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Optical singularities in doped quantum-well wires
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We present the calculation of emission and absorption spectra of single quantum-well wires doped
with electrons. By solving an effective Bethe-Salpeter equation we show the inadequacy of an on-site
electron-hole interaction for describing the optical singularities appearing at the band bottom and
at the Fermi edge. With the use of a statically screened Coulomb interaction we study the necessity
of hole localization in order to get significant singularities. The effect of wire width, carrier density,
and temperature is analyzed in the cases of having electrons in one or two subbands. The existing
experimental evidence in multiwires is discussed in light of our results.

I. INTRODUCTION

Low-dimensional systems are practically produced by
modulation-doped semiconductor heterojunctions. They
are ideal for studying many-body properties of an elec-
tron gas because the interaction of the carriers with scat-
tering centers is very weak as confirmed by the high mo-
bilities of the samples, Looking for such many-body ef-
fects, the optical properties of quantum wells (QW) have
been extensively studied. z In particular, the possibility of
finding singularities in emission and absorption spectra
of these quasi-two-dimensional (2D) systems has received
much attention. In three dimensions strong localiza-
tion of the hole is essential for having important many-
body effects, ~s 2~ but in QW the reduction of the di-
mensionality favors exciton and Fermi-edge singularities
(FES) with respect to bulk systems. Then, hole localiza-
tion is not so crucial, although still necessary, so that sin-
gularities are experimentally observed. ~~ An even bet-
ter candidate is a quantum-well wire (QWW) where sin-
gularities associated with the quasi-one-dimensionality
should be even stronger. Different fabrication techniques
have recently made feasible such systems allowing the ex-
perimental search of singularities ' and provoking
an increasing theoretical interest. 5 7 Experiments
made in spatially indirect multiwires clearly show FES
provided that the QWW are narrow enough. Such fea-
tures have not been observed so clearly in direct wires~4

and rnultiwires 2 probably because they were too wide.
As far as the theoretical analysis is concerned, there are
calculations with an on-site potential for the electron-
hole coupling either within a ladder approximation2s or
making an exact calculation in a finite system. ' The
main difBculty in such descriptions is the choice of the on-
site potential as we will discuss in detail in this paper. A
screened Coulomb interaction has been also considered s

in the case of quasi-one-dimensional electrons confined in
a parabolic potential in one direction while they are free
to move in the other one and assuming strong localization
of the holes.

The aim of this paper is to investigate the importance
on the optical singularities in QWW of a reliable interac-

tion between electrons and holes as well as the necessity
or not of the hole localization. We consider a single wire
with parabolic potentials with the same center both for
the holes and the electrons at variance with some exper-
imental situations where the two type of particles are in
different spatial regions. ~~ 2s The holes are described in
the simplest diagonal approach where the coupling be-
tween heavy and light subbands is only included by ad-
equately varying the efFective masses. By considering
the actual eigenfunctions of these potentials as well as
the Coulomb interaction screened by a statically consis-
tent response function, which includes electron-electron
interaction by means of fluctuation efFects, we com-
pute the absorption and emission spectra of a quasi-one-
dimensional (1D) electron gas within a ladder approx-
imation for the correlation function. This approxima-
tion includes the most singular terms in the correlation
function. We devote our attention to two different
cases where the Fermi level is either in the first or second
1D subband. Then, different selection rules for the light
polarization appear due to the symmetry of the electronic
wave functions.

The paper is organized as follows. Section II is devoted
to the description of the model used for computing ab-
sorption and emission spectra. In Sec. III some results
are presented to discuss the inadequacy of an on-site in-
teraction in the description of FES. Once we have shown
the necessity of using a more realistic Coulomb interac-
tion, we analyze in Sec. IV the eÃect of the hole effective
mass on the possibility of obtaining both band-edge and
Fermi-edge optical singularities in quasi-1D systems with
different widths of the wire. After having shown that
localization of the hole is essential for obtaining strong
singularities, we analyze them in Sec. V as a function
of temperature, density of carriers, and other physical
parameters. A discussion of experiments in light of our
results and some conclusions are given in Sec. VI.

II. DESCRIPTION OF THE MODEL

We are interested in describing the optical proper-
ties of a single n-doped wire in which the electron and
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where ln,„,k) and ln„k') are valence and conduction
states, respectively, labeled by their subband index n
and wave vector k, e is the light polarization, and p
is the momentum operator. The absorption intensity

I

hole states coexist in the same spatial region. Typical
widths of actual wires are of the order of a few hun-
dred angstroms, so the states are labeled by a quantum
wave number k along the wire direction and a subband
index n that for the cases of interest (densities of 10s-
10s cm i) is typically 0 or 1. Therefore we will consider
at most a couple of bands for electrons while the holes
are described in a diagonal approach so that only the
heavy-hole subband is included. Both the emission and
absorption spectra are computed from the linear optical
susceptibility y(cu) that it is related to the electron-hole
Green's function G„„„,„I „I(k, k', u) by

is directly given by the imaginary part of the suscep-
tibility y(u) while the luminescence spectrum is propor-
tional to g(~)Im[y(cu)], where g(cu) = (exp[(u —p, —
p~)/(k~T)] —1j is the Bose distribution function and
p,, and ph, are the electron and hole chemical potentials,
respectively. P z The matrix elements of e p will be dis-
cussed below for the particular set of eigenstates that
we are going to use. The key quantity in Eq. (1) is the
Green's function that can be obtained from the nonin-
teracting electron-hole Green's function GP „(k,—k, cu)

by means of a perturbative expansion in terms of a static
electron-hole interaction potential V„„,„.,„„(k—k').
Before discussing in detail the ingredients Gp and V, let
us pay some attention to the perturbative procedure it-
self. The expansion is enormously simplified when the
interaction is approximated by an on-site potential so
that its Fourier transform is independent of k and k'.
The main simplification comes from the fact that, when
the appropriate hole spectral function is considered, the
ladder diagrams are the most singular and the inclusion
of all the crossed diagrams can be avoided. is 2i Then, in
this ladder approximation, the Green's function is given
by a Bethe-Salpeter equation

G„„,„.,„,„(k,k', ~) = G„„(k, k, ~)S„„,„—S„.,„S(k+k')

+— ) G„„(k,—k, &u)V„„,„.,„,„(k—k")G -,„',„,„(k",k', ~),
~rI

goal

c i

(2)

L being the wire length. In spite of the fact that an on-
site interaction involves some problems, to be discussed
below, and an actual screened Coulomb interaction is re-
quired, we will keep the ladder approximation in the anal-
ysis of the optical spectra of doped QWW. The ladder
equation (2) is rather easy to work with by discretizing
the k space. If a mesh is defined between two cut-off val-
ues +k, with k, sufficiently larger than the Fermi wave
vector, the Green's function G„„„..„„~(k, k', cu) is ob-
tained from the inversion of a matrix [1 —G V] in the
discrete indices k, k'. The results shown in this paper
have been obtained from matrices with sizes of the or-
der of 500. Let us now discuss the ingredients G and
V involved in the ladder equation (2) starting with the
interaction because it is useful in the discussion of the
noninteracting electron-hole Green's function.

E(k)

A. Electron-hale interaction

As mentioned above when discussing the ladder equa-
tion (2), the easiest way to proceed is to use an on-site po-
tential Vp„, p~ (k) = Up~, p~ independent of the elec-
tron and hole wave vectors. Then, the ladder equation
can be easily solved. For instance, in the simple case of
just one conduction band, the relation between the two
Green's functions integrated in k space takes the simple
form

Gp, p(~)
P P'P P( ) 1 U GP ( )

FIG. 1. Potential profile, wave functions (a) and band
structure (b) of our model for the quantum-well wire. The
magnitudes of interest are schematically shown.
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This simple model could make sense because considering
the hole as a scattering center for electrons, the optical
spectra would be essentially controlled just by the phase
shifts at the bottom of the conduction band and at the
Fermi energy, i.e. , only two parameters which could be
associated with Uo „..O,„l . However, the diFiculty is the
determination of such a parameter, which in turn deter-
mines very critically all the optical properties. In partic-
ular, as we will show in Sec. III, a small change (a few
percent) in the coupling (U) quenches the FES. There-
fore, a more adequate description is to consider the actual
screened Coulomb interaction between an electron and a
hole. For such a task one needs the quasiparticle wave
functions. Firstly, we will consider that electrons and
holes are completely confined in the 2:y plane. Then, the
carriers are free to move along the x direction (the wire
direction) while they are confined by parabolic poten-
tials in the y direction as schematically shown in Fig. 1.
We take the two parabolas in such a way that the ra-
tio of separations 6 between the two first levels is just

given by the inverse ratio between effective masses, i.e. ,
4, /4g = m&/m, *, as it would occur for infinite well po-
tentials. Then the wave function of each of those carriers
is of the form

g„,g(x 9 z) = 6(z) e'"* 1 „.i2, y
TL ~L, 2"n!~~t

(4)
where H„ is the Hermite polynomial corresponding to the
nth subband, and both electrons and holes have the same
characteristic length t = gh/m, *A, (hitherto we will use
6 for the characteristic frequency of the harmonic po-
tential confining electrons). From the wave functions of
electrons and holes, it is straightforward to get the un-
screened Coulomb interaction between them. As men-
tioned above, we are going to restrict ourselves to one
heavy-hole subband and two electron subbands so that
the necessary components of the unscreened electron-hole
interaction that we need are

2 2

Vooo;o, o(k) = ——e' " l Ko(t k /4),

2 Lt k2
, (k) = ——e' " ~ Kp(tzk /4)+ [Kp(l k /4) —Ki(t k /4)]

S

V,'...(k) = 0,

(6)

Ko and K& being modified Bessel functions of the second kind and e, the effective dielectric constant of the system
fitted to give the adequate exciton binding energy Ep( 6 meV) of the kind of QW we are interested in. It must be
pointed out that if one would consider the hole wave function completely localized [i.e. , b(x)6(y)], the factors 4 in the
interactions V should be replaced by 8.

Once we have the unscreened potential, we need to screen it in order to get the adequate electron-hole interac-
tion. Two ingredients are required for the screening: the electron-electron interaction and the electron polarizability
obtained from such interaction at zero temperature. Provided that l is the same for electrons and holes, the electron-
electron interaction has the same shape that the electron-hole interaction has with just a change sign. On top of the
matrix elements given in Eqs. (5)—(7), we also need the elements Vp p. i i and Vi i.i i. The former is not necessary
because it is only required in the screening of an interaction which is zero due to the symmetry of the potentials we
have choosen. As far as the other one is concerned, it takes the form

where we have already written the sign corresponding to electron-electron interaction. The only lacking ingredient is
the electron polarizability. In order to include some electron-electron effects in the polarizability, we take the form
obtained from a generalized quantum Langevin approach which includes fluctuation effects by means of a diffusion
constant. Due to the symmetry of the potentials we only need the intrasubband matrix elements of the electron
polarizability given by

m,' (tkp„+ tk/2) z + azlzkz —(a/tkA) —2ia~/6
(tk~„—lk/2)z + azl k —(w/tM, ) —2iaw/6

where k~„ is the Fermi wave vector of the nth subband
and a is an adimensional parameter related to the dif-
fusion constant. Then, with all those ingredients, the
statically screened electron-hole interaction is given by

Vp p (k) = ) [s (k 0)] ', Vo .o (k),

(10)
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where the dielectric function is given by

[s(k, cu)]„,„,.„,„=6„,„6„,„
—y„,„(k,~)V~„.„, „- (k).

B. Noninteracting electron-hole Green's function

limit for I —+ 0 and cu -+ 0, where

2 j.
~~ 1+ (in[i + 1/(a2)]/m)~

'

g does not vary very much with the value of a which is
taken to be 0.1 along this paper. Equation (15) brings
to a hole spectral function

The pair Green's function of noninteracting electron-
hole pairs 0 requires some attention because it contains
two physical effects that are very important in the opti-
cal spectra: the temperature and lifetime of the individ-
ual quasiparticles electron and hole. Then, taking into
account that the system is n-doped and at low temper-
atures so that only holes at the upper subband are con-
sidered, i.e. , n = 0, the expression is

Gp„(k, —k, ~) = dLdh,
A„.(k, ~„.)Ai, (—k, ~i, )

1 —f (~ .) —fh, (~h)
—(dh + 26

R(u)) = 1 VO
dk

/s(k, 0)
/

- 2

[
—Imyp p (k, cu)] . (14)

From the expressions of Sec. II A it is straightforward to
obtain, after some algebra, R(~) —+ gee as the asymtotic

where 6 = 0+ and f, and fp, are the Fermi distribution
functions of the quasiparticles. Lifetime effects are in-
cluded in the spectral functions of the electron A„. and
the hole Ai, . Such effects are not important for the elec-
tron case because its lifetime implies a broadening much
smaller than the electron chemical potential, so that

A„.(k, ~) = 2vr6[~ —E'„.(k)],

E„.(k) = E~ + h k2/(2m, ') + nba being the electron
dispersion relation of the nth band with E~ the energy
gap and m,* the electron effective mass. However, the
case of the hole is more complicated. The ground-state
wave functions of the conduction-electron system, with
and without the valence-hole potential, are orthogonal
so that just pair excitations of the conduction-electron
gas break the symmetry giving the possibility of observ-
ing optical transitions; this is the well-known orthogo-
nality catastrophe. 2P Such pair excitations are the es-
sential dynamical effects responsible for a hole spectral
function different from a 6 function, so that we do not
include other effects like plasmon excitation, Auger pro-
cesses, and electron-phonon interaction which produce
satellites, Lorentzian, and Gaussian shapes of the hole
spectral function, respectively. It must be stressed that
this is the approach consistent with the ladder approxi-
mation made above for the correlation function. In the
simplest approach, the contribution of the electron-hole
pairs in the first conduction subband to the spectral func-
tion for the valence-band hole is obtained from a response
function R(~) within the static screening picture given
b 15 20

2 sin(m. g) I'(1 —g) e
( )8+0,

where 0 = [cu —E h( k)]/p, „Ei( k) = —5 k /(2mh) being
the hole dispersion relation with m& the hole effective
mass. The Heaviside step function 8 [+(0)] in Eq. (16) is
a consequence of the sudden creation or annihilation of a
hole at the valence band in the absorption and emission
processes, respectively. This abrupt spectral function of
the hole produces some computational unstabilities when
solving Eq. (2). Therefore, the numerical calculations re-
quire us to introduce some imaginary parts in the fre-
quency and to pay some attention to the associated fit-
ting and convergence problems.

III. ON-SITE VERSUS COULOMB
INTERACTION

Let us start by discussing the emission and absorption
spectra for a system in the quantum limit in which the
electron chemical potential is well below the bottom of
the second conduction subband. In this case only elec-
trons at the first subband are playing an important role
so that the matrix elements of e p, which are indepen-
dent of the wave vector, have no effect on the spectra.
This is different in the case of higher bands as will be
discussed below.

An on-site interaction has been used 7 in the study
of optical singularities in QWW because its inherent sim-
plicity due to the lack of dependence of the coupling
on the wave vector k. In the scheme we use, the prob-
lem reduces to solve Eq. (3) which is rather simple be-
cause Up p, p p is constant. The origin of the FES is very
easy to understand graphically as shown in Fig. 2. For
those values of u where ReGppp(u) = 1/Up p p, p there are
two peaks in the optical spectra with a width given by
ImGp p(u). When such a width is large, these two peaks
collapse in one. Then, the existence and strengh of the
FES are extremely dependent on the value of U0 0.0 0. So,
it is possible to obtain any result by choosing the value
of U, as shown in Fig. 3. Here, absorption and emission
spectra for typical values of the effective masses, electron
density, and temperature are presented for three different
values of U. One could argue that a way of determining
the adequate value for the on-site interaction should be to
make some kind of average of the actual Coulomb interac-
tion. A good possibility is to perform such an average to
get the right value of some magnitude determined by the
interaction as, for instance, the parameter g appearing in
the hole spectral function. For the Coulomb interaction
g is given by Eq. (15) while for the on-site interaction it
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is straightforward to repeat the calculation, getting
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gp =

471 p~

By imposing g = go one gets the desired average for the
on-site interaction Uo II,o II. The trouble is that such an
interaction would depend on the electron density. In the
cases of Figs. 2 and 3 the value obtained with this pro-
cedure should be 1.23, the one labeled as U~ that gives a
tiny FES. With some other procedure of averaging per-
haps it should be possible to get a more satisfactory re-
sult, but the uncertainty due to the value of the interac-
tion would remain. Therefore we discard such a simple
model interaction and work with the adequate Coulomb
interaction described in Sec. II.
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FIG. 3. Absorption (a) and emission (b) spectra of a wire
at T = 0 02Eo/krI with ele.ctron chemical potential III,, = Eq+
0.6EO for different values of the on-site potential U between
electrons and holes.

FIG. 2. Noninteracting electron-hole-pair Green's func-
tion for electrons in the first subband of a wire with a ratio of
eBective masses mI, /m, = 8, p, = E~ + 0.6EO. The straight
lines at values of 1/U are included as an indication of the
possible solutions of the Bethe-Salpeter equation (see text).

Once we have shown that it is necessary to use the
screened Coulomb interaction, we address ourselves in
this section to the physically important question of the
requirement of hole localization for having edge singular-
ities. Such a localization is responsible for the singulari-
ties observed in the x-ray spectra of metals. P In two-
and three-dimensional systems with mobile holes, there
are no singularities due to peak broadenings produced by
indirect transitions from the top of the valence band to
the Fermi level accompained by low-energy excitations
of the Fermi sea to ensure momentum conservation. In
1D systems this broadening mechanism is not efRcient
because allowed low-energy excitations are only with ei-
ther 0 or 2k~ momentum. Therefore, quasi-1D systems
are a good candidate for presenting singularities even for
cases with mobile holes. z7 So, we are going to apply our
model with a screened Coulomb interaction to analyze
the possibility of having singularities with mobile holes.

In order to work in the range of experimental wire
widths, we start with a parabolic wire with a width 2v 2l
of the order of 400 A. . The adequate magnitude to repre-
sent the wire is the level separation 4 that is equal to 1
(in units of Eo as everywhere for energies in this paper
and taking the electron effective mass of GaAs). Typical
electron densities correspond to Fermi energies of the or-
der of 0.6 which is the value we start with. Since, for the
moment, we want a system without any extrinsic holes
we take ILIA, = 1 (i.e., well within the gap). A low tem-
perature where singularities can be expected is T = 0.02
(in units of Eo/k~ ). In order to describe a mobile hole
we can take for its effective mass a value of 8 (in units
of the electron effective mass) at most. The absorption
and emission spectra obtained with those parameters is
shown in Fig. 4. The continuous lines correspond to the
results obtained from G(u) while the dashed lines are ob-
tained with the use of Go(~) so that the difference is the
many-body eKect produced by the screened electron-hole
interaction. The FES are more clear in absorption (the
small oscillations in the figure are due to the integrals
in k made with an accuracy which maintains a reason-
able amount of computing time) while in emission it is
rather weak. However, if one just looks at the complete
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Fig. 5 where the emission spectrum is shown for differ-
ent va ues of A. FES neatly exist for values of 4 larger
than 35 which means widths of th '

b 1
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mh
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(n„= 0, k~e p~n, = 0, k) = P u + (P, —Pb)u„

and

(18)

(n~ = 0, k~e ' p~n, = 1, k) = ikt 2V 2Pqu„,

%'here

~
—(v/&)'

P = dr u, cpu„.
t

(20)

and

e—(w/&)'
y

Pb = dr ~ 2 usus

contributions of the Fermi levels at the two subbands.
In order to analyze these possibilities, it becomes quite
important to take care of the matrix elements of e p in
Eq. (1), which are different for the two electron subbands
so that the relative intensity of the different transitions
can be known. After some algebra it is straightforward
to obtain

those u functions are difBcult to manage, we take the
most advantageous case for the second subband in which
P~ = Pb so that the only difFerence between the two ma-
trix elements is just ikl(2~2)r/z. Then the singularity
of the bottom of the second subband typical of any 1D
system is going to be quenched by the factor k but the
FES can still have some contribution of the second sub-
band. We think that this ansatz overestimates the effect
of the second subband which, anyway, is smaller than
that of the first subband, as is shown in Fig. 13 for the
emission spectra of the two bands separately. There it is
clearly seen that, with increasing temperature, the effect
of the Grst subband remains dominant, although less sin-
gular, around the Fermi level. Moreover, the quenching
of that singularity is not directly related to the electron
chemical potential as sometimes suggested. ii We do not
present results for the absorption because they are sim-
ilar but less illustrative since there is no eEect coming
from the factor k appearing in emission. A possibility
for the separating the effects of the first and second sub-
bands should be to take advantage of the polarization
rules contained in Eqs. (18) and (19).

u, and u„. being s and p atomic orbitals. From Eqs. (18)
and (19) it is easy to see that the matrix element for
the first electron subband is greater than or equal to the
one of the second subband divided by kt(2v 2)i/ . Since
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FIG. 13. Emission spectrum of a wire with m& ——1000m,
pip = Eg + 0.6Ep and A = 0.45Ep, i.e. , with electrons in the
two first subbands for three difFerent temperatures. Continu-
ous lines give the contribution corning from the first subband
while dashed lines give the contribution coming from the sec-
ond subband.

VI. COMPARISON WITH THE EXPERIMENTS

Our results are for a single wire with electrons and
holes in the same spatial region. Therefore they can-
not be directly compared with experiments for multiwires
for electrons and holes at different positions. However,
we think that some very general results should be ap-
plicable to any system made with wires. The first one
is that although formally optical singularities exist for
hole efFective masses typical of perfect wires, in practice
just with infinite m& one gets clearly appreciable optical
singularities. The only way of getting singularities with
small hole masses should be to have wires much narrower
than the ones presently available. Therefore, we think
that the already observedii singularities are most prob-
ably connected with holes localized either by impurities
or by some disordered variation of the wire width. An
experimental fact rather difficult to understand is that
the singularity of the band bottom is not observed in the
emission experiments. Calleja et at. suggest that this
is probably once again connected with some variations in
the wire width which would alter the energy position of
such a feature in a random way with respect to the FES,
which are the reference because they are always at the
same energy. We find that singularities coming from the
bottom of the bands are signi6cantly more intense than
the FES. Since width Buctuations only reduce the inten-
sity of these peaks in, at most, a factor of 2 (Ref. 29),
the lack of those peaks does not seem to be completely
understood. We think that this disappearance should be
typical of systems with electrons and holes spatially sep-
arated; therefore we have some work in progress along
this line. A finai comment is required for the case in
which there are electrons in two conduction subbands.
In this case our results are less directly comparable to
the experiments because the symmetry and selection
rules are difFerent, but we think that our result indicat-
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ing that the FES are related to states in the first subband
more than to those in the second one is still applicable
to the presently available systems. As we have already
mentioned we intend to work theoretically with the other
system but it should also be interesting to have experi-
ments in a case similar to ours because its high symme-
try would give new and interesting possibilities along the
lines of our theoretical results.
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