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The giant magnetoresistance (GMR) in magnetic multilayers at finite temperatures is studied
with the use of the functional-integral method in the static approximation. Numerical calculations
are performed by using a simple model. The effect of spin fluctuations is shown to play important
roles in discussing the temperature-dependent GMR. The temperature dependence of the calculated
GMR is much larger than that of the magnetization, and it shows an almost linear decrease near the
Curie temperature when the temperature is raised. It is also shown that the temperature dependence
of the GMR is more significant in a multilayer with a larger ground-state GMR. Our calculation
accounts well for the GMR feature observed in many transition-metal multilayers.

I. INTRODUCTION

During the last few years, the giant magnetoresistance
(GMR) and related phenomena2 have been intensively in-
vestigated in many magnetic multilayers. Theoretically,
the ground-state GMR has been studied with a semiclas-
sical approach ' using the Boltzman equation or a mi-
croscopic approach based on the Kubo formula. The
GMR at finite temperatures has been discussed so far
using the local-spin model. Since most magnetic multi-
layers consist of transition metals, it is desirable to study
their GMR based on the itinerant-electron model.

It was a long-standing problem whether various phys-
ical properties of transition metals can be described
by the local-spin (Heisenberg) model or the itinerant-
electron (band) model. The Curie-Weiss susceptibility
and the large specific heat near the Curie temperature
are explained by the former model while the nonintegral
ground-state moment, the large specific-heat coefIicient,
and the high conductivity favor the latter model. It has
been realized that these two aspects can be reconciled if
we take into account the effect of spin fluctuations, which
is neglected in the conventional Hartree-Fock approxima-
tion to the itinerant model. Hasegawaii and Hubbard
independently proposed a finite-temperature band the-
ory for bulk magnetism with the use of the functional-
integral method within the static approximation. It is a
mean-field theory in which the system is regarded as a
collection of local magnetic moments. This approach has
proved useful in understanding the magnetic, thermody-
namical, and transport properties of transition metals at
finite temperatures. In particular, it has been shown 3

from a comparison with Monte Carlo simulations that
our theory well reproduces the U-T phase diagram of
the simple-cubic and infinite-dimensional Hubbard
models (U: interaction, T: temperature). This method
has been successfully extended and applied to transition-
metal alloys and multilayers.

Quite recently, the present authors derived a simple,
analytic expression for the conductivity of magnetic films
using the coherent potential approximation (CPA). is

The conductivity for currents parallel to the interface
is given in terms of the coherent potential (one-electron
self-energy) of film layers. By employing the expression
obtained, we have discussed the ground-state GMR of
magnetic multilayer.

The purpose of the present paper is to incorporate the
effect of spin fluctuations into the calculation of the con-
ductivity of magnetic multilayers in order to discuss their
GMR at finite temperatures. The paper is organized as
follows: In Sec. II we discuss the calculation method of
the conductivity and GMR, after briefly reviewing our
spin-fluctuation theory. Numerical calculations using a
simple model are presented in Sec. III. Section IV is de-
voted to conclusion and supplementary discussion.

II. CALCULATION METHOD

A. The spin fluctuation theory
in the static approximation

We assume an Nf-layer thin film consisting of mag-
netic A and nonmagnetic B atoms with the simple-cubic
(001) interface. The layer parallel to the interface is as-
signed by the index n (= 1 —Nf). We assume that A and
B atoms are randomly distributed on layer n with the
concentrations of x„andy„,respectively (z„+y„=1).
For a given thin film, we adopt the single-band Hubbard
model given by

H = ) ) ssc&sos+) ) t&lc&sets+) U&n&'ln&i,
s j s jl 3

where t"j, is an annihilation operator of an electron with
spin s(=t', j,) on the lattice site j, ns, = c,cs„and tst is
the hopping integral. The atomic potential, ej, and the
on-site interaction, Uj, are assumed to be given by e~ and
U" when the lattice site j is occupied by a A (= A, B)
atom.

For a study of the finite-temperature band magnetism
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of the magnetic film, we adopt the single-site functional-
integral method proposed by the present author. ii When
we apply the functional-integral method to the model
Hamiltonian given by Eq. (1), the partition function is
given within the static approximation by

dv~ d(,~ exp[ P—(4'o+ 4i)],

with

P, = ( / ) ) U, (,' + (,'),

H.s = ):).[(eg —(~/2)U~v~) n~ -(1/2)sU~G ~~l+~o.

(5)

Here n~ = nip + A2l) ~2 ~2T 2l~ and Hp de-t

notes the second (hopping) term in Eq. (1). Equations
(2)—(5) show that the partition function can be evalu-
ated by calculating the partition function of the effective
one-electron system given by H,p including the random
charge (vz) and exchange ((~) fields. The former field
is included by the saddle-point approximation and the
latter field by the alloy-analogy approximation with the
CPA. By using the decoupling approximation, we modi-
fied the CPA equation as given by s

exp( —Pgi) = Tr exp( —PH, lr), (4) with

e" —s(U" /2) (&') —~ ~ + [(U"/2)'((&")') —(~ ~
—e")']+ ~

[1 —(e" —~-)+-]' —(U.'/2)'((4.')')

((') = d0 4 &."((.) (8)

where eA = eA + (U„"/2)(N„"),the coherent potential for
an s-spin electron on the layer n, Z„„is a function of c~,
((„"),(((„")s)end (N„"l(= —t(n„")).The self-consistent
equations for ((A), (((„)2),and (N„")are given by

(r = Nf ) (T„,

with

cr„=(e/h) vr) )
s

(13)

~f 8 thl8 tll8
(14)

Of~) v G 'r

)(
(9)

(N„)= de f (e) ) (—1/vr) ImEA, (e), (10)

where f(e) is the Fermi-distribution function. We should
note that FA, (e), the local Green function of an s-spin
electron at a A atom on layer n, and C„((~),the distribu-
tion of the potential of (U /2)(~ when a A atom occupies
the layer n, are functions of the coherent potentials, Z„„
which are functions of ((A), (((A) ), and (N„")[Eqs. (6)
and (7)). Thus these quantities must be solved simulta-
neously, details having been reported elsewhere. ii is i7

Once these are determined, we can obtain various
physical quantities. For example, the average of the mag-
netic moment and its root-mean-square (rms) values of a
A atom on the n layer are given by

(MA) (qA)

((MA)2)1/2 [((qA)2) (2T/UA)]1/2

where A„,= ReZ„,(e), 6„,=] ImZ„,(z) ~, and a„l,and
v, are specified by the electronic structure of the Elm
[see Eqs. (19) and (20) in Ref. 8]. When we employ the
formalism mentioned in the previous subsection, we can
self-consistently calculate the coherent potential E„,as
well as (M„")and ((M„")2),and then the film conductiv-
ity (T by using Eqs. (13)—(15). Leaving such a detailed
calculation to our future study, we adopt, in this paper,
a semiphenomenological approach in discussing the tem-
perature dependence of GMR.

We assume that magnetic layers Mq and M2 are sepa-
rated by a nonmagnetic layer. When magnetic moments
on the magnetic layers are in the antiferromagnetic (AF)
and ferromagnetic (F) configurations, their conductivi-
ties are given by

"' = 4 "'/(&1 + &i)

B. Conductivity and GMR

It has been shown that the conductivity for currents
parallel to the Glm layer is given, within the Born ap-
proximation, by8

o. = c [1/Ag + 1/Al],

where

c" = (e/h, )2~v Nf
' ) ) a„l~„"„

n6M1 lC Mg

(17)
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where rI = AF and F, and the contribution from the inter-
layer scatterings between the magnetic layers is assumed
to be predominant. We may employ the T = 0 limit of
Eqs. (13)—(15) because the relevant temperature is much
less than the Fermi energy. Then the MR ratio is given
by

with

m = (M )/Mp, p = ((M~)2)/Mp,

B = (2/UAMp)(err —eA), C = (2/ep U Mp)

(28)

(29)

with

(~AF ~F) (~F ~AF )
~F ~F ~AF

(a —1)~ b(a + 1)
4a 4a(1 —b)

'

F AF)/ F

(19)

(20)

where g = y and Mp is the ground-state moment. At
T = 0 K, a and b become

ap = a(T = 0) = [(B+ 1)/(B —1)],

bp = b(T = 0) = 1/[1+ 6-' g'(B'+1)'],

(30)

(31)

from which the coefIicients B and C are expressed in
terms of ap, bp, and g as

A, = x e" —s
~

(M") + y e~, (21)

where R" is the resistivity in the rl (=AF, F) configura-
tion. The First and second terms in Eq. (19) show the
short-circuit and valve effects, respectively. The short-
circuit effect means that the total conductivity of the F
states is generally larger than that of the AF state be-
cause higher-conductive t'- (or j.-) spin channel of the F
state shortcuts the circuit, as was discussed in Refs. 3—6.
On the contrary, the valve effect arises from the g depen-
dence in r„i,in Eq. (15), which plays the role of a valve
in the transmission process between layers n and l.

Now we evaluate the conductivity, taking into account
the effect of spin fluctuations. The real and imaginary
parts of the coherent potential in the Born approximation
are given from Eqs. (6) and (7) as

B = (V&o+ I)/(v ao —1)

& = [bp/(1 —b. )) g' (B'+1)'

(32)

(33)

If m and p are given, we can calculate the MR ratio with
the use of Eqs. (19), (25)—(27), (32), and (33), treating
ap, bp, and g as parameters. Physical meanings of these
parameters are obvious: ap and bp are ground-state val-
ues of the asymmetry factors a and b, and g expresses
the measure of the purity of the film. We may see in
Eqs. (25)—(27) that a = 1 and b = 0 at T ) T~ while
a = ap and b = bp at T = 0 K. It should be pointed out
that the contribution from the so-called spin-flop pro-
cess is implicitly included in Eqs. (25)—(27) through the
spin-fluctuation term, which is responsible for a decrease
in (MA) when the temperature is raised. In the next
section, we report numerical calculations using simple
expressions for m and p, given by

with

m= V'1 —t', p=1 (t =T/Tc). (34)

A~ = 7rpxg e —e —s 1(M )&2) (23) III. CALCULATED RESULTS

(U~) '
&' = p [((M")') —(M")')

)
(24)

(Ag —Ai)
KAr —Ar)'+ (&r + &i)']

m2

m +C— [g(B +m)+(p —m)]

(26)

(27)

where e" = e" + (U"/2) (N") (A = A, B), U+ = 0 for a
nonmagnetic B atom, and p is the density of states at
the Fermi level. In deriving Eqs. (21)—(24), coherent po-
tentials were assumed to be the same within the Mi or
M2 layer, and the 2T/U„" term in Eq. (12) was neglected.
The First term (4,") in Eq. (22) arises from the scatter-
ings due to random Hartree-Fock potentials for an s-spin
electron and the second term (4') comes from the effect
of spin fluctuations. Equations (16)—(24) lead to

g (B+m)2+ (p2 —m2)

g (B —m)2 + (p2 —m~) '

Calculated resistivities for AF (R ) and F states (R )
for various ap with fixed values of g = 0.1 and bp = 0 are
shown in Fig. 1(a), where they are normalized by R+, the
resistivity at the Curie temperature. When the temper-
ature is raised, both R and R increase. The relevant
MR ratio plotted in Fig. 1(b) is shown to have a more
considerable temperature dependence than the average
moment, m. It is demonstrated that a film with a larger
ground-state GMR has a more significantly temperature-
dependent GMR. The MR ratio for the case of relatively
small ap (= 1.5, 2) is plotted in the inset, where the GMR
curves show a quasilinear decrease above T/Tc 0.3
with raising the temperature. These are consistent with
the results observed in many magnetic multilayers.

We investigate the temperature dependence of the re-
sistivity in more detail for the typical case in which
ap ——5, bp ——0, and g = O. l. The difference be-
tween BAF and BF, plotted in Fig. 2(a), is proportional
to Tc —T at 0.3 & T/T~ & l. It comes from the
temperature-dependent asymmetry ratio, a = ET/Ar,
shown in Fig. 2(a) where the imaginary part of the self-
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energy of an s-spin electron, 4„is also plotted. These
behaviors near the Curie temperature are easily under-
stood from the expressions obtained from Eqs. (16), (17),
(19), and (25) as

4, /4 1+spm —qm, a 1+2pm+2p m, b rm,
(35)

R /R 1 —(q —r)m, R /R 1 —(p + q)m,
(36)

~R/R' = (p'+ r)m',
with

p = »&/(»'+ ~') q = (1 g)/(g—&'+
C '),
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(37)
r = &/(»'+ u')'

valid for T & T~ where m oc (T~ —T). Figure 2(b)
shows the decomposition of 6, to the random-potential
and spin-fluctuation terms: 6, = 4," + 6'. When the
temperature is raised, Ar& decreases while 4& increases
since the magnetization, m, decreases. On the contrary,
the spin-fluctuation term, 4', monotonously increases up
to the Curie temperature. The increases in B and B
are mainly due to the contribution from 4'.

Figures 3(a) and 3(b) show the temperature depen-
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FIG. 2. (a) The temperature dependence of the resistiv-

ities of AF (RAF) and F states (R ), and their difFerence,

& ~ —RF, normalized by R for ao = 5, g
bo ——0. The imaginary part of the s-spin self-energy, A,
normalized by 4, its value at T = T&, and the asymmetric
ratio, a = Ar/b, t (dot-dashed curve), are also plotted. (b)
The decomposition of A to A, = A", + A'.
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FIG. 1. (a) The temperature dependence of the resistiv-

ity R/R of AF (solid curves) and F states (dashed curves)
normalized by R, the resistivity at T = Tc. (b) The MR
ratio, AR/R = (R —R )/R, for various ao with g = 0.1
and bo ——0, the inset showering the enlarged plot of the GMR
ratio for ao ——1.5 and 2.
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FIG. 3. (a) The temperature dependence of the resistivity
and (b) the MR ratio for various g with ao = 5 and bo = 0,
notations being the same as in Fig. 1.
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FIG. 4. The ground-state MR ratio as a function of ap
and bp.

dence of the resistivity and the MR ratio for various g
with fixed values of ao ——0.1 and bo ——0. A film with
smaller g has the lower residual resistivity as expected,
and its MR ratio has more significant temperature de-
pendence. In the limit of g ~ 0, the contribution from
the spin-fiuctuation term to 4, is predominant, and it
yields the temperature-dependent resistivity as observed
in pure, bulk Fe (when the electron-phonon contribution
to the resistivity is properly subtracted from the exper-
irnental data). 24 In this g = 0 limit, there is no differ-
ence between R and B, and the MR ratio vanishes.
In the opposite limit of g = oo, where there is no con-
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FIG. 5. (a) The temperature dependence of the resistivity
and (b) the MR ratio, for various bo with ap = 5 and g = 0.1,
notations being the same as in Fig. l.

tribution from the spin-fluctuation term, R decreases
while R increases when the temperature is raised [see

and A~& in Fig. 2(b)]. According to experimental

data, however, both R and R increase with raising
the temperature. Our calculation shows that the
spin-Huctuation contribution, 4', is crucial to account
for the observed temperature dependence of the resis-
tivity (RAF, R ) and GMR, while the random-potential
contribution, 6„is indispensable to yield the GMR.

So far we have studied the short-circuit effect given by
the first term of Eq. (19). In order to investigate the valve

effect expressed by its second term, we made calculations
with finite bo values. Figure 4 shows the ground-state
MR ratio as a function of ao and bo The. valve effect
works to enhance the GMR. The calculated temperature
dependence of resistivity and the MR ratio are plotted
in Figs. 5(a) and 5(b), where the bo value is changed
but with ao = 5 and g = 0.1. As bo is increased, the
ground-state MR ratio is increased and its temperature
dependence becomes significant.

IV. CONCLUSION AND DISCUSSION

We have discussed the temperature dependence of the
resistivity and the GMR in magnetic multilayers. We
have elucidated the mechanism of their temperature de-

pendence, showing that spin fiuctuations play primary
roles at finite temperatures. Numerical calculations us-

ing the simple model demonstrate that the temperature
dependence of the calculated GMR is much larger than
that of the average magnetization. The temperature vari-
ation of the MR ratio is shown to become more con-
siderable in a multilayer with the larger ground-state
MR ratio (larger ao and/or bo) and/or better purity
(smaller g). Our calculation accounts for, at least qual-
itatively, the feature observed in many transition-metal
multilayers. 9

Because our spin-fluctuation theory employs the
static approximation in evaluating the functional inte-
gral, we cannot draw any definite conclusion on the tem-
perature dependence of the resistivity (and the GMR)
at low temperatures, where dynamical effect of spin fluc-
tuations yields the T contribution. 5 Although we have
taken into account only the scatterings due to random
potentials and spin fluctuations, there are many other
mechanisms to be responsible for the resistivity. For
example, the intraband and interband electron-phonon
scatterings are well known to yield the T5 and T re-
sistivities, respectively, ~6 at low temperatures, where
the electron-electron Baber scatterings lead to a T2
resistivity. Nevertheless, we expect that the mecha-
nisms examined in the present paper are most important
in transition metals like Fe,24 and that our calculation
provides us with an overat/ picture on the temperature-
dependent GMR of magnetic multilayers.

We note in Eqs. (19), (20), and (25)—(27) that the
temperature dependence of GMR depends on those of
m and p, . Although our model calculation adopted a
simple expression given by Eq. (34), the MR ratio in real
systems may show the temperature dependence different
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FIG. 6. The calculated MR ratio when the average (m)
and rms (p) moments are given as shown in the inset where
the solid curves denote the results of Ref. 28 and the dashed
curves those given by Eq. (34) (see text).

from our results, if the temperature dependence of their
m and p are different from that in our model. Quite
recently, Hasegawa calculated the temperature depen-
dence of the average of the magnetic moment, (M„),
and its root-mean-square value, g(Mn2), on layer n of
a realistic Fe/Cr multilayer using the finite-temperature

band theory. ii i7 The average moment on the central Fe
layer approximately follows that in bulk Fe. On the other
hand, the moment on the interface Fe layer shows a pe-
culiar temperature dependence, which is plotted in the
inset of Fig. 6. This is expected to arise from weaker
magnetic couplings between Fe-Cr layers than those be-
tween Fe-Fe layers. Similar results are obtained in Co/Cr
multilayers. 7 If we use these temperature-dependent m,

and p shown in the inset, we obtain the GMR plot-
ted in Fig. 6, which shows a rather peculiar temperature
dependence, in particular at low temperatures. This sug-
gests that the temperature dependence of AR/R in real
systems shows a variety depending on the temperature
dependence of the (M„)and (Ms). It might be pos-
sible that some information on the temperature depen-
dence of (Mn) and (M„)is obtainable from the observed
temperature-dependent MR ratio. A detailed calculation
of the finite-temperature GMR using a realistic tight-
binding model is now in progress, and will be reported
separately.
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