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Theoretical study of multiple-bend quantum wires
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The electron-transport and bound-state properties of multiple-bend quantum wires, including
a ring-type structure, are studied. The emergence of minibands in the low-energy region is well
explained in the single-mode approximation.

I. INTRODUCTION

The study of electronic transport properties of the
two-dimensional electron gas (2DEG) formed in GaAs-
Al~Gai ~As heterostructures is of great current inter-
est, not only for the basic quantum effects involved but
also for the potential engineering applications. i s A nar-
row constriction is formed by designing gates and apply-
ing appropriate electronic potentials on them above the
2DEG. This narrow channel, or quantum wire, then be-
haves as an electron waveguide due to the high mobility
and low scattering probability of electrons in the 2DEG.
For simplicity, we adopt a widely used efFective-mass ap-
proach, in which the electrons, with effective mass m*,
are confined laterally by some potential field. We are
interested here in periodic structures defined in the con-
striction, formed by identical cavities connected serially.
Sols et al.s ~ have studied devices of this sort, whereas
Brum, s and more recently Berggren, s have considered a
more symmetric con6guration, a quantum-dot superlat-
tice. In this paper, we study a quantum wire with many
bends, with open or joined ends. For simplicity, the con-
fining potential field is considered to be an infinite square
well. The structure is also studied in the one-mode ap-
proximation developed in a previous paper. io The mini-
bands resulting from the periodic structurei s are eas-
ily understood and the one-dimensional nature of the sys-
tem in the low-energy region is seen clearly.

II. MULTIPLE-BEND QUANTUM WIRE

We study a quantum wire of width d with multi-
ple right-angle bends. The lateral confining potential
is assumed to be zero inside and outside to be infinite.
Thus the normalized transverse wave function is just
P„(y) = g2/dsin(nay/d) for mode n. The bent wire
can be viewed as a series of right-angle bends connected
by segments of straight wire of length l. Consider a sin-
gle unit or cell to consist of one bend with two leads of
length l/2. For this single unit, the wave functions at the
two ends are expanded as
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where I' = 1, 2 distinguishes the two ends, and

is the longitudinal wave number associated with the
transverse mode n. We express energies E = kz in units
of 5 /2m'. The role of the bend is to relate wave func-
tions at the two ends by a transfer matrix:
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where

(

Cr&(
E GF)

(3)

(4)

where Cr and Cr are single-column matrices with ele-
ments Cr „and Cr „. The forms of U and V can be
derived following Ref. 10:
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While the transfer-matrix method is a simple and pow-
erful approach, it requires the matrix U to be invertible.
This will create a numerical problem when many closed
channels are to be included in the calculation. An al-
ternative method is to express Eq. (3) as USi = VS2,

B„„=n„cot(n„d)6„„'
and P = exp(inl/2), a diagonal matrix.

Knowing the role of one cell, the properties of the whole
wire can be found by means of the total transfer matrix
which is the product of all the transfer matrices for the
component cells, i4 except for one additional phase F for
every two adjacent bends which are bent in opposite di-
rections (as in the case of a double bend forming a stair-
case):
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and apply this to each bend in turn, and to derive a
set of linear equations where the wave function on each
connecting wire is considered to be an unknown. The
method briefly stated here is true for a general periodic
structure, however the form of A and B must be adapted
for each specific unit-cell structure.

Inth le low-energy region, one can learn much by consid-
ering the single-mode approximation ' B restrict-
ing the equations to just to one channel one reduc U

, M to 2 x 2 matrices. Since F is now a unit matrix,
t e relative bend direction of the adjacent bends makes
no difference. It can be shown that there is a simple
relationship between the transmission probability for a
single cell and that for N cells

1 ~sinNQ~2 f' 1=1+ . ——1

Here, P is the Bloch phase for single cell:

cos P = Tr(M)/2 = —cos(cit)
B
A

A2 B2+ ~2
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This relation explains the formation of minibands when
N is large: ~cosP~ & 1 induces an allowed band with
N —1 transparent points, at which T~ = 1, which are
in addition to those resulting from Ti = 1. On the other
hand,

~

cos P~ ) 1 makes a forbidden band.
The single-bend wire has been discussed in Refs. 20 and

15. The double bend has been calculated by Wei h
at 2113 The'

y eiss aar et
eir results show that the transmission vs energy

curve for a staircase double bend generally follows the
single-bend curve but with additional oscillations which
can be viewed as representing a standing wave resonance
in the middle wire. In Fig. 1 we show the calculated
result for a double bend. For the purpose of this paper,
we show only the situation where the energy is below

the second mode threshold. The dotted curve drawn in

f
the lower part is the exact result. For either direct'o
o the second bend (a U shape or a staircase), one finds
the same result in this energy region and thus only one
such curve is drawn. The solid curve in the lower part is
calculated in the single-mode approximation. The upper
part of Fig. 1 shows cos P as defined in Eq. (11). Since N
is only two, the forbidden bands are not well developed.
We see, however, that each region of

~
cosP~ ) 1 does

produce a minimum. On the other hand, each region
where

~
cosP~ & 1 gives rise to N —1 = 1 maxima as

expected. The maximum value is 1 for each peak (the
last one shown does not reach unity due to numerical
resolution). For a double bend, Eq. (10) reads 1/T2 =
1+4~ cos P~ (1/Ti —1). The condition for a maximum is
cos P = 0. Equation (ll) can be rewritten to consist of a
positive amplitude function times cos(a.t+8) with tan 8 =
( — + a )/(2nB). The condition for a maximum~A2 —B
is then nt + 8 —vr/2 = nor By. plotting tan(8), we find
8 changes from x/2 to about 27r in the region x/d &
k & 2vr/d. We see immediately that when t is large, the
maximum condition is that nl be an integer multiple of
vr. This is why the maxima can be viewed as standing
waves in the middle connecting wire. Purthermore, the
number of maxima in a given interval is given by the
integer part of v 3t + 1.5. For the situation illustrated in
Fig. 1, t = 4 and there are eight maxima.

Next we discuss results for a ten-bend wire. There are
many possible con6gurations with ten bends. In the in-
set of Fig. 5 we show two of these configurations, which
we call (a) staircase and (b) corrugated shape. Fig-
ure 2 shows exact calculations for these two configura-
tions. As expected, the transmission probabilities for the
two configurations are very similar in the plotted region,
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FIG. 1. Transmission probability for a double bend. l =
4d. Upper part: cosine of Bloch phase of the double bend.
Lower part: the dotted curve is the result with the single-
mode approximation, whereas the solid line is the exact cal-
culation.

FIG. 2. Exact calculation for ten-bend wires with l = d.
(a) Transmission probability for the staircase shape, with en-
ergy running from the first-mode threshold to the second-
mo e threshold. The result for the corrugated shape is very
similar. In (b) and (c), the third allowed zone is expanded.
(b) is for the staircase and (c) is for the corrugated shape.
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UQ = e'~VI'@ (12)

where I' is needed to account for the extra phase from op-
posite direction bends. It can be shown that +P always
appear together as conjugate solutions; each pair of real
P represents one channel which allows electrons to prop-
agate. In Fig. 4 we plot cosP, but only for those points
with real P values. The part of the curve from kd/n = 1
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FIG. 3. Single-mode approximation for a ten-bend wire
as shown in Fig. 2. Upper part: the cosine of Bloch phase.
Lower part: solid line, the transmission probability T&0,. dot-
ted line, the predicted envelope function of the minima and
the dashed line, transmission probability for a single bend Tz
in the single-mode approximation.

thus only the curve for the staircase shape is shown in
Fig. 2(a). There are three complete allowed zones, and
each has exactly nine maxima. The erst allowed zone
is not complete; there are only three peaks. This is be-
cause the variation of the Bloch phase in this zone is less
than ir, as seen in the upper part of Fig. 2. In order to
see the difference between the two configurations, we ex-
pand the third complete allowed zone. Figure 2(b) is for
the staircase shape; Fig. 2(c) is for the corrugated shape.

The single-mode approximation result is shown in
Fig. 3. As in Fig. 2, the upper part is the cosine of the
Bloch phase. In the lower part there are three curves.
The solid one is the transmission probability. We see
that both allowed and forbidden bands are well devel-
oped. Compared to Fig. 2, though not identical, it is
remarkably similar. The dotted curve is the envelope
function for the minima of the allowed bands. It is de-
rived from Eq. (10) by setting

~

sin NP~ = 0. The dashed
curve is Ti, the transmission probability for a single bend
in the single-mode approximation. As can be predicted
from Eq. (10), it passes through the center of each al-
lowed band envelope function. It is clearly seen that in
the low-energy region, the periodic quantum wire is dom-
inated by its one-dimensional nature.

Figure 4 shows the conductance of a ten-bend wire in
the staircase shape with t = d. The upper part of Fig. 4
are the cosines of the Bloch phase calculated exactly by
solving the generalized eigenvalue problem
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FIG. 4. Conductance of the ten-bend staircase shape wire
in units of 2e /h. l = d. The conductance is shown in the
lower part, while the cosines of the Bloch phases are shown
in the upper part. Only those points with real P value are
plotted.

to 2 is identical to Fig. 2, where there is only one pair
of P (except a very narrow region around kd/vr = 1.8).
From kd/m = 2 to 3, we still see some well-developed
minibands. This can be explained by the fact that basi-
cally there is only one pair of P for a given k value, and
thus just one channel. In this case, the mechanism of
formation of the miniband is the same as in the single-
mode approximation. However, if there are two pairs of
P in a region, we see peaks reaching up to 0 = 2. This
argument applies equally to the higher energy region. It
is observed that the conductance is greatly reduced by
the bends in the wire as compared to the straight wire.
The result for a corrugated wire is similar though there
are noticeable difFerences beyond the second mode.

Following the work of Schult, Ravenhall, and Wyld
it is known that junctions and open quantum dots can
support bound states. Their properties have been dis-
cussed in the literature, in particular, their possible de-
tection as tunneling resonances. The bound
state for a single bend lies at E = 0.929' 5 For a
multiple-bend wire, there may be more than one bound
state. In general, each bend should support one. When
the interbend distance is large, these states are decou-
pled, and thus we have N degenerate states. When the
distance l is shortened, interaction between these states
removes the degeneracy and produces a miniband. Some
levels are pushed up while others are pushed down. Since
only those states below ei are bound, some states may
disappear when l is less than a threshold value. The
situation can be well understood by modeling it as a
multisquare-well problem in one dimension. 1 In this pic-
ture, the widest well occurs at l = 0, when the system has
its lowest bound state. In Fig. 5 we plot the bound states
for the two types of bent wire as shown in the inset of
Fig. 5. It is seen that the bend direction makes little dif-
ference. The convergence to the single-bend bound-state
energy is seen clearly as l increases.
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tern is closed: Siv+i = Si, and thus

P = 2xm/N, m = 0, 1, ..., N —1 (15)
0.95

0.9

0.85

0.8

0.75

Figure 6 shows the spectrum of the four-bend crys-
tal for energy below 4(ir/d), which would be the second
propagating mode threshold. The left half of the figure
is the result of the single-mode approximation while the
right half is from an exact calculation. For the four-
bend crystal, allowed states exist for P = 0, +m/2, and rr.
States with P = Err/2 are degenerate. We wish to discuss
in detail the first four states, which have a direct connec-
tion to the bound state found for an open single-bend
wire at energy 0.929m~. ' If l were very large, the four
states would be degenerate at this energy. The situation
is similar to the double-bend wire discussed in Ref. 10.
The four states have definite symmetries associated with
P. If we label the four bends as 1,2,3,4 and represent the
wave function at the first bend with a +1 symbol, the
four states will show the following patterns:

FIG. 5. Bound-state energies for a ten-bend wire with
open ends. Solid line: the corrugated shape. Dotted line:
the staircase shape. Dashed line: mark for the single-bend
bound-state energy. The inset shows the two particular ten-
bend wire configurations; l = d. (a) The staircase shape and
(b) the corrugated shape.
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III. ARTIFICIAL CRY'STAL MADE
PROM BENT 'WIRE

In the previous section, we have focused our atten-
tion on the transmission problem. We assumed that the
system was open: electrons enter the structure from one
end and leave it from the other. The bound states, if any,
were those corresponding to an electron trapped in the
structure with energy less than the propagating thresh-
old. In this section we will discuss instead closed systems
consisting of serially connected identical cells. This clos-
ing is done by joining the beginning and end of the chain.
In such a structure, periodic boundary conditions arise
naturally. However, unlike the usual solid-state crystal,
only a finite number of cells are involved.

For an artificial crystal made from bent wire, there are
many possible configurations, depending on the number
of bends. The simplest is the square four-bend crys-
tal. The next possibility is a 12-bend structure form-
ing a cross as in the inset of Fig. 7. Strictly speaking,
the basic cell for this cross consists of two left- and one
right-handed bend. However, as we have seen in the last
section, the bending direction makes no difFerence if the
energy is below the second threshold. Thus we will treat
the cross as a 12-cell crystal.

Due to its geometrical symmetry,
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Since states with P = 6m/2 are degenerate, one can
combine them to make real wave functions having the
pattern +1,0, —1,0 and the 90 rotation of 0, +1,0, —1.
When t is decreased, the ground state being most sym-
metric is lowered in energy by spreading of the wave func-
tion into the connecting links, while the other states rise

S~+g ——e S~
ip (13)

Energy levels for 4 bend crystal
where P is a solution of a generalized eigenvalue problem:

UtP = e'~V@. (14)

In the single-mode approximation this definition is
identical to that of the Bloch phase introduced in
Eq. (11). However, now P is quantized: since the sys-

FIG. 6. Spectrum for the four-bend crystal. On the left
are results from the single-mode approximation and on the
right are exact results. Energies are expressed in terms of the
first propagating threshold energy ei = (ir/d) . The label to
the left of each level is the associated P value. States with

P = +sr/2 are degenerate.
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(b)
FIG. 7. Wave functions for the first four

states of the four-bend crystal. (a) P = 0, the
ground state; (b) P = x, the fourth state. (c)
and (d) Real wave functions for P = +sr/2
states. The inset in the center is an artificial
cross-shape crystal made of 12 bends.

in energy because their symmetries force the wave func-
tion to be squeezed into the bend region. Figure 7 shows
the wave functions for these four states.

The cross-shaped crystal with 12 bends is the simplest
possible beyond the four-bend square crystal. Just as we
described its states by the quartet of values taken by the
wave function on the four sites, here we require a 12-piet.
Four of the states are just the threefold repetition of the
previous quartets; these states have the same P value and
the same phase change between adjacent sites, hence the
same energy. All the states can be described by wave
functions of the pattern

2~ns
cos xg, xb 1),12

n
or

could use labels 1c and 1s, etc.) The degeneracies and
energies of the erst 12 bound states in terms of ei are
1 x 0.874, 2 x 0.883, 2 x 0.909, 2 x 0.953, 2 x 1.010,
2 x 1.073, and 1 x 1.108.

IV. CONCLUSION

We have studied a particular periodic quantum wire
structure formed by multiple right-angle bends. This
particularly simple configuration shows how the mini-
bands develop in a Gnite periodic system. We have also
analyzed the system in the single-mode approximation.
These analytic results agree well with the exact calcula-
tions, and demonstrate that the system is dominated in
the low-energy region by its underlying one-dimensional
nature.

27cns
sin xb xg = 1, ..., 12

n
(17)
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