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The collective dynamics of liquid deuterium is studied by means of inelastic neutron scattering
(INS) at 20.14 K and under 2 bars of applied pressure using two different incident energies. The
low-incident-energy (high-energy-resolution) spectra are studied in detail by means of a time-of-flight
(TOF) technique, whereas the finite-frequency response is investigated using a higher incident energy
on a triple-axis spectrometer (TAS). The main finding of our work is the observation by the latter
experimental technique of well-defined collective excitations up to a momentum transfer of 3.8 AL
Comparisons are established with the dispersive behavior observed in other liquid systems as well
as with the predictions from recent correlated-density-matrix calculations.

I. INTRODUCTION

The dynamical response of liquid hydrogens (mainly
H; and D) at time and length scales comparable with the
relevant intermolecular processes (i.e., a few picoseconds
and angstroms) has attracted considerable attention from
the early days of neutron scattering.! Although a number
of studies have been reported on the low-energy dynam-
ics (i.e., quasielastic scattering) of liquid and dense-gas
phases, 12 as well as on the high-momentum-transfer (i.e.,
deep inelastic) region in the solid and liquid phases of
H,,3 rather few attempts have been registered where the
dispersion curves for solid? or liquid®® samples have been
measured.

This situation, however, contrasts with the need to
provide dispersion data for these liquids where, due to
their low viscosity, collective excitations are expected to
be well-defined entities for a vast range of momentum-
transfer values within the kinematical range accessible
by neutron spectroscopy. An additional source of in-
terest is the search for manifestations of some quantum
phenomena in the collective dynamical behavior of these
molecular liquids where noticeable quantum effects are
expected at temperatures close to the triple point (the
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thermal wavelength, A, for D, in the liquid range near
this point is about 1.3 A). These systems constitute an
intermediate case between ‘He where the thermal wave-
length at T'=2.1 K is about 4.6 A, and Ne where Ay = 0.6
A at T=27 K. It is worth mentioning that the interest
in the collective dynamical properties of the liquid hy-
drogens has been reawakened by the expectations raised
from some calculations regarding the possibility of super-
cooling liquid para-hydrogen” as well as from the predic-
tion of the existence of a superfluid phase in clusters of
(para-Hz).8

The purpose of this paper is, therefore, to provide new
and up-to-date information regarding the collective dy-
namics of liquid normal deuterium in the bulk phase at
temperatures just above melting. In order to achieve
our purpose we have performed neutron inelastic scat-
tering experiments with two different incident energies.
The values of these energies (4.8 meV and 34.9 meV)
have been chosen, with due regard to the estimate of the
isothermal sound velocity, respectively, below and above
the kinematical excitation threshold for soundlike exci-
tations (ca.7 meV for wave vectors of 1 A-1).

The reason to choose deuterium instead of para-Hs was
motivated by the fact that, in the latter case, due to
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the conversion to incoherently scattering ortho-hydrogen
(ortho-Hy), the incident neutron energy has to be lower
than the one associated to the ortho-para conversion
(14.5 meV), a fact which precludes the measurement
of the dispersion curve at momentum-transfers below 1
A-1, due to kinematical restrictions. On the contrary,
for an equilibrium mixture of Dy with a para-Dy con-
centration of 1/3, the cross section for thermal or cold
neutrons is mostly coherent even if the incident neutron
energy surpasses the ortho- to para-Dy conversion energy
(about 7.4 meV).

We also include a study of the high-energy-resolution
(low-incident energy) spectra of the polycrystalline (hcp)
solid at T'=10 K in order to provide a comparison with
the liquid, since the only data found in the literature cor-
responds to rather old measurements,! performed using,
both energy resolution and counting statistics far below
the capabilities of the present-day spectrometers. On
the other hand, for the high-energy dynamics of the solid
phase we rely on the dispersion data for single crystals of
ortho-D; measured using a TAS instrument by Nielsen.*

A preliminary account of the results concerning the
TAS data has already been given,® and the present work
provides a complete comparison between data measured
using different excitation energies, a fact which enables
the separation of the low-energy contributions (single-
particle quantities) from the total coherent response.

The sketch of the paper is as follows; Sec. II will give
some details about the experimental techniques; the data
analysis procedures and the employed approximations
are described next in Sec. III. The most relevant details
of the obtained results are then given in Sec. IV where
a comparison is established with the predictions of the
correlated-density-matrix variational approach. Finally
the discussion and main conclusions are given in Sec. V.

II. EXPERIMENTAL DETAILS

Two sets of experiments were carried out using differ-
ent incident energies and energy resolutions.

A. Low incident energy

High-resolution measurements were carried out using
the IN6 time-of-flight (TOF') spectrometer located on one
of the cold neutron guides at the Institut Laue Langevin
(ILL), Grenoble (France). The neutron scattering dou-
ble differential cross sections were measured using an in-
cident wavelength of 4.12 A (corresponding to an inci-
dent energy E; = 4.82 meV and incident wave vector
k; =1.53 A‘l). The sample was prepared from conden-
sation of gaseous deuterium (99.99%) into a cylindrical
cell of dimensions 10 x 50 mm, which contained five cad-
mium spacers (with thickness 0.3 mm) inserted in order
to reduce the contribution of multiply scattered neutrons.
The sample was condensed in situ into a standard orange
cryostat and the sample temperature was measured with
a platinum resistance directly attached to the cylindri-
cal cell. The measurements were carried out at 10 K,
in the solid hexagonal close packed phase and 20.14 K
in the liquid under an applied pressure of 2 bars. From
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the ratio of the integrated areas of the quasielastic and
inelastic rotational peaks in the solid phase, the concen-
tration of the para-species was found to be approximately
32%. Calibration runs with the empty cell as well as with
vanadium foil rolled around the container were also per-
formed in order to normalize the measured intensities.
The crystal formation and melting were monitored from
plots of the wave-vector dependence of the elastic inten-
sity S(Q, E = 0).

The cross-section data were converted into constant-
angle dynamic structure factors S(©, E) using the INX
(Ref. 9) suite of programs. The contribution of multi-
ply scattered neutrons was evaluated for one of the vol-
ume elements between cadmium spacers using the DISCUS
code.!® The integrated contribution of multiple scatter-
ing was found to be less than 5% of the total intensity.
As an example of the relative importance of this contri-
bution, the ratio of single to total scattering events for
Q=1 A~1 amounts to 0.956 at the elastic, 0.99 at 1 THz
(0.926 at -1 THz) and 0.999 at 2 THz (0.887 at -2 THz).

The constant-angle spectra were finally converted into
S(Q, E) spectra by means of the INGRID code.!!

The achieved energy resolution was about 35 ueV, es-
timated from the vanadium runs as the half-width at
half-height (HWHM) of the elastic peak.

B. High-incident energy

The high-incident-energy experiment was carried out
using the IN8 triple-axis (TAS) spectrometer located on
one of the thermal beam tubes of the ILL. The same
container was used and the incident wavelength was set
to 1.563 A (E; = 34.95 meV, k; = 4.1 A-!). A rather
restrictive collimation was used in order to achieve an
acceptable dynamic range free from the contamination
from the direct beam. Most of the experiments were done
using the above-quoted incident wave vector which gives
an energy resolution measured with a vanadium standard
of 2.8 meV. Some experiments were also performed using
a lower incident energy (17 meV) which gave an energy
resolution of 1.45 meV (HWHM). All the spectra were
measured. in the constant-Q and constant incident-wave-
vector configuration. A cylindrical vacuum tank of 1-m-
diameter placed surrounding the cryostat tail and narrow
collimation around the sample were used in order to re-
duce the contribution of diffuse scattering from the air.
An absorption and container subtraction correction was
applied using a generalization of the Paalman-Pings pro-
cedure to inelastic scattering.!? Multiple scattering cor-
rections were also performed and the resolution in energy
and momentum transfers were finally computed for each
measured point using a modified version of the RESCAL!3
code. As an indication, the achieved resolution in energy
and momentum transfers were, for the elastic peak at
Q=1.0 A=, of about 2.5 meV and 0.12 A-1.

All the measurements using the TAS spectrometer
were carried out at 20.14 K and 2 bars of applied pressure.
The complete melting of the sample was monitored by
measurements of the elastic structure factor S(Q, E = 0).
Its value was also used in order to normalize the measured
intensities to an absolute scale.
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III. DATA ANALYSIS

The scattering intensity can be written as a sum of con-
tributions from single and multiple excitations convolved
with the instrumental resolution, R(Q, E), as

I(Q,E)=A[S'(Q,E) + S™(Q,E)| ® R(Q, E),
Sl(Qf E) = Sself(Qa E) + Scoh.que.(Qy E)
+8Sexc(@, E),

where the term S(Q, E) contains information about
single-excitations of both diffusive (“self”), coherent
quasielastic (“coh.que.”), and propagative (“exc”) na-
ture, and A is a global scaling constant.

At temperatures where the collective excitations are
not appreciably populated, and working with neutron
incident energies well below those corresponding to the
lowest-lying (acoustic) modes, it is possible to observe ex-
clusively those contributions to the intensity arising from
the low-frequency dynamics (stochastic motions with an
average zero frequency). Following such an approxima-
tion we shall examine first the low-energy dynamics. This
becomes necessary for a proper account of the wings of
the quasielastic intensity in higher energy-transfer exper-
iments, while it helps to establish the relative importance
of the different contributions shown above.

A. Low-energy dynamics

From previous work on the low-energy spectra of solid
and liquid hydrogens,! it is a well-known fact that the
spectra are dominated, in the case of the solid, by an elas-
tic peak which correspondsto J =0—0and J=1—1
rotational transitions (J is the total molecular angular
momentum quantum number) and a progression of in-
elastic peaks corresponding (in the neutron energy-gain
side, F < 0, of the spectra) to rotational transitions
J =1 — 0 as well as those which involve higher rota-
tional excited states, although at the temperatures cor-
responding to these experiments only the J=1 and J=0
levels are thermally populated. In the liquid, additional
broadening of the quasielastic line is expected to occur
due to diffusive (translational) motions. In both con-
densed phases a small contribution to the energy shifts
and intrinsic widths of the rotational lines is expected to
be noticeable due to recoiling processes.

In the case of deuterium, the J=0 (ortho) rotational
state is associated with even total nuclear spin states
(with quantum number I=0 or 2), and the J=1 (para)
state with an odd (/=1) counterpart. The equilibrium
concentration of para-molecules at room temperature is
1/3 and a slow (expected rate ca. 0.060% per hour) con-
version into the ortho-species occurs at low temperatures.
The quasielastic intensity in the solid arises from AJ = 0
rotational transitions and coherent elastic effects. For
the purpose of establishing a comparison with the liquid,
the corresponding broadening can be loosely described
as caused by a “hindering” to free rotation. This hinder-
ing effect would yield a broadening of 2.7 ueV Q? as was
predicted by Elliot and Hartmann.!

From inspection of the fully corrected, constant-Q
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spectra for which some sample plots are shown in Fig.
1, the following conclusions may be drawn.

(i) No broadening of the elastic peak could be detected
using the achieved energy resolution in the solid. A well-
resolved peak is found centered at about -7.2 meV which
corresponds to the para-ortho rotational transition be-
tween energy levels given by E.ot = BoJ(J + 1) with
the rotational constant for the vibrational ground state,
By =3.6 meV. The position and width of this rotational
component show a weak dependence on the momentum
transfer.

(ii) A strong variation in the position of energy trans-
fers and linewidths of the rotational peak is seen upon
melting. Furthermore, a noticeable broadening of the
elastic peak is apparent in the liquid, showing a phase
relationship with the S(Q) at large momentum transfers.

(iii) Apart from the rotational peak, no signature of
finite-energy response is apparent from inspection of the
energy-gain side of the spectra. The absence of such a
response at low-incident energies has also been confirmed
by some measurements performed on the TAS spectrom-
eter using an incident wave vector of 2.66 A~1.

A simplified approach was first considered in order to
analyze the spectral shapes. The spectral shape for the
solid (shown in Fig. 1) could be reproduced by

Is1ia(Q, E) = Aexp(—2W) [6(Q, E = 0)
+Srot(Q1 E)] & R(Q1 E)7
(1

where the symbol ® means convolution and the rota-
tional contribution is given by

1 E —E,)?

Srot (@, E) = o)z P (_(__203_;,)) (2
here the peak center E, is assumed to be a sum of a
Q@-independent part E,ot corresponding to the rotational
J =1 — 0 transition and a recoil term given by E, =
h2Q2 /2Meg, the quantity Mg being an effective mass
for the recoiling particle. The symbol A stands for a
scaling constant, the exponential is a Debye-Waller term,
the delta component accounts for the elastic intensity
and R(Q, E) is the resolution function measured with
the vanadium standard. The width of the rotational peak
has been used as an adjustable parameter which should
contain contributions arising from the broadening of the
single-molecule transitions due to hindering by mutual
interaction as well as a small contribution from recoil
and coherent effects.

Although the approximation given above cannot be
considered to be strictly valid, the fits to the experimen-
tal intensities show that the line shape is well described
using this simplified treatment up to a good approxi-
mation. A comparison between the observed and fitted
spectra is shown in Fig. 2.

On the other hand, due to the substantial broadening
clearly apparent in the liquid, a more detailed formula-
tion is required to account for the mass-diffusion effects
present in the fluid phase. The adopted model is a sum of
one and multiphonon processes which is convolved with
the experimental resolution
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Iliquid(QaE) = B[Sl(QaE) + SM(QaE)] ®R(Q,E),
(3)

where B is a scaling constant, S™(Q, E) represents the
multiphonon background which has been evaluated from
formulas given in Ref. 14 in terms of the total density of
states (DOS).1% As a model for the low-energy dynamics
we have adopted
SHQ, B) = Seeit(Q, E)
ET(Q)
E) +1]6%(Q)S(Q) m—ttrr
Hr(E) + 1 QS @ grrpeg @

where the first term represents the scattering from single
molecules and accounts for rotational transitions as well
as for recoiling processes and diffusive motions:

Sself (@ E) = Stree(@, E) ® Sai(Q, E). (5)

The term Sgree (@, E) accounts for processes involving free
recoil and the relevant formulas for these contributions
have been given in Egs. (2a) and (2b) of Ref. 6. The diffu-
sive motions giving rise to incoherent quasielastic broad-
ening are accounted for in the contribution S4ig(Q, E)
for which a Lorentzian shape has been assumed. The
peak shapes associated with this contribution therefore
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are modeled in terms of Voigt functions (i.e., a convolu-
tion of a Lorentzian and a Gaussian).!® The term n(E)
is the Bose factor, and the low-energy coherent inter-
ference effects are represented by a Lorentzian with a
Q-dependent width I'(Q) and an amplitude given by a
coherent molecular form factor

G(Q) = 2bcohj0(%Qreq)v (6)

where bcon is the coherent scattering length, the func-
tion jo(Qreq/2) is-the spherical Bessel function of zero
order. Its argument is given in terms of the momentum-
transfer ) as well as the equilibrium internuclear sep-
aration. S(Q) is the static structure factor. It should
be noted that the detailed balance condition for the self-
term is explicitly included in the formulas referred to
above.

The model adopted for the single-molecule scattering
is of an approximate nature because of the underlying
assumption of the presence of only weak anisotropic in-
termolecular forces. Although some more detailed treat-
ments have appeared such as the one due to Elliot and
Hartmann,! where the effect of rotational hindering due
to anisotropic interactions is taken into account, they
are only applicable to the case of purely incoherent scat-

Q=06A"

FIG. 1. Constant-Q S(Q, E)
dynamic structure factors for
solid and liquid phases of nor-
mal deuterium as measured
using the TOF spectrometer.
Only the rotational J = 1 —
0 is shown for the solid since
no broadening of the quasielas-
tic peak was apparent. Note
the presence at Q=1.6 A~ of a
broad inelastic feature centered

at about 2.4 meV and the dif-
ferent energy scale for the solid
phase.
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tering and do not take into account the broadening due
to translational diffusive motions. As an alternative, we
have modeled the single-molecule contribution in terms
of a freely diffusing particle with an effective mass Mg
following the same lines of reasoning as Powles and

Rickayzen.!” The wave-vector dependence of the incoher-
J

1(Q, E) = exp(—2W)(hQ?/2Meg) [n(E) + 1] AE—*

where AFE is the energy window employed in the present
experiment, gg is an average wave vector over all those
modes entering such energies, and the rest of the symbols
retain the meaning given above. A different approach
was followed for the liquid, where in order to get the
correct intercept at zero frequency the procedure due to
Carneiro!® was followed. In this treatment, in order to
regain the limit at £ — 0, the experimental intensities
were divided by E?/[E%+(DrQ?)?], where Dt stands for
the macroscopic diffusion coefficient. Estimates for this
quantity were obtained from the analysis of the quasielas-
tic spectra as it will be described below. The resulting
function Z(F) is displayed in Fig. 3(b).

B. Collective dynamics

In order to analyze the TAS spectra of the nonzero
frequency excitations that are clearly visible in Fig. 4, the
scattering law for Sexc(Q, F) needs to be specified. Such
a contribution has been modeled in terms of a damped
harmonic oscillator,

Sexc(QaE) = ZWH(Q)[]- +n(E)]ED(Q7E2) (8)

to take account of the effects of these elementary exci-
tations. They are characterized by their renormalized
frequency Qg and an associated damping amplitude I'g
and described by the function

Iy hQo)2 —I'2
D(Q, %) — 2 Qy/ (7€) o ©)

T 7 [EZ = (R)7)? + 4E°TY,

suitably normalized to unity, fj:: D(Q,z)dx = 1. Func-
tion H(Q) acts as an appropriate strength factor inde-
pendent of the energy F and may be adopted by fit-
ting the experimental data. The semiphenomenological
ansatz (9) is based on the picture of a damped harmonic
oscillator. In the limit of no damping, function (9) rep-
resents a Dirac function, §[E? — (Aq)?], with sharply
peaked excitation energies hQdg and the strength fac-
tor H(Q) may be related to the static structure function
5(Q)

The relative importance of the components (4) and (8)
constituting the spectral function of the total intensity
can be gauged by comparing the measured and fitted
intensities shown in Fig. 5. To reduce the number of free
parameters our results on the function Sgef(Q, E) and
the coherent quasielastic contribution, Eq. (4), derived
from the high-energy-resolution experiment are used as

Z(E) 1
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ent broadening other than the one due to recoil motions
is therefore accounted for by the diffusive contribution.
A comparison of the experimental and fitted spectra is
also given in Fig. 2.
The density Z(E) of states (DOS) for the polycrystal
has been obtained from!8

/ S(Q + qz2)d, )

[

constants for analyzing the TAS data. In this way the
number of adjustable parameters reduces to four, i.e.,
*Qq, ', H(Q), and a global scaling constant B.

IV. RESULTS

A. Low-energy dynamics

1. Polycrystalline deuterium

The inspection of the S(©,FE) surface revealed the
presence of a series of intense elastic peaks (the funda-
mental powder peaks) at Q=1.99, 2.12, and 2.26 A~!
and a well-defined inelastic peak due to the para to or-
tho conversion.

The energy of the rotational peak, its linewidth, and
amplitude have a significant @ dependence. Such a find-
ing is in contrast with the theoretical predictions and
measurements! carried out more than two decades ago,
where no significant ¢ dependence was found. The
higher energy resolution and better counting statistics
of the IN6 spectrometer have therefore provided a test of
these predictions.

We have used the model proposed in Egs. (1) and (2)
to study this dependence and extract the relevant param-
eters.

The extrapolation @ — 0 of the wave vector depen-
dence of the linewidth gives a value of 0.45 meV which
coincides with the Elliot and Hartmann prediction but
contrasts with the value of 0.76 meV reported by Egel-
staff et al.! Also, the width of the elastic line arising from
contributions from J =1 — 1 and J = 0 — 0 transitions
has to be smaller than the experimentally achieved reso-
lution of 35 ueV.

A relatively small value of 7.20 meV for the J =1 — 0
transition energy was found rising up to 7.5 meV upon
melting, which is closer to the free rotor value. A possible
reason for such a reduction in energy may be the coupling
of rotation to lattice modes?%2! since estimates of the re-
duction in energy of 0.17 meV have been reported due to
this effect. A similar phenomenon has been reported for
solid hydrogen®? where a dependence on the concentra-
tion of ortho-H, has been found.

The @ dependence of the amplitude of the rotational
peak provides an estimate of the value of the Debye-
Waller factor. Contrary to the usual need of estimating
this magnitude from the intensity of the elastic peak, this
transition enables the estimation of the mean-squared
amplitude of vibration (u2?) almost free from systematic
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FIG. 2. Comparison of fitted and ob-
served TOF spectra for the solid at T=10
K and the liquid at 7=20.14 K. (a) Rota-
tional band contours: the experimental data
are shown as a solid line and the fitted model
as dots. (b) Quasielastic spectra: the experi-
mental data are shown as markers with their
respective error bars and the fitted model is
shown by the solid line. The incoherent con-
tribution, Sseif(Q, E), is shown as a dotted
line, and the coherent quasielastic intensity
is represented by dashes.
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errors associated with small variations of the elastic in-
tensity due to the correction procedures.? Our analysis
neglects crystal-field effects?® so that the wave-vector de-
pendence of the intensity of this peak can be analyzed in
terms of the free rotor function

IJ=1—+0(Q) = Aexp(_'%Qz(u2>)[j1(Qreq/2)]2a

where A is a scaling constant, which encompasses a nor-
malizing factor as well as the ratio of ortho/para species,
and j1(Qreq/2) is a spherical Bessel function with an ar-
gument given in terms of the wave vector and the equilib-
rium internuclear distance. The fitted function is shown
in Fig. 6. The estimate for the mean-squared amplitude
of vibration yields a value of 0.30 A2, which compares fa-
vorably with the estimate of 0.48 A2 previously reported

(10)
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FIG. 3. The upper and middle frames show, respectively,
the densities of vibrational states for the solid and liquid
phases of deuterium, as obtained from the TOF data. Both
curves are normalized to unit area. The bottom frame shows
the calculated specific heat at constant volume for the liquid
phase (solid lines). The open circles show the calorimetric
data and the error bars correspond to about 10% of the mea-
sured values.
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for solid Hy at T'=5.4 K by Nielsen? and of 0.46 A2 re-
ported by Bickerman et al.?2 once the different molecular
masses are taken into account.

From the density Z(FE) of vibrational states shown in
Fig. 3(a) and obtained using Eq. (7) it can be clearly
seen that the only prominent feature derives from the ro-
tational transition. The sound-mode contributions that
should appear at energies of about 6 meV,* according to
an estimate using a Debye model and the reported ve-
locity of sound, as well as optical data,?® are too weak
to be observed using this incident energy (Ep=4.8 meV).
Thus, further support is given to the decomposition of
spectral contributions proposed at the beginning of Sec.
II1.

2. Liquid deuterium

The most representative part of the S(©, E) surface is
shown in Fig. 7, where two different regions are clearly
seen. A relatively narrow incoherent quasielastic peak
dominates the scattering pattern at low angles (up to an
elastic-Q value of Q. =1.5 A~1), and a strong coherent
quasielastic response builds up from this value of mo-
Eentum transfer showing its maximum at about Q.=2.2

-1

The wave-vector dependence of these peak positions
and linewidths of the rotational peak in the liquid phase
is shown in Fig. 8. In contrast to the solid, the peak,
apart from being broader due to the presence of diffu-
sive motions, overlaps substantially with the coherent
quasielastic intensity. This fact introduces additional dif-
ficulties when trying to estimate accurately the peak po-
sition and its intrinsic width. As it can be seen from Fig.
2(a), this spectral contribution only shows a well-defined
shape within a narrow range of momentum-transfer val-
ues (between 1.0 and 1.25 A~1), so that the estimated
parameters are affected by relatively large errors in com-
parison with the solid. The rotational transition energy
estimated from the extrapolation Q —0 of the peak max-
ima is now 7.56(12) meV, in reasonably good agreement
with the values estimated from other spectroscopic® or
theoretical?! studies.

The @Q dependence of the amplitude and width of the
coherent and incoherent quasielastic peaks is shown in
Fig. 9. Coherent effects dominate the pattern so that the
maximum of the amplitude coincides with the maximum
of the static structure factor S(Q) at Q ~ 2.1 A~! mea-
sured for the liquid and reported in Ref. 24. It is worth
noting that the contribution from purely incoherent scat-
tering associated with the broadening of J =0 — 0 and
J =1 — 1 transitions that dominates the spectra at Q
values below 1.5 A~1, is rather small in the momentum-
transfer range where the energy window is large enough
to enable a proper analysis of the quasielastic line, since,
in this range of wave vectors, such a term only amounts
to a smoothly decaying background with an intensity of
about 5% of the total. In contrast, an estimation based
upon the static approximation'4 would predict a contri-
bution of these effects of about 26%.

From the wave-vector dependence of the width of the



15 104

spectral component Seei£(Q, E) at @ values well below the
maximum of the static structure factor, some estimate of
the diffusion coefficient can be extracted. For this liquid
the rotational motion due to its quantized nature can be
safely separated from the mass-diffusion motions (i.e., the
contribution of the rotational bands to the quasielastic
part of the spectrum is rather weak). Consequently, the
diffusive component may be analyzed within the frame-
work of the mode-coupling theory that has been success-
fully applied to studies of monatomic liquids and dense
gases. The Q dependence of the linewidth AE(Q), ampli-
tude Saig(Q,0), and their product can therefore be prop-
erly analyzed in terms of the mode-coupling equations?®

AE(Q) = @*[Dr — DrH(6)Q/Q" + 0(Q*?)), (11)

A

_ DZIG(6~HQ
Sair (Q,0) = 7622 [DTI + %

. + O(QS/Z)] ,
(12)
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AL+ B®)Q/Q" +0(@¥?)]

Sarn(Q.0AB(Q) = .

(13)

Here, Dt is the translational diffusion coefficient, § =
Dr/(Dr + v), v is the kinematical viscosity, and Q* =
16mBMnD2 is the wave number associated with a parti-
cle of mass M immersed in a fluid with number density
n and at a temperature T = 1/(kpB). The functions
G(671), H(8), and B(6) were calculated employing ex-
pressions given in Ref. 26. The resulting values for the
self-diffusion Dr coefficient and the kinematical viscos-
ity v are Dy = 0.3(1) and 19.6(1) A2 ps—!, respectively,
and the curves corresponding to these values are shown
in Fig. 9.

On the other hand, in order to perform a consistency
check for the obtained value of the diffusion coefficient,
the @ dependence of the amplitude of the elastic peak
up to Q=1.5 A1 (i.e., the region where the energy win-

-
15 20
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-20 -15 -10 s ° s T 1o 15 20

E (meV)

Q= 3.2 A*
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A sample of the fully corrected higher energy TAS spectra for the liquid at T=20.14 K at several values of the

momentum transfer. Note the difference in energy-transfer scales due to kinematical restrictions. The arrows mark the position

of the rotational transitions.
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dow in the constant-@ spectra is too small to allow any
detailed analysis of the shape, and the measured inten-
sities are dominated by the incoherent contribution), is
further analyzed in terms of an equation that includes
the hindering effects studied by Elliot and Hartmann,!
as well as the diffusive component described within the
mode-coupling formalism,

Ielast(Q) =A [4jg(Qreq/2)
+4/375(Qreq/2))Sain (Q, 0). (14)

Here, a normal deuterium composition is assumed (i.e.,
the equilibrium para-D; concentration of 1/3, close to
the value found for the solid runs, is assumed to be con-
stant during the experiment), A is a scaling constant, and
Sqie (@, 0) is given by the mode-coupling equations (14).
The value for the self-diffusion coefficient Dr=0.3(1)
A?ps—1 is found from a fit which is in good agreement
with the value of 0.28 A2 ps~—!, obtained from the width
and amplitude of the incoherent part of the quasielastic
line at larger wave vectors.

The contributions from the diffusive translational mo-
tions in the liquid phase are clearly apparent in the

" ;

S(QE)

S(QE)

FIG. 5.
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quantity Z(E) as depicted in Fig. 3(a). It has a max-
imum at about 2.0 meV and Z(0)=0.065 meV~! from
where a value of the diffusion coefficient may also be
obtained. This contribution from translational diffusion
closely resembles that one for classical liquids and sev-
eral relevant parameters characterizing this motion can
be derived from the analysis of this curve. In partic-
ular, the mean-intermolecular vibrational energy, Ep,
may be estimated from a fit of the itinerant-oscillator
model?” to the measured data on function Z(E). The
fit yields Fy = 2.1 meV corresponding to a frequency of
0.508 x 10'2 Hz.

The heat capacity of the liquid has also been
evaluated?® and compared with the experimental
data?930 as it is shown in Fig. 3(c). The neutron data are
consistently above the experimental values as it should
be expected since the heat capacities are evaluated in the
harmonic approximation.

The low-energy collective dynamics can be reasonably
well represented by the model scattering laws described
above. However, systematic discrepancies appear on the
neutron energy-loss side of the spectra corresponding to
Q@ values around the maximum of the structure function

S(Q). As a matter of fact, a hump located at about
4 - ( b )
s

g

n 2

E (meV)

S (QE)

Comparison of fitted and observed TAS spectra for liquid deuterium. The experimental points are shown with their

respective error bars. The fitted model is shown by the solid line. The excitation spectrum which corresponds to the DHO is
shown by the dotted line. The rotational contribution can be seen as a long-dash line which shows peaks at energy transfers
of zero and 7.5 meV. The quasielastic contribution representing diffusive and low-energy coherent effects can also be seen as a

Lorentzian (small dashes). :
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FIG. 6. Wave-vector dependence of the intensity for the

J = 1 — 0 rotational peak in the solid at T'=10 K. The solid
line is a fit using the model given by Eq. (10).

2.4 meV can be seen in the spectrum corresponding to
Q=1.6 A~! (Fig. 1) which does not show any measurable
wave-vector dependence. Such an energy is too low to
correspond to any of the lowest-lying phonon excitations
which are located at about 4.8 meV, and it is obviously
difficult to ascribe it to any significant form of collective
effects. On the other hand, the energy-loss sides were
in all cases well approximated by the model scattering
functions.

The wave-vector dependence of the linewidth and am-
plitude of the coherent component of the quasielastic re-
sponse are shown in Figs. 9(b) and 9(d), respectively.
The most noticeable feature that can be seen is the sub-
stantial narrowing at a wave vector @, that corresponds
to the maximum of the static structure factor S(Q) (i.e.,
de Gennes narrowing), and the approximate coincidence
of the extrema of this function with those of the excita-
tion curve discussed in the next section.

B. Collective dynamics

From inspection of the liquid phase spectra shown in
Fig. 4 and measured using an incident energy of 34.9

q

d

/w/l/// ///

FIG. 7. S(©, E) surface for liquid deuterium at 7'=20.14
K illustrating the low-energy inelastic response.
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meV, well above that characteristic of sound-mode exci-
tations, it can be observed that

(i) A clear, though broadened, inelastic contribution
is apparent on the neutron energy-loss side of the spec-
tra for all the momentum-transfer values covered by the
present experiment.

(ii) Such a finite-frequency feature which also contains
superimposed to it the J = 0 — 1 rotational transition,
shows dispersion to higher energies up to wave vectors of
about 1.0 A~!. From Q=1.0 A~! to Q=2.1 A1, a shift
of the peak position to lower energies is observed. From
the latter value of Q to the maximum value of momentum
transfer achieved in this work (Q=3.8 A~!) a progression
toward higher energies can be noticed.

(iii) The observed wave-vector dependence, therefore,
cannot be attributed to recoil effects since these would
evidence as a parabolic dependence on Q.

The wave-vector dependence of the renormalized exci-
tation frequencies, g, as well as the damping factors,
T'g, are shown in Fig. 10. The approach to the hydrody-
namic limit which is shown as a dashed line in the graph
can be accounted for in terms of

Mg R

2
2 = orQ+ B, (15)

where By=47 K A2 is a measure of the departure from hy-
drodynamic behavior and v7=1090 ms~! is the isother-
mal sound velocity. The phase velocity of the excitation
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FIG. 8. Wave-vector dependence of the parameters char-
acterizing the rotational peak in the liquid at 7=20.14 K. The
upper part shows the Q dependence of the intrinsic width and
the lower frame the transition energy.
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at low wave vectors is shown in Fig. 11. A dramatic
amount of positive dispersion (i.e., sound velocities well
above the hydrodynamic limit) is clearly seen up to wave
vectors of about 1.0 A~1.

The measured velocity of sound thus correlates well
with previously reported values for the adiabatic sound
velocity measured by means of an ultrasonic technique3!
of vo= 1040 ms™1.

Near the minimum, the dispersion curve is well ap-
proximated by a parabolic function of type

hQq = K*(Q — Qr)?/2Meg + A (16)

in close analogy with the dispersion in the roton mini-
mum of liquid “He. The values characterizing the posi-
tion of the minimum @ g, the effective mass Mg, and the
energy gap A were found to be 2.08 A=, 0.072 times the
mass of a deuterium molecule, and 42.8 K, respectively.
Beyond the roton minimum, some intensity is trans-
ferred from the one-phonon response to the multiphonon
contribution, a fact that complicates the detailed anal-
ysis of this region if approximations more refined than
the Gaussian are required.!* In particular, the mixing of
multiphonon and recoil effects leads to difficulties in the
accurate estimation of the Qg frequencies and I'g damp-
ing factors for wave vectors above 2.5 A=1. The fact that
the maxima of the broad multiexcitation contribution is
located at 10.3 meV and the relatively low temperature
at which the experiment was performed, made this con-
tribution rather small even at larger wave vectors. As
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a consequence, the spectral line shapes were well repro-
duced using the simplified approximation followed in this
work.

The results on S(Q, E) may be exploited to derive
some information on the static structure function S(Q)
via the sum rule (zero moment)

+oo
[ s@muar=s@.

—00

(17)

Integrating the fitted functions yields the curve in Fig. 12.
It can be compared to theoretical results derived within
the correlated density matrix theory32 on the intermolec-
ular static structure function Scm(Q). Adopting the ap-
proximation of uncorrelated rotational and translational
motions, the total static structure function is given by33

5(Q) = 3 + f1(Q) + £2(Q)[Sem(Q) — 1], (18)
with the molecular form factors

f1(Q) = (1/2)4o(Qreq), (19)

f2(Q) = [jO(QTeq/z)]z- (20)

Figure 12, upper frame, gives a comparison of the
theoretical and experimental center-of-mass function
Sem(Q).

We may also compare the results on the excitation en-
ergy idq, the phase velocity ¢(Q) (Fig. 11), the amount
of dispersion, the strength factor H(Q), and the vari-
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; 1.2
® _
E o8
a .
= 0.4
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QA

Q dependence of the parameters which characterize the quasielastic scattering in liquid deuterium. (a) Incoherent

linewidth and its calculated dependence using Eq. (12), (b) linewidth of the coherent quasielastic structure factor [see Eq.
(4)]. The values above @=2.4 A~! correspond to estimates from the analysis of the TAS spectra. (c) Elastic intensity at low
momentum-transfer values [see Eq. (13)] and (d) total amplitude for elastic scattering of the low-energy spectra [see Eq. (4)].
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ous sum rules with theoretical results on these quantities
derived within the correlated density matrix theory.32:34
At present, this approach is realized on the level of the
single-mode approximation, Eq. (8), without damping,

D(Q,E?) = §{E® - [E*(Q)]*}, (21)

H(Q) = s8(@tant (5@ . (22)

The calculation has been done at a temperature 7=20 K
and a (molecular) number density ¢ = 0.027 A™%. The
latter should be comparable to the experimental density
corresponding to the experimental pressure p = 2 bars.
Our results on the excitation energy E*"(Q) are shown
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FIG. 10. The upper part shows the excitation energies
(solid line and full circles) and the recoil curve for a particle
with a mass equal to that of the deuterium molecule (dash-
dots) The results from the density-matrix calculation is given
by the solid line. The curves above the experimental results
are the fits to the roton [Eq. (17)] and phonon [Eq. (16)] parts
of the dispersion curve. The middle frame of the figure shows
the damping factors, and the lower frame shows the H(Q)
one-phonon structure factor.
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FIG. 11. (a) Excitation phase velocities (solid line and
full circles) derived from the TAS results. The filled square
shows the value of the adiabatic velocity. The curve corre-
sponding to the calculation is shown as the solid line below.
(b) Deviation from hydrodynamic sound (positive dispersion)
expressed in percent.

in Fig. 10 while the phase velocity c(Q) = E*(Q)/hQ
is compared to the experimental values in Fig. 11. The
comparison of the experimental and theoretical excita-
tion energies, i and E*(Q), respectively, shows fair
agreement in the general shape of the curves, in partic-
ular in the locations of the maximum (“maxon region”)
and minimum (“roton region”) in @Q space, whereas sys-
tematic differences clearly occur in the energy values,
especially in the phonon and maxon regions. To some
extent, this is unexpected, as it is well known that the
neglect of backflow3® fails to bring down the Feynman
rotons to the experimental values but has little effect on
the phonons in liquid “He. However, once this discrep-
ancy in the overall scaling of the two curves is accepted,
the comparison shown in Fig. 11 for the phase veloci-
ties of the excitations evidences the fact that the large
amount of positive dispersion shown by the experimental
data is reproduced in the calculation although the calcu-
lation seems to deviate from the hydrodynamic limit a
great deal more than an extrapolation of the experimen-
tal behavior.

V. SUMMARY AND DISCUSSION
A. Low-energy dynamics
The quasielastic response of liquid and solid deuterium

has been studied by means of TOF neutron scattering,
and the spectra have been analyzed on a quantitative
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basis. Although most of the spectral features have been
taken into account, small but significant deviations from
the model-scattering law still persist. In particular, the
low, finite-frequency response observed in the liquid by
TOF at momentum-transfer values around Q,, the Q
value for the maximum in S(Q) (see Fig. 1) remains to
be assigned to a collective dynamical process.

From the study of the inelastic rotational peak in the
solid and liquid phases, it has been shown that small but
noticeable dependences with the wave vector exist and,
therefore, can be exploited for detailed studies on the
ortho- and para-concentration dependences of the peak
parameters. In this respect, TOF neutron spectroscopy
could provide complementary information to that derived
from NMR on solid mixtures of ortho- and para-Hs and
D3, on these systems which are considered to be clear
examples of the orientational glassy state.3¢ Additional
studies in the solid phases of both Hy and D, using
higher energy resolution could provide valuable informa-
tion regarding the magnitude of such effects as rotational-
translation coupling.

The coherent quasielastic response of this liquid can
only be understood in semiquantitative terms since a
model for collective reorientational motion at this length
scale is still lacking.

The quantum effects on this system have already man-
ifested as the rather large values of the amplitude terms
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entering the Debye-Waller factors in the solid phase. Al-
though the rotational motion is a well-known quantum
characteristic in these system, the diffusional behavior
in the liquid phase can be well understood in classical
terms.

B. Collective dynamics

The collective character of the excitations observed by
means of TAS spectroscopy is manifested by the strong
wave-vector dependence of the inelastic intensities illus-
trated in Fig. 4. This dependence cannot be accounted
for solely in terms of single-molecule inelastic contribu-
tions to the scattering cross section, although, from a
cursory glance, the origin of the observed intensities at
certain values of the momentum transfer (Q values about
1.0 A~1) could be tentatively assigned to rotational tran-
sitions. Such an attempt would not stand a comparison
with spectra outside those particular values of @ and
would result in ratios of the intensities for the AJ = 0
and AJ = 1 rotational transitions well away from the
theoretical values predicted from the formulas by Elliot
and Hartmann.! Further support for the collective na-
ture of the observed response comes from simple consid-
erations regarding the frequency moments of the experi-
mental spectra shown in Fig. 12. While no @ dependence
is found which can be identified as corresponding to ro-
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tational transitions, the structure factor and the “dis-
persion relation” showing a characteristic minimum at Q
values near the maximum in S(Q) are recovered.

From the values of the renormalized excitation fre-
quency Q¢ and damping factor I'g (Ref. 37) of the col-
lective density excitation two different regions within the
explored momentum-transfer range can be distinguished:
a small damping (I'y < hzﬂzQ /2) region which extends
up to Q values of 1.1 A~! where well-defined inelastic
side peaks are clearly visible in the TAS spectra and an
intermediate region where h292Q /2 <T% < hzﬂé, cor-
responding to spectra where the inelastic contribution is
apparent, although well-resolved peaks are not present.
Such a region covers Q values from Q=1.1 A-! to 3.8
A1, although in the present case it becomes difficult to
distinguish if such inequality still holds near the mini-
mum in the dispersion curve. The finite-energy feature
clearly apparent in the spectra below this value of the mo-
mentum transfer becomes difficult to distinguish about 2
A~1 due to a strong reduction in the bare frequency. This
reduction is normally observed even in classical liquids
when the maximum of the structure factor is approached
(see Refs. 38 and 39 for two representative examples).

The dispersion behavior shown in Fig. 10 can be cor-
related with those reported for solid D, (Ref. 5) at zero
and 275 bars of applied pressure. As a matter of fact, the
maximum excitation frequency correlates well with those
measured in the solid phase at the Brillouin zone bound-
ary. The density of vibrational states, Z(F), has also
been calculated from the measured TAS spectra follow-
ing the approximation given in Eq. (7), and the resulting
curve is shown in Fig. 13. From comparison between the
Z(E) displayed in Fig. 3(b) for liquid deuterium and the
curve shown in Fig. 13 corresponding to the density of
states derived from the fitted functions to the TAS spec-
tra (i.e., without effects due to instrumental broadening)
it becomes apparent that a large number of excitations
appear between the low-frequency region, which is dom-
inated by low-energy coherent excitations which also ap-
pear in the TOF data and the J = 1 — 0 rotational peak.

E (meV)

FIG. 13. Z(FE) vibrational density of states derived from
the TAS measurements. The solid line shows the result of the
calculation of Z(E) from the fitted model scattering law. It
should be compared with the density of states shown in Fig.
3(b). The dashed line below represents the multiexcitation
contribution which has been magnified ten times.
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Such excitations correspond to vibrational states weakly
populated at 7'=20.14 K (a calculation of the occupation
number for frequencies corresponding to the maximum
of the dispersion curve gives a population factor of about
1%), so that their observation only becomes possible if
the energy of the impinging neutrons is higher than about
7.8 meV.

The dispersion curve measured in the present work can
also be compared with the one reported for liquid He in
the normal liquid phase at 7=3.1 K.%° The reported max-
imum excitation frequency occurs at about 1.2 A=1 and
a minimum is seen at about 2 A=, which are rather close
to the results presented in this work. The corresponding
excitation frequencies, once the different definitions of
Qg are taken into account, are about 25.4 and 21 K, re-
spectively, which are, as expected, far lower than the ones
for liquid D,. However, the relative contribution of the
damping terms seems to be somewhat more important
for normal liquid *He than for liquid D,. Such a fact can
be understood from consideration of the relative values
of the reduced temperature T = kgT/e€g, where €y is the
parameter characterizing the depth of the intermolecular
potential, and the microscopic Griineisen parameter vg
which accounts for anharmonic effects. Since the damp-
ing effects are known to depend strongly on both the
thermal population and anharmonicity, it is clear that the
damping effects become stronger for larger values of T*
and vyg. The reduced temperatures for both experiments
are, respectively, 0.31 for He at T=3.1 K and 0.55 for lig-
uid D7 where the standard value for the potential param-
eter of €9/kp=36.7 K has been used. On the other hand,
the Griineisen parameter for “He at the reported temper-
ature has been estimated to be equal to 3.1, whereas an
estimation using data for solid D2 (Ref. 4) gives a value of
Y6=1.63. It seems therefore that although the thermal
population parameter would lead to stronger damping
effects in liquid Dy than in normal liquid 4He, the an-
harmonicity contribution can effectively counterbalance
this effect. These reflections are also in line with the
comments made by Pedersen and Carnerio,® about the
intercomparison between normal 4He and liquid Ar and
Rb as to the observability of collective excitations. In
fact, liquid D5 seems to support collective excitations un-
der conditions of smaller thermal population and smaller
anharmonicity than liquid Rb.

A quantitative comparison between the correlated-
density-matrix theoretical approach and experiment is
difficult due to the different meaning of the excitation fre-
quency in both cases. Since the model-scattering law em-
ployed for the analysis of the inelastic response is based
upon a damped harmonic oscillator response function, it
seems natural to assign a physical meaning to the renor-
malized excitation frequency Qq.37 On the other hand,
the calculations have been performed in the limit of no
damping and an intermolecular potential function of a
pure Lennard-Jones type has been used, which ignores
electrostatic (quadrupolar) interactions generated by the
presence of rotationally excited para-Ds molecules. But
these very interactions are responsible for the broaden-
ing of the low-energy spectra in mixtures of ortho and
para components. The presence of substantial amounts
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of para-D, is known to increase the number density of the
liquid4! and such a fact can partially explain the differ-
ence between the calculated and measured curves. Addi-
tionally, since the static structure function S(Q) has been
calculated within an integral equation approach based
on a restricted trial ansatz for the density matrix and
by adopting a number of approximations, such as the
HNC/0 approximation and the separability assumption
(see Appendix), some systematic discrepancies between
theory and experiment are expected. It is now known,
e.g., that the closure relationships derived from integral
equation approaches, are unable to reproduce the mea-
sured structure factors with the statistical accuracy now-
a-days available in diffraction experiments.4?

Although a more refined version of the theory is defi-
nitely needed to enable a quantitative comparison, some
relevant features are clearly apparent in results from both
theory and experiment. In particular, the large amount
of positive dispersion at low-momentum-transfer values
is now substantiated in both cases, and the percentage
deviation from hydrodynamic behavior is now confirmed
to be far larger than the one found for liquid 4He in the

superfluid phase, where the most recent estimate is about
4%.43
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APPENDIX: THE
CORRELATED-DENSITY-MATRIX APPROACH

Within the framework of this approach, the elemen-
tary excitation energy E**(Q) and the structure function
Sth 1(Q) are optimally determined by solving two coupled
Euler-Lagrange equations with the intermolecular poten-
tial as microscopic input. Both quantities are, at present,
described within the Feynman approximation in conjunc-
tion with the HNC/0 approximation. Thus, backflow is
ignored. The equations have the form of a generalized
Feynman equation

B @tant (5E4(Q)) = Ban(Q/S5(@,  (A)
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Eyin(Q) being the kinetic energy of a deuterium molecule,
and of a paired-phonon condition
1Ban(Q)[L - 5%(Q)] = $&(Q), (A2)
with a generalized structure function S th1(Q) defined
explicitly in Ref. 32. The solutions yield the optimal
excitation energy E*"(Q) and optimal structure function

Sth1(Q) (in HNC/0 approximation) for a correlated N-
particle trial density matrix of Jastrow form

N N
1 )
W(R,R/) = exp {Z ullr: = ;) + D (e — )
i<j %,J
M1
+_ Sullri - r;-l)} / Iv,  (A3)
i<j
where R = (r1,...,ry) denotes the positions of N Dy

molecules that are distributed in a large volume with
a homogeneous number density g. For simplicity we as-
sume that the molecules interact with each other, in some
angle-averaged sense, via a pair potential of Lennard-
Jones form

o= [(2)" - (22)7,

with parameters ep; = 35.24 K and o5 = 2.958A advo-
cated in Ref. 44, and we also ignore the rotational degrees
of freedom for the present purpose.

The normalization integral Iy appearing in Eq.
(25) ensures that we have the property Tr{W} =
JdRW(R,R) = 1, and the input functions u(r) and
~(r) are chosen to minimize the Helmholtz-free energy

(A4)

FW]=Tr{WH + 3 'Whh W} (A5)
associated with the trial statistical operator W at a given
temperature T = kgB~!. This procedure is motivated by
the Gibbs-Delbriick-Moliére minimum principle, stating
that quantity (27) establishes an upper bound for the
exact free energy calculated from the equilibrium statis-
tical operator Wy = exp{—3(H — F)} associated with
the Hamiltonian H of the system. As described in detail
in Ref. 32, the optimization is performed within the sep-
arability approximation, leading to the Euler-Lagrange
equations (23) and (24).

We have numerically solved these equations using the
same iteration scheme that has proved successful in the
liquid “He (Ref. 32) and H, (Ref. 45) problems.
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C-1V, Facultad de Ciencias, Universidad Auténoma de
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!Theoretical and experimental studies concerning the dy-
namics of condensed hydrogen and deuterium are reported
in R.J. Elliot and W.M. Hartman, Proc. Phys. Soc. Lon-
don 90, 671 (1967); P.A. Egelstaff, B.C. Haywood, and F.J.

Webb, Proc. Phys. Soc. London 90, 681 (1967). Note that
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