axisymmetric oscilla-
tions, with the displacement vectors u confined to the xy
plane. Then the potential %=%z and in the cylindrical
coordinate frame (r, y) the displacement u has only the
azimuthal component u = —B%/Br which does not de-
pend on the azimuthal angle cp.

One should supplement Eq. (D5) by the boundary con-
dition at the border r =R, of the vortex crystal of radius
R, . In deriving the boundary condition, Ruderman as-
sumed free rotation of a very light container, imposing
conservation of the angular momentum of the superAuid
in the container. Then the transverse component of the
stress tensor of the vortex crystal,

This spectrum resembles that of a viscous mode; howev-
er, the circulation quantum K rather than the kinematic
viscosity v enters this expression. The relaxation time of
this mode is inversely proportional to the shear rigidity of
the vortex crystal [the factors in Eq. (D4) represent the
Tkachenko rigidity of the triangular lattice], and the ex-
istence of such a mode is a signature of crystalline order
in the vortex array. Comparing the vortex crystal with a
usual crystal made of atoms, one would expect exponen-
tially relaxing motion if one were to assume the atoms to
be immersed in a viscous Quid. Then the transverse
sound mode for such a crystal would transform to a
viscously damped mode with the imaginary frequency
proportional to shear rigidity.

According to the correspondence principle, the spec-
trum in Eq. (D4) relates to a differential equation of the
type of a diffusion equation describing the slow mode in
space and time:

By repeating the derivation for the plane-wave solution
-exp(iq r —icot) given in Sec. VII C, one obtains the
previous dispersion equation Eq. (7.24) for the frequency

BQ Q
ry PsCT (D6)
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vanishes at r =R, . The opposite simple limit is a fixed
boundary of the vortex crystal, when u =0 at r =R, .
This boundary condition was proposed by Williams and
Fetter. Here we consider a more general condition for
the case when the vortex crystal interacts with the con-
tainer wall and the latter is able to move independently.
Then the momentum Aux through the boundary of the
vortex crystal given by the stress-tensor component o., is
balanced by the force from the wall:

r

aQ—0.„=—k(u —w) —
2) at

aw
at

(D7)

I = 2vrR L k—(w —u)+2)d w aw aQ

at at
(D8)

Here I is the moment of inertia and L is the height of the
container of radius R.

Equations (D5)—(D8) determine the modes of our reso-
nator. Axisyrnmetric modes correspond to a cylindrical
wave

Here w is the azimuthal linear displacement of the wall, k
is the parameter of the elastic force, and g is the
coefFicient of friction between the vortex crystal and the
container wall.

The elastic force proportional to k can appear only if
cylindrical symmetry is broken (because of ellipticity of
the container, for example). However, a symmetry-
breaking interaction with the wall is assumed weak so
that the problem remains axisymmetric. The frictional
force between the vortex crystal and the wall is possible
because of direct interaction of vortices with the rough
surface of the wall or by means of the normal component
if the latter participates in the oscillation (see Sec. VIII D
in Ref. 13).

We also need the equation of motion for the container.
For the free rotation of the container, if it interacts only
with the superAuid, the equation is

Ji, s
qwF(s)

U

(D12)

The fundamental eigenmode with the lowest frequency
corresponds to the smallest root j» =3.83. From these
estimates it looks as if the wave number for the funda-
mental eigenrnode in the cylindrical resonator cannot be
lower than 3.83/R„. However, numerical calculations by
Campbell have yielded that there exist eigenmodes for
the vortex pattern with a fixed outermost ring of vortices,
for which the wave numbers are a factor of 2 lower than
this value. This controversy has been discussed in Ref.
13. In fact, the Ruderman wave number
q~(1) =5.14/R, is not the lowest one for the free-vortex
crystal. The spectrum also includes one mode at zero
frequency, corresponding to the Goldstone mode due to
the invariance in rotating the vortex crystal with respect
to the container. When rotational invariance is broken
because of interaction with the wall, the zero-frequency
mode becomes an observable mode with finite frequency,
which may be arbitrarily low (a soft rotational mode). In
the numerical calculation of Campbell, the fixed outer-
most ring of vortices imitated the role of the wall.

Thus, the wave number for the fundamental eigenmode
of the vortex crystal should be determined from the spec-
trum given by Eq. (D10), taking into account interactions
with the wall. Assuming that the wave number q is small
compared to 1/R„, one can expand the Bessel functions.
Then the equation for the eigenfrequency of the soft rota-
tional mode becomes

Here j„, denotes the sth zero of the Bessel function
J„(x). According to Ruderman, the fundamental eigen-
frequency corresponds to j2, =5. 14. The Williams-
Fetter boundary condition, u =0 at r =R„ is obtained
from Eq. (D10) assuming I~~ and

~

k i—coal
~

~ 00 (a
very heavy container and strong coupling of the vortex
crystal with the wall). Now the wave numbers are deter-
mined from the equation J&(qR„)=0:

4 =Vga(qr)exp( —i cot ),
=VoqJi (qr)exp( i cot), —

ar

(D9) p, R„Qf3
[co I 2rrR, L (k

icing—

) ]= i coI(k —i co2) )— —

(D13)
with the wave number q related to the frequency co in Eq.
(D4). Substituting Eq. (D9) into the boundary condition
Eq. (D7) and the equation of motion Eq. (D8) where
w =woexp( idiot), then upo—n excluding w, one obtains
the following equation determining the wave numbers q
for the eigenmodes of the resonator:

—2ki

p, R„Q/3+2'
(D14)

Our experimental conditions correspond to the limit of a
very heavy container (I~ ~). Then the fundamental
eigenfrequency is given by

2 2J ( R )
M'I(k inn)—

'I —2 R'I, k —.
(D10)

For a very light container (I =0) Eq. (D10) yields
Ruderman's wave numbers for the oscillations of the free
vortex crystal determined from the equation J2(qR, ) =0: coo ="t/ 2nR„Lk/I. (D15)

Thus, a weak symmetry-breaking elastic interaction with
the wall may be responsible for a very low fundamental
eigenfrequency proportional to the interaction strength k.
However, this eigenfrequency increases if the container
becomes lighter (I decreases). Then the fundamental
eigenfrequency is (viscous interaction is neglected, 2) =0)

J2, s

U

(D 1 1)

One may use these expressions as ion& as the absolute
value of the wave number ~qi=4+mijicooi/~ is small
compared to the Ruderman wave number 5.18/R„. 0th-
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erwise the fundamental eigenfrequency is determined by
the Ruderman wave number, as follows from a more gen-
eral dispersion equation [Eq. (D10)] in the limit I~0, in-
dependently of the type and amplitude of interaction be-
tween the vortex crystal and the container wall. It is
dificult to approach this limit if the symmetry-breaking
interaction is weak.

Bearing in mind this analysis, we can now compare the
experimental conditions for the observation of the Tka-
chenko contribution in the experiment by Tsakadze in
He (Ref. 61) and in our case in He-B. The difFerence is

as follows.
(1) Tsakadze ' has observed oscillations of a freely ro-

tating light container with a moment of inertia not larger
than that of the superfluid. In contrast, in our experi-
ment the container is rigidly connected to the rotating
cryostat. This case corresponds to a very heavy con-
tainer with I~~.

(2) In He the vortex crystal is coupled with the wall by
means of the normal component. The normal component
is dragged along by the oscillating vortices and it also
sticks to the wall; it provides a considerable frictional
force between the vortex crystal and the wall. In He the
normal component does not participate in the motion of
vortices (clamped regime) and this mechanism does not
work. The only coupling is provided by weak deviations
from cylindrical symmetry.

This explains why the fundamental eigenfrequency
should be of the order of the Ruderman frequency in the
measurements of Ref. 61, but is expected to be much
lower in our experiment. In any case, q depends on
R, ~ QQ, /Q. Thus, the Tkachenko term depends on Q,
if it is measured at fixed X„,while it is independent of 0
if R„ is kept constant (since it results from a competition
between the elastic force per unit volume [ =n, (U, t U, )]-
and the mutual friction force [=n„BUI ], both ~ 0).

By measuring w, as a function of 0, while 0 is kept
constant, one should be able to isolate the Tkachenko
contribution. Results from such measurements are
shown in Figs. 26 and 27. In Fig. 26, one can compare
the relaxation of the slow mode signal at different values
of 0, and in Fig. 27 the time ~, as a function of 0, is
shown: here the ratio 0/0, varies from 1 to 5 but ~,
remains constant, within the resolution of +30 s in the
time constant determination in this collection of data. A
more stringent test with a +10-s resolution is examined in
Fig. 26 and arrives at the same conclusion. We thus find
that the Tkachenko term is too small to be distinguish-
able within the precision of =+10 s of our ~, measure-
ment. If we were to assume vanishing momentum flux
across the vortex-crystal boundary (the Ruderman condi-
tion), one then would obtain q =5.18/R, . The Tkachen-
ko term in Eq. (D3) becomes

cz q /2Q =0.52m/R, = 3 X 10 0/0, s

and a clearly distinguishable positive slope would be visi-
ble in Fig. 27. As was discussed above, in a massive sam-
ple container a soft mode with a smaller q is also possible.
The absence of the Tkachenko contribution we thus in-
terpret to mean that a rotational soft mode with very
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FIT+. 26. Demonstration of the independence of ~, on the size
of the vortex cluster. This plot is similar to Fig. 16 and shows
four sets of measurements on the exponential relaxation time ~„
which have been plotted in terms of log&0(AP, /0, ) as a func-
tion of time. All four measurements have been performed in as
similar conditions as possible and give ~, = 150—159 s with a rel-
ative precision, which is better than +10 s. The actual rotation
velocity is kept constant at 0=2.59 rad/s while 0, is varied
from 0.994 to 2.28 rad/s. The conclusion from this comparison
is that within the present measuring resolution ~, does not de-
pend ou Q„and the radius R„=RQQ, /Q of the vortex cluster.
On the vertical axis is the normalized absorption component
hP, (in pW). On the horizontal axis the zero point corresponds
to the moment when the harmonic drive is switched oK For
three of the relaxation decays the zero has been shifted by 150 s
(squares), 250 s (open triangles), and 350 s (solid triangles).
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FIG. 27. Measurement of the dependence of the time con-
stant ~, on the number of vortices N, cc A„ i.e., the radius
R, =RQQ„/Q of the vortex cluster. The measurements have
been performed at roughly constant 0 and are plotted as a func-
tion of 0, . The result does not reveal a dependence within the
overall experimental uncertainty of +30 s of one ~, measure-
ment. This result justices the conclusion that the contribution
from the shear elasticity of the vortex array in the bulk liquid is
not present in the slow mode response.
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small q is excited. This also means that the only vortex-
crystal mechanism, which is observed to contribute to the
slow relaxation, is the effect from the shear rigidity in
the Ekman layer on surface pinning.

In summary, the absence of any observable contribu-
tion from bulk deformations (outside the Ekman layers)

of the vortex lattice in the transverse xy-plane means that
the observed slow relaxation involves a rotational soft
mode of the whole vortex cluster with very small value of
q. To improve the sensitivity in detecting this vortex lat-

tice term one should substantially increase either the ra-

tio fI l0, or L /R, all of which is being planned.
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