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Renormalization-group theory of an internal critical-end-point structure:
The Blume-Emery-GrifFiths model with biquadratic repulsion
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A prefaced renormalization-group study indicates that all three features of the Blume-Emery-GriKths
model with repulsive biquadratic interaction, namely (1}a critical-end-point structure occurring inside
the ferromagnetic phase, (2} disordered-ferromagnetic-disordered reentrance, and (3} a ferrimagnetic
phase sandwiched between the ferromagnetic and antiquadrupolar phases, survive fluctuations in three
dimensions but not in two dimensions. The renormalization-group mechanism for a critical-end-point
structure inside the ordered phase is shown to be the same as that originally found for a critical-end-
point structure inside the disordered phase, namely a distinct hybrid fixed point, contrary to a previous
claim.

I. INTRODUCTION

A recent study' of the global phase diagram of the
Blume-Emery-Griffiths model with repulsive biquadratic
interaction, using mean-field theory, shows a variety of
interesting features, including the following: at moderate
repulsion, ( 1 ) a critical-end-point —critical-point structure
occurring inside the ferromagnetically ordered phase, (2)
reentrance, as temperature is lowered, with the phase se-
quence of disordered-ferromagnetic-disordered; and, at
stronger repulsion, (3) a ferrimagnetic phase sandwiched
between the ferromagnetic and antiquadrupolar phases.
Of further interest are whether these features survive the
fluctuations neglected in the mean-field theory and, if so,
their dependence on spatial dimensionality d. Thus, a
more recent study addressed these features using Monte
Carlo renormalization-group theory and found that they
indeed occur in d =3. The purpose of the current work
is to address these questions without recourse to stochas-
tic sampling and in different dimensions, using closed-
form renormalization-group equations. The system was
treated, in d =2 and 3, using an approximate position-
space renormalization-group transformation, after a pre-
facing transformation. ' We find that all three features
occur in d =3, but not in d =2. Moreover, we find that
the renormalization-group mechanism for the critical-
end-point —critical-point structure occurring inside the or-
dered phase is the same as that originally found for the
critical-end-point —critical-point structure occurring in-
side the disordered phase, namely a hybrid fixed point,
contrary to a previous claim.

II. PREFACING TRANSFORMATION

neighbor couplings, with Hamiltonian

—13&BBG= g [Js;s +Its; s b, (s; +s~ )].,—
(ij)

where s; =+1,0 at each site i of a d-dimensional lattice,
and (ij ) denotes summation over nearest-neighbor pairs
of lattice sites. We are interested in repulsive biquadratic
interaction, E (0. Due to ferromagnetic-
antiferromagnetic symmetry in the lattices considered
here, we take J~ 0 with no loss of generality.

B. Two dimensions

In d =2, we consider the square lattice and shall be
referring to its two sublattices. In order to conserve the
possibility of ferrimagnetic ordering, both dense and di-
lute local magnetizations must be projected in a
renormalization-group transformation. The model is cast
into a form that explicitly identifies these local degrees of
freedom by using a prefacing transformation, '

exP[ —J33&RG( [P„)) ]

= X P([4") [s ) )exp[ ~~BEG([s ) )]

where (b„=+S, +L is the local degree of freedom in each
cell r, 5 and I. representing dense and dilute, respectively.
The crux of the prefacing transformation is in the projec-
tion matrix, P([P„), [s, ) ), which is factored over cells in
the original lattice,

(3)

A. The model

The Blume-Emery-Griffiths model is a spin-1 Ising
model, with most general up-down symmetric nearest-

where [s ) „are the spins in cell r We use the si.mplest
possible cells, which are squares that contain four
nearest-neighbor spins. On neighboring cells, spins on al-
ternate sublattices affect the projection operator:
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neighboring cells, spins on alternate sublattices affect the
projection operator. The cell projection operator is taken
as the arithmetic average of the cell projection operator
in Sec. II 8 applied to each pair of nearest-neighbor spins
on the same sublattice in the cell. The summation of Eq.
(2) is efFected approximately, using a finite system of two
cells with periodic boundary conditions, as shown in Fig.
2.

FIG. 1. Finite cluster of two square cells, with periodic
boundary conditions, used in the prefacing transformation in
two dimensions. The sites affecting the projection operator are
numbered. On the left, dashed and full lines respectively corre-
spond to intercell and intracell bonds.

p (P, s „s2 ) = —,
' [ 1 +sgn( P )sgn(s, +s 2 ) ]D ( l P l, s, +s 2 ),

(4)

where the signum function is sgn(x) =+ 1 or 0 for x ~w0 or
0, respectively, and s, and sz are the two spins on the
same sublattice. The density projection operator is taken
as

D(lyl, 2)=i,o,
D(lgl, l)=a, l —a,
D(lyl, 0)=0, i,

for l Pl =S,I., respectively, and a =
—,
' is taken so as to give

equal weight to each state of the prefaced system. Final-
ly, the summation in Eq. (2) is eff'ected approximately us-
ing a finite system of two cells with periodic boundary
conditions, as shown in Fig. 1.

C. Three dimensions

In d =3, we consider the cubic lattice and shall be
referring also to its two sublattices. Analogous pro-
cedures in d =3 and 2 are chosen, in order to validate
comparisons between results. For the prefacing transfor-
mation, we use the simplest possible cells, which are
cubes that contain eight nearest-neighbor spins. On

'

III. RESULTS

A. Renormalization-group sinks

B. Phase diagrams in two and three dimensions

Representative phase diagram cross sections for repul-
sive biquadratic couplings are shown in Fig. 4, for d =2
and 3.

For d =2, for moderately repulsive biquadratic cou-
plings such as E/J = —0.5 [Fig. 4(a)], there occurs a tri-
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The prefaced models are solved using the Migdal-
Kadanoff renormalization-group approximation, ' con-
sisting of bond moving followed by decimation with a
length rescaling factor of b =3. Alternatively, our results
constitute exact solutions of the prefaced model on
hierarchical lattices" with d =2 and 3.

Under renormalization-group iterations, each point of
a thermodynamic phase, specified by initial (J,K, b ),
maps onto a "sink" that epitomizes that thermodynamic
phase. The sinks occurring in this study, corresponding
to the dense ferromagnetic, dilute ferromagnetic, ferri-
magnetic, and antiquadrupolar ordered phases, and the
dense and dilute disordered phases, are given in Fig. 3 via
their transfer matrices. Note that the ferrimagnetic and
antiquadrupolar phases are determined by the off-
diagonal elements of the corresponding sink transfer ma-
trix exhibited in Fig. 3. Examination of this figure shows
that we have prefaced onto the minimal model for the
study of the three different types of order here.

I 4 h'~F

I I I Qr'

0110 1001 00001001 0000 01101001 0000 01100110 1001 0000
8 dg cl2

FIG. 2. Finite cluster of two cubic cells, with periodic
boundary conditions, used in the prefacing transformation in
three dimensions. The sites affecting the projection operator are
numbered. On the left, dashed and full lines respectively corre-
spond to intercell and intracell bonds.

FIG. 3. Values of the nearest-neighbor transfer matrix
exp[ —P&(P„,P„)] at the renormalization-group sinks: dense
ferromagnetic (f, ), dilute ferromagnetic (f2), ferrimagnetic (i),
antiquadrupolar (a},dense disordered (d

& },and dilute disordered
(d&}.
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FIG. 4. Calculated phase dia-
grams: (a) d =2, K/J= —0.5;
(b) d =2, K/J= —1; (c) d =2,
K/J = —1.5; (d) d =3,
K/J= —0 5; (e) d =3,
K/J = —1; (f) 6 =3,
K/J = —1.5. The ferromagnet-
ic (f), ferrimagnetic (i), antiqua-
drupolar (a), and disordered (d)
phases are marked. Dashed and
full curves respectively corre-
spond to first- and second-order
phase boundaries.

Chemical Potential 6/J

critical phase diagram with reentrant structure, exhibit-
ing disordered-ferromagnetic-disordered phases as tem-
perature 1/J is lowered at constant chemical potential
b, /J. However, this reentrance is less pronounced than
in d =3 (see below). As K/J is made more negative, the
first-order transitions and the reentrant behavior both
disappear to yield the sole, nonreentrant critical line at
IC/J = —1 [Fig. 4(b)]. For more repulsive biquadratic
couplings such as K/J = —1.5 [Fig. 4(c)], an antiqua-
drupolar phase appears and is separated from the fer-
romagnetic phase by the disordered phase that extends to
a zero-temperature disorder point. This sequence is very
similar to results from an unprefaced Migdal-Kadanoff
renormalization-group study for d =2.

Qualitatively different behavior occurs in d =3. For
moderately repulsive biquadratic coupling K/J = —0.5
[Fig. 4(d)], a critical-end-point (E )—isolated-critical-point
(C') structure occurs inside the ordered (ferromagnetic)
phase. This structure had been, in general, previously
seen in classical theories, ' ' ' but not in a
renormalization-group theory. The corresponding mech-
anism will be described in Sec. III C below. At
IC/J = —1 [Fig. 4(e)], the first-order transitions disap-
pear, but the reentrance persists. For more repulsive bi-
quadratic coupling, K/J = —1.5 [Fig. 4(f)], a ferrimag-
netic phase occurs. It is bounded by the ferromagnetic
and antiquadrupolar phases. The three different ordered
phases meet at a single finite-temperature point. (The
unprefaced study did indicate a qualitative dimensionali-
ty dependence of the phase diagrams, but the lack of
renormalization-group Aow space excluded the possibility
of the new sinks occurring here. ) Reentrance and, possi-
bly, ' ' ' critical-end-point structure, as above, has been
seen' ' in the analogous experimental system of FeBr2.

Due to the approximate nature of the calculation, we
cannot trust the detailed description of the phase boun-
daries obtained. However, looking at the broad features
of the phase diagrams, the novel features seen in mean-
field theory appear to survive the Quctuations in d =3,
but not in d =2.
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FIG. 5. Renormalization-group mechanism for critical end
points with the first-order segment occurring: (left panel) inside
the disordered phase, found in Ref. 7 ("external" structure);
(right panel) inside the ordered phase, found in this work
("internal" structure). In both cases, the mechanism involves a
distinct, hybrid fixed point (E and E ) onto which the critical
end points renormalize. The fixed-point connectivity and
relevant eigenvalue exponents are shown, including the y =d.
The critical eigenvalue exponents yT and yH appear numerically
identically at distinct fixed points within each connectivity.
Trajectories coinciding with first- or second-order phase boun-
daries are drawn as dashed or thick lines, respectively. The
phase sinks, represented by the circled lower-case letters, are
identified in Fig. 3. The unstable fixed points S and S' are no-
transition fixed points, combining, in their transfer matrix, the
unit elements of the sinks they mediate and, additionally, all
corresponding off-diagonal elements at unit value (i.e., no cou-
pling). The subscript n of the first-order fixed points F„ indi-
cates the number of coexisting phases.

C. Internal and external
critical-end-point structures

in renormalization-group theory

Renormalization-group theory was invented' in 1971
to describe critical behavior. First-order behavior was
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TABLE I. Location and eigenvalue exponents of the fixed point (E in Fig. 5) of the critical end
point [E in Fig. 4(d)] and of the fixed point (C in Fig. 5) of the critical line leading into the end point
(d =3).

Critical end point (E') Critical line (leading into E')

Fixed-point location in terms of
nearest-neighbor transfer matrix exp[ —P&(P„,P„)]

1 0 0 0 0 0 0 0
0 u v 0
0 v Q 0

0 0 v 0
0 v Q 0

0 0 0 1 0 0 0 0
with Q =0.979, v =0.905.

Note that these two matrices are globally separated in

renormalization-group Aow space.

Leading eigenvalue exponents

y& =3=d, y2=0. 925 y, =0.925, y, = —8.2

discerned' in renormalization-group theory in 1975.
Critical-end-point behavior was discerned, in
renormalization-group theory, shortly thereafter.

The first critical end points seen in renormalization-
group theory had the first-order segment, connecting the
end point and the isolated critical point, occur inside the
disordered phase (we shall call this structure "external" ).
From that work, the end-point mechanism in
renormalization-group theory was revealed as a distinct
critical-end-point fixed point that exhibits both the
relevant eigenvalue exponents of the critical fixed point
and the eigenvalue exponent y =d of the first-order fixed
point (Fig. 5). Thus, the critical-end-point fixed point
was called a hybrid fixed point. Nevertheless, a subse-
quent work claimed that critical end points with the
first-order segment occurring inside the ordered phase
(which we shall call an "internal" structure) did not

derive, in renormalization-group theory, from this mech-
anism of a distinct, hybrid fixed point. However, we find
here that the latter claim is incorrect: Table I lists the lo-
cation and eigenvalue exponents of the distinct fixed
point of the critical end point in the current work (which
has the internal structure) and those of the fixed point of
the critical line leading into the critical end point. It is
seen that we have again a hybrid fixed point. Thus, the
renormalization-group mechanism for "internal"
critical-end-point structures is identical with the one
originally seen for "external" critical-end-point struc-
tures.
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