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Theory of the conductivity and giant magnetoresistance in magnetic multilayers
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A simple, analytic expression is derived for the conductivity of thin films with the use of the
coherent-potential approximation. With the use of our conductivity formula, the giant magne-
toresistance in multilayers consisting of magnetic and nonmagnetic layers, is discussed. based on a
numerical calculation for seven-layer Fe/Cr films and a semiphenomenological analysis for a simple
model.

I. INTRODUCTION

Since the discovery of giant magnetoresistance (GMR)
in Fe/Cr multilayers, related phenomena have been in-
tensively investigated for many multilayers consisting of
ma, gnetic and nonmagnetic layers. ~ It has been found
that the GMR in multilayers arise from the reorienta-
tion of moments on magnetic layers due to an applied
magnetic field. The antiferromanetically coupled mag-
netic moments on successive magnetic layers align ferro-
magnetically by the applied field, which yields a signifi-
cant reduction in the resistivity. The theoretical under-
standing of the GMR has been made by the semiclassical
approach3 4 using the Boltzman equation or the micro-
scopic methods 7 starting from the Kubo formula. Quite
recently, Okiji et at. employed the transport theory in
the coherent potential approximation (CPA). s Assum-
ing that currents flow along the x axis in the plane of a
multilayer, they numerically calculated the ground-state
parallel conductivity of the multilayer given by

o. = (e/h) ) (Bsk/Ok )

x ) ImG„(k~~, tt)lmG „(k~~, tt),

conductivity.
The paper is organized as follows: In Sec. II, the ex-

pression for the conductivity is derived by using the CPA.
With the use of our conductivity formula, the GMR is
discussed in Sec. III, with model calculations based on
a numerical study for a seven-layer Fe/Cr film and a
semiphenomenological study for a simple model. Section
IV is devoted to conclusion and supplementary discus-
sion.

II. FORMULATION FOR CONDUCTIVITY'
OF FILMS

In order to rewrite Eq. (1), it is necessary to get the
explicit form of the Green function, G„. We adopt an
Nf layer thin fi-lm consisting of magnetic A and nonmag-
netic B atoms with the simple-cubic (001) interface. The
layer parallel to the interface is assigned by the index n
(= 1 Nf). We in—troduce the randomness at the interface
and/or throughout the layer (bulk), allowing the atomic
potentials to be random. The system is described by the
single-band Hamiltonian with the nearest-neighbor hop-
ping t as

H = ) ) Esse Csg +t) ) Cssc(s,
S s jI,

where k~I is the two-dimensional surface wave vector, eA

the dispersion, and G„denotes the interlayer Green
function between the nth and mth layers at the Fermi
level p, . They calculated the conductivities when mo-
ments on adjacent magnetic layers align ferromagneti-
cally and antiferromagnetically, from which the magne-
toresistance was calculated. Their calculation demon-
strates that the study on the magnetoresistance of mul-
tilayers using Eq. (1) is very useful. The actual numer-
ical computation is, however, rather laborious because
it requires many sampling k~~ points (more than 10000)
in the reduced surface Brillouin zone. Furthermore, the
numerical calculation cannot well explain the physical
mechanism yielding the GMR. One of the purposes of
the present study is to derive a simpler, but physically
more transparent, analytic expression for the conductiv-
ity based on Eq, (1). The other purpose is to investigate
the mechanism of the GMR by using our formula for the

where c~, is an annilation operater of an electron with
spin s (=t', J, ) on the lattice site j. The s-spin atomic po-
tential on the layer n, e„„is assumed to be e„, and z„,
with the probabilities x„and y„(= 1 —x„)when the lat-
tice site j is occupied by the A and B atoms, respectively.
The introduced randomness is treated by the CPA. s The
effective Hamiltonian is expressed in the Bloch-Wannier
representation as

s k]] Am

+t(b „~i + 6 „ i)]c& „,ck~~ (3)t

where cI,~I„, is the Fourier transform of c~„and Z„, is the
layer- and spin-dependent coherent potential determined
by

(4)
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with

F.,(.) =) G„„,(k~~, z).
k[[

o = (e/h) Nf ) a„mA„

(5)
where

Here the angular brackets ()„denotes the configuration
average over the random sns.

The Green function G„m of the efFective Hamiltonian
is given by

G„(k~~, z) = (k~~n f
(z —H,~) '

[ k()m)
=C „/D,

(6)
(7)

where
~ k~~ m) is the eigenstate with momentum k~~ on layer

m, and C „ is the cofactor of the mn element of deter-
minant of the energy matrix: D = det~z —H, ff ~, the spin
index being suppressed for a while. When D, (i = 1 Nf )—
is the root of D = 0, Eq. (7) is rewritten as

= ) AI,"'A,'", ',
U

(ku vo(u)+ p) A„A
[(~+A-)'+ &'.l[(~+ A-)'+ &'1 (17)

o =Nf ) ) cr„„ (18)

After extracting residues in the complex-u plane to eval-
uate Eq. (17), we finally obtain the expression for the
parallel conductivity given by

G„(kii, ) = C „/( — —D, ) (8)
where

cr„, = (e/h)2vrv, )
m

- 6„,+6, '

with
v, = (—1/~) Im, C (p, + i0), (20)

A„'(i) (D~)/(Dg —D'). (10)

vo((u) = ) (BsA, /Bk, ) 6(~ —sp, ), (12)

we transform the summation over si,
~~

in Eq. (1) to the in-
tegral over energy a. Then we define a complex function
given by

In Eq. (10) Cmn(D~) is the cofactor of the determinant
in which we set z —

ok[[
——Dj. We assume the absence of

the degeneracy in D, for a simplicity of our discussion.
We expect that D, is nearly equal to E, given by

D, Z, =A, —i',
where A, = ReZ, and 6; = ~lmZ, ~. Substituting the
imaginary part of the Green function given by Eqs. (9)—
(ll) to Eq. (1), and, introducing the function

'rnms = ~nm + (1 ~nm)

(A„, + A, )~

"q[(~„,—A,"j'+(z.*,'+z .P]) (21)

The spin index s is recovered in Eqs. (18)—(21), where
meanings of the spin dependence in various quantities
are obvious.

The analytical expression given by Eqs. (18)—(21) has
clear physical meaning. An electron with spin s suc-
cessively propagates from a site on layer n to a site on
layer m. In this process the electron is scattered with the
strength proportional to 6„,and 6,. Total conductiv-
ity is given as a sum of such processes with the weight
of a„~,~„~,. The coefIicient a„~, and the function v,
are specified by the electronic structure of the film. The
factor 7.„,plays a role of a valve in the transmission
process between the layers n and m. This is easily seen
in the expression of rn s for n g m (see Fig. 1):

C (cu) = d(u' v (cu')/(~ —(u'),

to perform the contour integral in the complex-w plane.
Since the general expression for the conductivity is rather
cumbersome, we confine in this paper our discussion to
the weak-scattering case.

In the weak-scattering limit;, the imaginary part of the
Green function is expressed by

ImG (k[~ z) ) A 4 '/[(z ski A ') + 6 ' ]

~ns
ns rrrrr

'~
Ass ~S

~ns 7 nrns ~ms

(b)

s

where A~' is given by Eq. (10) but with D, = A, . Substi-
tuting Eq. (14) for Eq. (1), and interchanging variables
nm with ij, we get the conductivity per layer for the
current parallel to film layers, given by

PIG. 1. Schematic representation of the valve eKect show-

ing the cases of (a) ~„,= 0 for ~A„, —A,
~

&& (A, + A, )
and (b) w„, 1 for ~A„, —A,

~
(( (A, + A, ). The

center hatched bands and their width denote A„, and A„„
respectively.
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&nms —0 for
~

A„, —A, ~&& (6„,+4,),
for

~

A„, —A, ~(( (6„,+4,).
(22)

(23)

o = e vrv (24)

).& m =Nf

Equation (24) agrees with the result for bulk alloys in
the Born approximation.

III. MODEL CALCULATIONS

A. Numerical study

First we show some numerical examples by apply-
ing our formalism to a seven-layer Fe/Cr film with the
simple-cubic (001) interface. We assumed the distribu-
tion of Fe concentration on layer n, x„,as xq ——x7 ——0.95,
x2 ——x6 ——0.90, x3 —x5 —0.10 and x4 ——0.05, as de-
picted in Fig. 2(a). The randomness is introduced mainly

(a

]

Q

(b) FM

Cr

Depending on the value of ~A„, —A, ~, ~„,changes its
value from 0 to 1. In the case given by Eq. (22), the
system can be regarded as a collection of independent
networks with the parallel connection. The case given by
Eq. (23) is realized when moments on successive magnetic
layer are parallel, as will be discussed shortly.

When the system is nonmagnetic and homogeneous
(bulk), 4„, = 4 (= const) and A„, = A (= const),
Eqs. (18)—(21) yield the relations

Fe Cr
ns —XnEns + ~nens & (26)

Fe Cr 24„,= vr p„, x„y„(s„,—s„,), (27)

where s„", = z" + (U" /2)N„" —s(U" /2)M„" (A = Fe,Cr),
and p„, is the 8-spin local density of states on the layer
n. In the FM solution, Any is much larger than Any,
which arises from the fact that ~s~& —ace&&~sFt —ccP
[see Eq. (27)].s The similar situation is realized also in the
AFM solution, where A„T » A„l at n = 1—3 and E„t »
A„T at n = 5—7. We note that the scattering strengths

1.0

0.8

(b) AFV

at the Fe/Cr interfaces. Actual calculations were per-
formed for a nine-layer film, each edge of the seven-layer
film was capped by a pure Fe layer. The calculated results
in the inner seven-layer film were employed for the con-
ductivity calculation in order to reduce the edge efFect.
On Fe sites we introduced the electron-electron interac-
tion, UF', which is treated in the Hartree-Fock approxi-
mation. We adopted the parameters of e ' —e ' = —1.47,
U ' = 1.50 and U ' = 0 in units of R", a half of the total
width of the simple-cubic bulk band. The magnetic mo-
ment, M„", the number of electrons, N„" (A = Fe,Cr), and
the coherent potential of each layer were self-consistently
determined in the CPA. Details of the adopted calcula-
tion method were discussed elsewhere.

As in previous calculations for Fe/Cr multilayers, io ii
we obtained both the ferromagnetic (FM) and antiferro-
magnetic (AFM) solutions, whose moment distributions
are shown in Figs. 2(b) and 2(c), respectively. i2 The real
parts of the layer- and spin-dependent coherent poten-
tials, A„„which are self-consistently determined for the
FM and AFM solutions, are shown in Figs. 3(a) and 3(b),
respectively. The exchange splittings, ~A„l —An~ ~, in
Fe layers are about 0.6 in units of R', whereas those in
Cr layers are fairly small. Figures 4(a) and 4(b) show
the imaginary parts of the coherent potentials, 4„„in
the FM and AFM solutions, respectively. The behav-
iors of the calculated A„, and 4„, are easily under-
stood from the following expressions valid in the Born
approximation: '

Q

(c) AFV

1 2 3 4

Fe
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Q 0.6
c
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FIG. 2. (a) The assumed Fe concentration on the nth
layer x„ in seven-layer Fe/Cr films with the simple-cubic (001)
interface. Calculated magnetic moments are on the nth layer,
M„(pe), at Fe (solid curves), and Cr sites (dashed curves) in
the (b) ferromagnetic (FM) and (c) antiferromagnetic (AFM)
solutions,

1 2 3 4 5 6 7 1 2 3 4 5 6 7
n

FIG. 3. The real parts of the coherent potentials A„, for
up-spin (solid curves) and down-spin (dashed curves) elec-
trons in the (a) FM and (b) AFM solutions in units of W,
half of the total vridth of the simple-cubic bulk band.



15 076 HIDEO HASEGAWA 47

0.10 1.2

008- 1.0

004-

0.02-

000
2 34 56 7 1 2 3 4 5 6 7

n

0.8

C
- 06

L0
g 0.4

0.2 /

(~)
O.Q

1 2 3 4 5 6 7

( b} ~ ~ ~&li

I I

1 2 3 4 5 6 7

FIG. 4. The imaginary part of the coherent potential A~~

for up-spin (solid curves) and down-spin (dashed curves) elec-

trons in the (a) FM and (b) AFM solutions in units of W.
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at the Cr interface (n = 3, 5) are most significant both
in the FM and AFM solutions.

With the use of A„, and 6„,thus determined, the film
conductivity was calculated from Eqs. (18)—(21). We as-
surned that a„, and v, are constants because they are
considered to be important for our qualitative discussion
(see below). The calculated layer- and spin-dependent
conductivities, o.„„for the FM and AFM states are
shown by solid curves in Figs. 5(a) and 5(b), respec-
tively, where squares (circles) denote the up-spin (down-
spin) conductivity. In the FM state, the down-spin con-
ductivity is much higher than the up-spin one because
6„1 )) A„l (Fig. 4). ' Our result of o„, is consistent
with what Okiji et ct. calculated with the 8-d model us-

ing Eq. (1). This justifies to some extent the approxima-
tion adopted in our numerical calculation for the Fe/Cr
thin film. The layer-dependent (spin-summed) conduc-
tivity, a„= Q, cr„„ in the FM and AFM states are

F&G. 6. (a) The layer-dependent (spin-summed) conduc-
tivity in the FM (o„)and AFM (o„)and the difference:o'„—o„(in the normahzed units same as inFM AFM

»g. 5). (b) The same as (a) but setting ~„,= 1 in Eq. (21)
(see text).

shown by solid curves in Fig. 6(a), where their difFer-
ence, Ao.„=cr„—o„,are plotted by the dashed
curve. We note that the conductivity contributions from
Fe layers and interface layers are much reduced when mo-
ment configuration changes from FM to AFM state. The
MR ratio defined by

~R/RFM (RAFM RFM)/RFM g /
AFM (28)

is AR/R™= 0.88 in our Fe/Cr film, where R" is the
resistivity in the ri (=AFM, FM) configuration.

In order to investigate the valve eKect of ~„~, given
by Eq. (21), we repeated the conductivity calculation by
setting w„, = 1, which corresponds to an assumption:
A„, = const. The up-spin and down-spin conductivi-
ties calculated for the FM and AFM states are shown
by dashed curves in Figs. 5(a) and 5(b), respectively.
The layer-dependent conductivity in the FM and AFM
states are shown by solid curves in Fig. 6(b), where the
dashed curve denotes the difference Ao„. When setting

, = 1, the electron transmission between layers n and
m is increased, and the total conductivity, particularly of
the AFM state, is increased. Then the MR ratio reduces
to AR/R = 0.67, about a 25%%uo reduction from its orig-
inal value. This shows that the factor of 7.„~,might play
an important role in the GMR.

0.2 B. Semiphenomenological study

0.0
1 2 3 4 5 6 7 1 2 3 4 5 6 7

n

FIG. 5. The layer- and spin-dependent conductivity o
in the (a) FM and (b) AFM configurations; squares (circles)
expressing the up-spin (down-spin) contribution. Solid curves
show the results calculated by using Eqs. (19)—(21). Dashed
curves are those with setting w, = 1 in Eq. (21), which
corresponds to the neglect of the valve effect. Results shown

by solid and dashed curves are normalized to coincide at o.„,
for n = 1 and s =j (see text).

Next we discuss the GMR by phenomenologically using
the expression given Eqs. (18)—(21). We adopt the sys-
tem consisting of magnetic (Mi, M2) and nonmagnetic
(Ni, K2) layers (see Fig. 7). The thickness of each mag-
netic (nonmagnetic) layer is M (N). Bulk scatterings
are assumed to be important in these layers, while in the
Sec. IIIA the interface scatterings were assumed to be
dominant. When moments on the magnetic layers are in
the AFM configuration, as shown in Fig. 7(a), the real
and imaginary parts of the coherent potentials are given
b i3
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M] Nt M2 N2 M) N1 ~2 N2

tively. On the other hand, the single subscript M(N)
expresses the contribution from the intratayer scatter-
ings within magnetic (nonmagnetic) layers.

In the FM configuration, as shown in Fig. 7(b), the
real and imaginary parts of the coherent potentials are
given by

(b)

FIG. 7. The adopted film consisting of magnetic (Mi and
M2) and nonmagnetic (Ni and N2) layers, their thickness
being M and N, respectively. The moments on the magnetic
layers align in the (a) AFM and (b) FM configurations.

=Ao —imp for n C Ni, N2.
(35)
(36)

The s-spin contribution to the conductivity becomes

dFM dFM
FM cMM + cNN+ MN + M + N

Ap 6, + Ap A, Ap

AAFM .~AFM

= A, —iA, for n C M2,
= Ap —iAO for n c Ni, N2.

(29)
(30)
(»)

The total conductivity for ferromagnetic and antiferro-
magnetic configurations are obtained by summing both
the up-spin and down-spin contributions [Eq. (18)j.

The difference between the total conductivities in the
FM (o™)and AFM (o A M) configurations is given by

The s-spin contribution to the conductivity is classified
into five categories depending on whether n and m are in
magnetic or nonmagnetic layers. It is given by

FM AFM

(38)

AFM AFM
AFM 2cMM + cNN

(6, +6,) Ap

AFM+4cMN g +g + ~
AFM

2A 2A b,s 2 —s) 0
(32)

t(~ —p)'+ ~(~'+ 6~p+ p')I

where

o' = Af/Ao) P = AJ/Ao~ 7 hcMM/cMM~

(39)

where

cM'M" = Nf '(&/~)'~~ ) ): ~
nqM, mqM,

dAM™= Nf '(e/ri)'~v ) )
~GM1 mgM1

(34)

and cANFNM, cAMNM, and dAN™ are given by similar expres-
sions, the spin dependence in a„~, and r„m, being ne-

glected. In Eq. (32), subscripts MM, NN, and MN
denote the contributions from the interlayer scatterings
between magnetic layers, between nonmagnetic layers,
and between magnetic and nonmagnetic layers, respec- with

~FM ~FM ~FM ~ (42)

cMM = (cMM + cMM )/2, 6cMM = (cMM —cMM )/2)FM AFM FM AFM

(41)

the configuration dependence of the coefficients being in-
cluded only in cMM. Equation (38) shows that the GMR
arises mainly from the conductivity contribution from in-
terlayer scatterings between the magnetic layers M& and
M2 because other contributions in Eqs. (32) and (37) are
canceled out in calculating the difference Lo..

The MR ratio is given, by using Eqs. (28), (32), (37),
and (38), as

(~ p)'—
4~» —&+go'+p' +gi(M)(~+ p)(.+i+ p+, )+ g( s)M'(~ p+)

(43)

~~(~) p(o.~ + 6np+ p2)
R'" 4 P 1 ~+ gp(".pP)'+ g (—)(A+-P)(.,', + p,', )+g2(—) ( +P)

(44)
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In Eqs. (43) and (44), gp, gi, and gs are defined by

dM = 90)
4CM M

2cMx
cMM

(45)

(
civiv+ Ar l

2c~M ) (M)
which come from the following relations:

cMX (x ~&,

CMM (X dM OC M

cpf~ (x 0~ oc X
(46)

AR/R = (n —P) /4nP, (48)

which agrees with the result obtained by Levy and co-
workerss and Inoue, Oguri, and Maekawa. s

On the other hand, the second term in Eq. (42) arises
from the "valve" effect of ~„~, as discussed before [see
Eqs. (22) and (23)]. In the FM state, v„, between the
Mi and M2 layers becomes large because A„, on Mi layer
is nearly equal to A, on M2 layers. On the other hand,
this is not the case in the AFM state in which A„, on Mi
layer is much difFerent from A~, on M2 layer. This leads
to c~~~~ ) c+~F~~, and then p ) 0 in Eqs. (40) and (41).
We note from Eq. (39) that Acr & 0 (i.e. , o F & o™)
because n, P, and p are positive definite.

Both the short-circuit and valve effects are the origin
of the GMR. The short-circuit effect always exists as far
as n g P even if p = 0. On the contrary, the valve
efFect exists when p g 0 even if n = P. It should be
pointed out that the valve effect also works to enhance
the short-circuit efFect because of p in the denominator
of Eq. (43).

The first term of Eq. (42) expresses the "short-circuit"
effect: The total conductivity of the FM state is gener-
ally larger than that of the AFM state because the more-
conductive t'- (or $-)spin channel in the FM state short-
cuts the circuit. This mechanism was discussed previ-
ously in Refs. 3—7. Using a register network model based
on the phenomenological approach, Edwards, Mathon,
and Muniz4 obtained the MR ratio given by

AR (n —P)2
4np 1+ ($)((n+ p)lnpj+ (~)'(1/np) '

(47)

which has a structure similar to our Eq. (43). If we set
gp = gi = g2 = p = 0 in Eq. (43), the MR ratio becomes

IV. CONCLUSION AND DISCUSSION

To summarize, we have derived the simple, analytic ex-
pression for the film conductivity with the use of CPA, s s

treating the interface and bulk scatterings on the same
footing. Although our discussion has been made for thin
films, the essential result obtained in this study is ex-
pected to be valid for any multilayers. We have discussed
the short-circuit and valve effects, which are the origin of
the GMR. These effects have been investigated by nu-
merical calculations for seven-layer Fe/Cr films and a
semiphenomenological analysis. The GMR is shown to
arise from conductivity contributions from the intertayer
scatterings between the successive magnetic layers which
are much reduced when the FM configuration is changed
to the AFM.

Our conductivity formulas are expected to have a wide
applicability. We may make a detailed calculation taking
into account the electronic structure of films. It is also
possible to use our expression phenomenologically, just
as we have made in Sec. IIIB. One of the advantage of
the CPA theory is that it preserves the Ward identity. s

The one-body physical quantity like magnetic moments
and the two-body quantity such as the conductivity and
susceptibility can be calculated in a consistent way. The
second advantage of the CPA is that we can perform re-
aBstic calculations for multilayers including randomness
at the interface and/or in bulk.

In this paper, the imaginary part of the coher-
ent potential arises from the randomness in film lay-
ers. According to the recent theories on magnetism
for finite-temperature properties, the effect of spin
fluctuations can be taken into account by regarding
them as static random potentials (so-called alloy-analogy
approximation). By combining our result with the
finite-temperature band theory, 5 we may discuss the
magnetoresistance of multilayers at finite temperatures.
Such a calculation will be reported separately. "
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