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Quantum relaxation in random magnets
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We present a comprehensive study of the low-temperature magnetic relaxation in random magnets.
The first part of the paper contains theoretical analysis of the expected features of the relaxation, based
upon current theories of quantum tunneling of magnetization. Models of tunneling, dissipation, the
crossover from the thermal to the quantum regime, and the effect of barrier distribution on the relaxa-
tion rate are discussed. It is argued that relaxation-type experiments are ideally suited for the observa-
tion of magnetic tunneling, since they automatically provide the condition of very low barriers. The
second part of the paper contains experimental results on transition-metal —rare-earth amorphous mag-
nets. Structural and magnetic characterization of materials is presented. The temperature and field

dependence of the magnetic relaxation is studied. Our key observation is a nonthermal character of the
relaxation below a few kelvin. The observed features are in agreement with theoretical suggestions on
quantum tunneling of magnetization.

I. INTRODUCTION

There is now a considerable interest devoted to the
phenomena associated with quantum tunneling of magne-
tization in solids. ' Similar to quantum crystals, where
quantum effects come to life because of the small mass of
helium atoms, the magnetization M(r) was shown to be
"light" enough to display quantum behavior in magneti-
cally ordered systems.

Magnetic order in ferromagnets is created by the
strong exchange interaction which aligns spins together.
The orientation of the resulting M is determined by the
energy of magnetic anisotropy, E,„(M„M,M, ). In the
absence of the anisotropy, any component of M conserves
exactly since M commutes with the exchange Hamiltoni-
an. In the presence of the anisotropy, however, the com-
mutation of M with the total Hamiltonian is, in general,
violated. This is a simple reAection of the fact that the
anisotropy is due to spin-orbit interactions. The magnet-
ic anisotropy plays, therefore, a double role. On one
hand, it orients M along some direction in a solid. On
the other hand, it allows M to tunnel between different
directions.

It has been demonstrated (see Sec. II) that there exists
a characteristic (crossover) temperature T„below which
the escape of M(r) from metastable configurations is
dominated by quantum underbarrier transitions, not by
thermal overbarrier activation. Although the exact value
of T, depends on the shape of the barrier, the typical
scale of T, is quite universally given by ps(H~~~H~)'
where H~~ is the easy axis anisotropy field and H~ is the
field responsible for the noncommutation of M~~ with the
Hamiltonian. For typical values of the magnetic anisot-
ropy this corresponds to the temperature range
T, -0, 1 —10 K. This prediction may seem to be incon-
sistent with observations. Indeed, magnetic materials

have been investigated in that temperature range for a
long time, and quantum behavior of the magnetization
has not been widely noticed. There may be a simple ex-
planation to that. The necessity of low temperature orig-
inates from the requirement T & T, . In addition to that
requirement, the rate of the escape must be sufficiently
large to actually observe the transitions. This translates
into the temperature-independent requirement of low-
energy barriers. The rate of thermal transitions is deter-
mined by the Boltzmann factor, I r -v exp( —U/k~ T),
where U is the barrier height, v is the attempt frequency.
At T- T, the transition probability must begin to depart
from this law, tending to the temperature-independent
quantum transition rate, I &

—v exp( —U/ks T, ) at
T & T, . The prefactor v is usually of the order of the fer-
romagnetic resonance (FMR) frequency, v- 10' —10"
s '. Thus at kz T « U/30 thermal transitions are frozen
out. Quantum transitions will reveal themselves on the
time scale of the experiment, if the following condition is
satisfied:

k~T( U3/O~~k,T.

There are two kinds of barriers in magnetic systems:
intrinsic barriers due to magnetic anisotropy and barriers
due to the pinning of domain walls by defects. Both are
responsible for the pronounced metastability of magnetic
materials, known as hysteresis phenomena. Anisotropy
barriers are typically of the order of H~~Mp V, while pin-
ning barriers are of the order of H, Mp V, where Mp is the
magnetic moment of the unit volume, H, is the coercive
field, and V is the volume involved in the tunneling pro-
cess. These will produce the WKB exponent U/k&T, of
the order of (H~~/H~)' I for anisotropy barriers and of
the order of tH, /(H~~H~)' ]J for pinning barriers,
J Mp V/pg being the total tunneling spin. Correspond-
ingly, tunneling of a large spin J &&30 may occur only at
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H~~ &&H~ or in materials with low coercitivity. To in-
crease the total tunneling magnetic moment, one may
think about the possibility to decrease the barriers by ap-
plying the magnetic field. A suKciently large field will re-
move the barriers and establish a reversible magnetic
behavior. This means that the problem of reducing the
barriers essentially becomes the problem of the accuracy
with which one can control the magnetic field.

It becomes clear from the above consideration that
preparation of the system with small barriers is the most
difficult part of the experiment on macroscopic (or meso-
scopic) tunneling of the magnetization. The main pur-
pose of this paper is to demonstrate, that, in fact, nature
very often prepares for us magnetic systems which are
ideally suited for investigation of tunneling effects.

Consider a magnetic system with high metastability
and broad distribution of energy barriers. It may be a
system of interacting single-domain particles, a highly de-
fective ferromagnetic crystal, a random magnet, etc. As
one applies the magnetic field, the magnetic moment of
such a system typically has a two-step evolution. In the
first, rapid stage, it changes due to the rotation of the lo-
cal magnetization in areas where the barriers are re-
moved by the field. As the magnetization of the system
changes, so does the internal field inside the magnet.
Eventually, the evolution of the system gets stuck in the
state where the barriers just begin to develop. The later,
slow phase of the evolution is due to thermal or quantum
transitions in the presence of the barriers. Thus, starting
from zero barriers, the relaxing system automatically ar-
rives at the barrier heights for which the lifetime of meta-
stable states corresponds to the actual time scale of the
experiment. This situation is well known in the theory of
type-II superconductors, " where the slow relaxing
phase starts from the Bean critical state. ' It can be easi-
ly understood in terms of the friction-dominated motion
of a block down the incline with a decreasing slope. The
block stops when the moving force due to gravity is bal-
anced by the friction. The following slow motion is pos-
sible if somebody is shaking the incline (the analog of
temperature).

For thermally activated processes, the rate of the slow
relaxation discussed above must decrease as temperature
goes down. Independence of this rate of temperature,
below some temperature, is the vestige of quantum tun-
neling.

In this paper we will report observation of such
behavior in random magnets and will attempt to make a
link between theory and experiment.

The paper is organized as follows. In Sec. II we review
the existing models of quantum tunneling of magnetiza-
tion. The effect of dissipation on the tunneling rate and
expected features of the crossover from thermal to quan-
tum regime are discussed. Different approaches to the
understanding of log(t) relaxation are considered. Sec-
tion III contains experimental results on Fe-Sm, Fe-Tb,
and Co-Sm amorphous magnets. Structural and magnet-
ic characterization of these materials is presented. Our
key observation concerns the low-temperature magnetic
relaxation. In Sec. IV the experimental results are dis-
cussed in terms of quantum tunneling of magnetization.

II. THEORY

A. Models of tunneling of magnetization

A few models of tunneling have recently been suggest-
ed. The most simple situation corresponds to a single-
domain ferromagnetic particle. ' Let us assume that the
magnetic moment of the particle points along the Z axis
and the field is applied in the opposite direction. The
stable magnetic state of the particle corresponds to M
directed along H. To rotate an individual atomic mag-
netic moment with respect to others costs the exchange
energy e,„per atom. To coherently rotate the total mag-
netic moment of the particles out of the anisotropy axis
costs e,„N, where N is the total number of magnetic
atoms. Thus, at 1V &e,„/e,„-10—10 it is energetically
favorable to develop a uniform rotation of M towards the
minimal energy state. The Hamiltonian of the model
that possesses tunneling must not commute with the
component of M that corresponds to its equilibrium
orientation. Consequently, in the case of the uniaxial an-
isotropy, tunneling may only be due to the magnetic field
off the easy axis. To ensure a significant tunneling rate
such a field must be comparable to the anisotropy field.

In our experiments (see Sec. III) the applied field will
always be less than the anisotropy field, so we are pri-
marily interested in situations where tunneling is due to
magnetic anisotropy itself. The minimal nonuniaxial
model of that kind which contains tunneling corresponds
to the orthogonal symmetry, with the energy density
E,„=—

k~~M, +k~M~ —MH (k~~, k~ & 0). This model
contains all the basic features of more complicated situa-
tions. In a spherical coordinate system it is equivalent to

E,„=(K~~+ICjsin P)sin 8—MH(1 —cos8),

evaluated along the instanton trajectory leading M out of
the metastable state. This is equivalent to solving the
Landau-Lifshitz-Gilbert equation

BM/Bt = —yM X 5E,„/5M (3)

in imaginary time. Surprisingly, it has been quite recent-
ly noticed that while the real-time solutions of Eq. (3) de-
scribe phenomena such as FMR, spin waves, and propa-
gation of domain walls, the imaginary-time solutions cor-
respond to tunneling events. ' For E,„given by Eq. (1)
one obtains that the quantum underbarrier transition
probability P is

where 8(r) and P(r) are spherical coordinates of a fixed
length vector M(r). For H (H~~ =2k~~ /Mo, there are two
local energy minima: 8=0 and ~; the maximum (at
/=0) corresponds to cos8, =H/H~~, and determines the
barrier between the minima (Fig. 1). The height of the
barrier is U =K~~ Vc, where V is the volume of the parti-
cle, v=1 —H/H~~. Notice that the transverse anisotropy
k~ is responsible for quantum transitions between the
minima; if k~ =0, M, commutes with E,„. The WKB ex-
ponent of the transition is given by the Euclidean action

Sz/A'= iV/R f—dt [(Mo/y)gcos8 E,„(8,$)] (2)—
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P ~ exp( —UIkii T, ),
where

T 3ii (H H )1/2el/2
B c 4 B

(4)

In the case of the uniaxial anisotropy of the particle,
k~~, the transitions between the energy minima can be in-
duced by the field applied at some angle to the anisotropy
axis. If the field is perpendicular to the axis, the transi-
tion probability at small E, = 1 —HIH~~ is given by Eq. (4)
with U =%~I VE, , k~ T, = 4pgH~~E.

A similar approach has been developed for the problem
of quantum nucleation in a bulk ferromagnet. In this
case one must add the exchange energy (2 /Mo)(c);M)
to the anisotropy energy and look for nonuniform
imaginary-time solutions of Eq. (3). A nice example is
quantum nucleation of a cylindrical bubble in a ferromag-
netic film (Fig. 2). The probability of that process is
given by Eq. (4) with U =23.3K~ah 5 E and k21 T,
=1.24pti(H~~~H1 )' E' for orthogonal magnetic anisot-
ropy. Here h is the thickness of the film and
5=( /I /E~~ )' is the thickness of the domain wall.

Until now we considered only tunneling through in-
trinsic barriers due to the magnetic anisotropy. Another
class of problems is represented by tunneling of domain
walls through barriers created by pinning defects. ' ' In
this problem the wall is described by the equation of the
surface Z=Z(x, y, t). The WKB exponent for the tun-
neling is given by the external Euclidean action of the
wall

SE =( cr5 /co) Jd x(—II+ [Vz(x)] I'/

+u (x»x2, z) —hz(x)),

where cr is the energy per unit area of the wall, co=UO/6,
Uo is the limiting velocity of the wall, x1 =x /5, x2 =y/5,
x3=imt, z=z/5, u =U( yx, )/zrics the pinning poten-
tial, h =2MOH6/o. .

Analysis of this problem for different situations shows
that typically the WKB exponent for the tunneling is of
the order of'

B—(pic H,„/fico )( h, e ) I,
where h, =H, /H, „, H, is the coercive field, and

E,„(B,O)

U

0

XI

FIG. 2. Nucleation of a cylindrical bubble in a ferromagnetic
film.

E= 1 H/H, —. In the materials with low coercitivity, the
total tunneling spin can be quite large, J-10 . The
crossover temperature for the domain wall tunneling is'

k, T, -~~(h, .)
"4

Due to the weak dependence on h, and c., it can be rather
high, T, —I K, even at h„c,«1.

All the above formulas have been derived for some
ideal geometries of tunneling and, thus, cannot be used
for a precise analysis of experimental situations if these
ideal conditions are not satisfied. Nevertheless, they pro-
vide experimentalists with a rough estimate of the expect-
ed tunneling rate and the crossover temperature based
upon macroscopic characteristics of magnetic materials.
In particular, one may expect that a higher magnetic an-
isotropy will allow one to observe tunneling at a higher
temperature. The number of tunneling spins can also be
estimated based upon the height of the barrier.

B. Dissipation

When studying the tunneling of a macroscopic object,
as the magnetization M(r, t), one should be concerned
about its interaction with microscopic degrees of free-
dom, that is, the dissipative environment. The impor-
tance of this interaction immediately becomes clear, if
one notices that a baseball in a potential well will not
move either classically or quantum mechanically even in
the limit of a Aat horizontal surface when the barrier be-
comes zero. The reason is friction. A similar argument,
in principle, may apply to the tunneling of M.

For couplings to the environment which are linear in
the environmental variables, the general answer to the
question of whether dissipation is important or not was
given by Caldeira and Leggett. ' They found that most
serious effects come from Ohmic coupling, which in clas-
sical terms corresponds, e.g., to the motion of the particle
of mass m in the potential U(x), satisfying

aU
X +VdX— (9)

Pl ()X

FIG. 1. The anisotropy energy E,„(0,+=0).

The remarkable result of Caldeira and Leggett is that the
effect of such coupling on the WKB exponent B can be
presented in terms of the dissipation constant vd,

B -Bo(1+h vd Ikii T, ),
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where Bo is the WKB exponent in the absence of dissipa-
tion.

For tunneling of the magnetization, dissipative interac-
tions include couplings to conducting electrons, phonons,
and magnons. Conducting electrons are important in
metals where time-dependent M induces eddy currents.
Interaction of M with the conducting electrons is Ohmic
in nature. It has been argued' that the contribution of
this interaction to the tunneling rate can be approximat-
ed by Eq. (10) with vd being the width of the ferromag-
netic resonance. Typically this contribution is small.

Interaction with phonons corresponds to the u, kM;Mk
term in the Hamiltonian of the system, where u, l, is the
strain tensor. It is linear but non-Ohmic. The relative
contribution of this interaction to the WKB exponent has
been estimated' as 10 . The contribution of magnons
is more difficult to elaborate since it is nonlinear and
non-Ohmic. Theoretical study of the magnon contribu-
tion' ' shows that it cannot be large, but can, in princi-
ple, be of the order of one at T- T„and rapidly goes to
zero as temperature is lowered. The relative contribution
of the dissipation on the domain wall tunneling has been
estimated as

(p, y&/pH )(h, e)

where p, is a factor determined by the structure of the
magnetic anisotropy ( for, e.g. , a rhombic crystal,
p, =[(1+K~/K~~)' —1]), y is the gyromagnetic ratio,

pH is the mobility of the wall with respect to the magnet-
ic field, v =pHH. This contribution can, in principle, be
noticeable in conducting materials with low mobility of
domain walls.

The general conclusion of studies on the eAect of dissi-
pation on magnetic tunneling is that it cannot
significantly afFect the results obtained without dissipa-
tion, but may, in principle, be noticeable in the case of
very low barriers.

C. Crossover from quantum to thermal regime

from a metastable state. In fact, it has been demonstrat-
ed that the problem of magnetic moment tunneling in a
single-domain particle can be explicitly mapped onto the
tunneling problem in mechanics. Consider a particle of
mass M in a metastable state formed by the potential
V(q) (Fig. 3). The probability of the escapes, I, is as-
sumed to be exponentially small, providing that the parti-
cle is in a thermodynamic equilibrium with the environ-
ment. It is given by the functional integral

I- D q~ exp —1 A d~L, q~

where L [q (~) ] is the imaginary-time (r= it) classical La-
grangian of the system, the functional integration is per-
formed over q (r) trajectories which are periodic in r with
the period r~ =fi/kz T, and the integral in the exponent is
taken over the period r . In a semiclassical limit, the de-
cay rate, with an exponential accuracy, is

I 0- exp( —Sz/A), (13)

where SE is the minimal Euclidean action evaluated
along the q(r) trajectory with ~r=h'/k~T that satisfies
Mq =d V/dq. Periodic solutions of this equation belong
to two classes: a constant, q =qo, and q(r) satisfying

—,'Mq =V(q) E(r ) . — (14)

The first solution, q =qo, corresponds to the particle at
rest at the bottom of the inverted potential (Fig. 3). The
second solution, q(r) given by Eq. (14), corresponds to
the periodic motion of the particle in the inverted poten-
tial between q, (E) and q2(E) (Fig. 3), with E determined
by the condition that the period of the motion equals

For q =qo one obtains

Sz= /dr[ ,'Mq +—V(q)]=V(qo)r =A'U/k~T, (15)

which gives the Boltzmann formula after substitution

As has been discussed in the Introduction, the escape
of the magnetization from a metastable state must be
governed by the Boltzmann exponent, exp( —U/kii T), at
high temperature, and must be given by the
temperature-independent WKB exponent, exp( B), at—
T~O. The crossover between two regimes occurs at
kz T—U/B. A common mistake is to think about
thermal and quantum transitions as independent process-
es which contribute additively to the total escape rate.
This is not true because the total escape rate is formed by
interfering channels of the transition. It may be evalu-
ated within a nice universal approach based upon func-
tional integration. Since the temperature dependence of
the escape rate is the key to the understanding of our ex-
perimental results, we will give here a brief sketch of the
theory i y 17 i 9

Although the tunneling of the magnetization may be
associated with di8'erent processes, there is no reason to
believe that the general features of the crossover for these
processes are essentially di6'erent from the thermal-to-
quantum crossover in the problem of a particle escaping

v (CI)

/
/

/
/

/

—Ep

FIG. 3. The barrier V(q) (solid line) and the inverted barrier
—V(q) (dashed line).
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I =v(T)exp[ —U/k&T*(T)], (16)

with T*=T at T & T, and T*(T))T at T & T, . A more
detailed analysis shows that the dependence of T on T is
always of the form shown in Fig 4.

A nontrivial consequence of the theory is that, in the
steepest-descent approximation, the transition from
thermal to quantum regime is rather sharp, with a well-
established plateau in the T (T) dependence. Recently,
it has been demonstrated ' that, for potentials having a
nonmonotonic ~ (E) dependence, it can be even sharper,
with k~T, )A'coo/2m. . The effect of the dissipation has
been shown to smear the transition. The depen-
dence T*(T) may, therefore, bring information on the
relative contribution of the dissipation to the tunneling
rate.

D. Critical state and distribution of energy barriers

To observe tunneling, an ideal experimental system
would be a set of identical noninteracting single-domain
particles frozen in a nonmagnetic matrix, in the presence
of the magnetic field which aligns all magnetic moments
in one direction. As the field is removed, the total mag-
netic moment of that system will decay with time accord-
ing to

M(t) =M(0)e (17)

with I" given by Eq. (16).
In practice, however, it is very difficult to prepare a

system of noninteracting identical particles, or identical
energy barriers. The barrier is proportional to the
volume of the particle, or, more generally, to the volume
V involved in the tunneling process. Thus, at T~O, the

into Eq. (13). This solution must be used at T )T, where
T, is the temperature at which periodic, with
r =Pi/kz T, solutions of Eq. (14) no longer exist. For the
class of potentials for which ~ is monotonically decreas-
ing with E, kz T, =%coo/2~, where mo is the frequency of
small oscillations near the bottom of the inverted poten-
tial (Fig. 3). At T & T, (r~ & 2~/coo) the Euclidean action
is minimized by periodic solutions of Eq. (14). The es-
cape rate at any temperature can be written as

tunneling rate can be presented as

I 0=v(0)exp( B—or /ro), (18)

where r is the linear size of the tunneling volume and ro is
the size of the volume corresponding to the WKB ex-
ponent Bo. As has been discussed in the Introduction, a
typical value of Bo, dictated by the time of the experi-
ment, is Bo -30. Consequently, a size distribution within
only 3% around ro will change the tunneling rate by the
order of magnitude. This must be taken into account in
all resonance experiments based upon the assumption of
narrow size distribution.

Fortunately, however, even very complex magnetic
materials can reveal a clear signature of quantum tunnel-
ing of magnetization in relaxation-type experiments.
Consider a highly metastable magnet uniformly magne-
tized by the applied magnetic field. If the field is sudden-
ly removed, the magnetization immediately drops to a
finite value determined by the hysteresis curve. This is
the magnetic state where the energy barriers just start to
develop. It is similar to the Bean critical state' in super-
conductors. In the latter case, the Lorentz force on Aux
lines is balanced by the local pinning force.

In magnets it may, e.g. , be the balance between the pin-
ning of domain walls and the magnetic force on the walls.
The log(t) magnetic relaxation in the critical state, com-
monly observed in magnets ' and superconductors,
can be explained within the Anderson-Kim model.

At I t « 1 the time derivative of the magnetization is

dM/dr = —M(0)I . (19)

Let us start with a pure thermal activation. Assuming
that the barriers begin to develop at M &M, (Fig. 5), I
can be written as

I =vexp
Uo M

M,
(20)

k~T
M(r)=M(r, ) 1 — ln

Uo to
(21)

Here M, is related to the coercive field by H, =NM„
where X is the demagnetization factor. The solution of
Eq. (19) is

FIG. 4. T*(T)dependence.

where M(to) =M, . It is easy to check that the condition
I t « 1 is equivalent to k~ T && Uo.

One should notice that the model presented by Eq. (20)
is very approximate. A complex system is expected to be
in a critical state locally, that is, at any point. One
should also expect that these local states are character-
ized by different energy barriers. This does not change
Eq. (21) but suggests that Uo must be understood as some
average barrier. There is also a possibility that local en-
ergy barriers are proportional to (1 —M/M, P where
p&1. This may change the power of ln(t) in Eq. (20).
The statistical theory of the relaxation in a critical state is
yet to be developed.

It was noticed long ago ' that a broad distribution of
energy barriers may provide the log(t) relaxation even
outside the critical state. Consider a system of nonin-
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ments. At T « Tii the integral in Eq. (25) can be approx-
imated by the first term of the expansion in a series on
ygU„

M (r) = M (to) [1—k~ Tf (0)ln(t /to )], (27)

FICi. 5. Schematic representation of the potential relief. (a)
Critical state (zero barriers). (b) Departure from the critical
(finite barriers).

1 dM
M(0) dr

k~T f dx e "f(k&Tin(vt/x)),
t 0

(23)

where we have substituted x —= I t. For a nonsingular dis-
tribution function, the main contribution to the integral
(23) comes from x —1, that is, from metastable states hav-
ing a lifetime I ' comparable to the observation time t.
For a typical relaxation experiment t —1 —10 s, that is,
vt —10"—10' . At x —1, this gives In(vt)))lnx, so that
Eq. (23) with good accuracy becomes

1 dM ka T
f(kii T ln(vt)) .

MO dr

Integration gives

(24)

M(t) =M(to) 1 —I dy'f (y') (25)

where to= v ' —10 " s, M(0) is replaced by M(to) for a
proper treatment of small times,

y (t)=ks T 1n(vt) . (26)

An important observation follows from Eqs. (25) and
(26): M depends on t through the combination (26). This
means, for example, that if one observes the log(t) mag-
netic relaxation due to the barrier distribution, the
coefficient in front of log(t) must be proportional to T.

The commonly observed, linear in log(t) relaxation,
can be easily understood from Eq. (25). Let Uo be the
average energy barrier which determines the blocking
temperature, k&T& —Uo/30 in static M(T, H) measure-

teracting single-domain particles or magnetic clusters of
similar size but with a broad distribution of barrier
heights. This may be due to, e.g. , fluctuations in the an-
isotropy constant or distribution of easy axes with respect
to the orientation of the applied field. In this case Eq.
(17) must be replaced by

M(t)=M(0) f dU f(U)e (22)

where I =v exp( —U/kii T), f ( U) is the distribution
function, ff(U)dU=1. Time derivative of this equa-
tion may be written as

where f (0)- Uo ', to is arbitrary. This formula describes
the low-temperature relaxation due to transitions
through small barriers, at the tail of the distribution. As
for the critical state relaxation, it is assumed that the re-
laxing part of the magnetic moment is small compared to
the total moment. One should expect this condition to
become invalid at large t for T- T~.

One may be puzzled by the fact that such different
models, the critical state model and the barrier distribu-
tion model, lead to the same result, Eqs. (21) and (27).
The answer becomes clear if one notices that both models
have one distinct feature: as the observation time is run-
ning, the system arrives at greater and greater barriers
which are more dificult to overcome. This is a very nat-
ural feature of complex systems and the key to under-
standing the log(t) relaxation. Thus the relaxation pro-
portional to T log(t) at T, «T «T~ must be expected,
and does occur, in a large variety of magnetic materials.

Let us now turn to the low-temperature relaxation
where quantum effects are expected. Derivations of Eqs.
(21) and (27), together with Eq. (16), simply suggest that
we have to replace T in Eqs. (21) and (27) by T"(T). At
large T this function has a universal T dependence,T'~ T. At small T, however, it depends on the shape of
the energy barrier (Sec. II C). In the case of the distribu-
tion of barriers, the relaxation law becomes

M(t) =M(t, )[1—S(T)ln(t/t, )], (2&)

where S ( T) is given by

S ( T)= [k (sT*(T) ) ]/( U ) . (29)

( T*(T) ) means averaging over the barriers of different
shape. As has been discussed in Secs. IIA and IIC,
T'( T) does not depend on the extensive parameters such
as, e.g. , the tunneling volume. Even for a broad distribu-
tion of tunneling volumes, one should expect a relatively
narrow distribution in T*(T) at low temperature. This
suggests that S( T), commonly called the magnetic viscos-
ity, must have a universal behavior similar to that shown
in Fig. 4. The existence of the plateau in S(T) at low
temperature should be interpreted as the evidence of
quantum tunneling of magnetization.

Our final remark concerns possible interaction between
tunneling clusters. The critical state arguments are
equally applied to that case, since they do not specify the
nature of the energy barriers. The arguments used in the
model of barrier distribution will change, however, be-
cause Eq. (22) is explicitly based upon the assumption
that tunneling clusters relax independently. This may
change the conclusion about the proportionality of S ( T)
to temperature at large T. However, the conclusion
about the plateau in S(T) dependence at low temperature
due to quantum effects should remain unchanged.
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III. EXPERIMENT

A. Samples and equipment

The materials studied are compositionally modulated
thin films of rare-earth (RE)—transition-metal (TM) al-
loys. Depending on the thickness of layers, on the rate of
the deposition, and on the temperature of the substrate,
RE-TM multilayered systems exhibit a large variety of
magnetic properties. When the two consecutive TM and
RE are very thin, a single TM-RE ferromagnetic amor-
phous layer is formed due to the interdiffusion of metals.
This was the case for our samples.

Our systems were prepared by using two electron beam
evaporators and in a high-vacuum chamber. The pres-
sure during the evaporation of metals was maintained at
5X10 torr. The evaporation rate controlled by the
quartz crystal oscillator was 0.5 A/s. A very thin kapton
foil was used as a substrate. Before evaporating RE and
TM metals, a 100-A buffer of a nonmagnetic metal (Cu or
Ag) has been deposited onto kapton. The substrate was
kept at 260'C during the evaporation. The composition
of the samples, the thickness, and other parameters of the
layers are summarized in Table I.

The modulation in the composition was checked by the
scanning tunneling microscope and by the low angle x-
ray diffraction. The high angle x-ray diffraction data
show only peaks corresponding to Cu(111) and crystalline
silver. The final composition of the intermetallic layers
was deduced from the scanning electron probe analysis.
For the two samples containing iron, we also recorded
Mossbauer spectra between 4 K and room temperature.
The Mossbauer data confirmed the random magnetic
structure of the films.

Magnetic measurements were performed by using a su-
perconducting quantum interference device (SQUID)
magnetometer. During the relaxation experiments, the
data were corrected to take into account the spurious
drift of the SQUID baseline. The applied magnetic field
in the relaxation studies was produced by using a power
supply which had a record constancy in the generated
current. The accuracy in the field measurement was
better than 0.1 Oe. The applied field was calibrated by
using a pure Pb sample in the superconducting state. The
constancy of the applied field was checked by measuring
the signal from a pure paramagnetic sample during two
hours at different temperatures.

The following procedure was used in all relaxation
measurements. The sample was cooled from room tem-
perature to a well-defined final temperature in the pres-
ence of a 100-Oe field. Then the field was rapidly
changed from 100 Oe through zero to —100 Oe. The
first measurement of the magnetization was taken four
seconds after the change of the field. The variation of the
magnetization with time was then followed during the
time period up to a few hours. The time interval between
two consecutive M(t) points was 4 s. The applied field
during the relaxation experiments can, in principle, take
any value H verifying O~H &H~~. We applied a field

H = —100 Oe after the field-cooled process in order to
detect better the relaxation phenomena.

B. Static properties

l. High geld measurements

Hysteresis measurements at different temperatures
were performed for all the samples in order to get the
variation with temperature of the coercive field H„ the
remanence magnetization M„, the saturation magnetiza-
tion M„and the anisotropy field H,„. These measure-
ments were done for the applied field parallel and perpen-
dicular to the film plane. The total magnetization of the
samples has been found to lie in the plane. In Fig. 6 we
show the hysteresis data for the FeTb sample at 5 K.
Figure 7 shows the variation of the coercive field with the
temperature for the FeSm sample.

RE-TM random magnets are characterized by strong
ferromagnetic exchange and random magnetic anisotro-
py. Such systems have been successfully described within
the correlated spin-glass model. According to this
model, the atomic magnetic moments are ferromagneti-
cally correlated on a small scale, while on a large scale
the magnetization rotates stochastically over the sample.
The magnetization law on the approach to saturation is
entirely determined by the random anisotropy effect,
leading to certain predictions depending on the dimen-
sionality of the system.

For all the three samples, the best fit to the M (H) data
is provided by 1/H law at low fields and by 1/H law at
high fields (see Fig. 8). Then, according to the theory,
our RE-TM systems behave as two-dimensional amor-
phous ferromagnets. This is not surprising since the es-

TABLE I. Structure of the samples.

Fe/Sm
Fe/Tb
Co/Sm
Co

Kapton foil
Kapton foil
Kapton foil
Kapton foil

Sample Substrate
Buffer fundamental

sequence (F,S)

100 A Cu [Fe(3 A)/Sm(2 A)]&&6
100 A Ag Fe(3 A)/Tb(4 A)
100 A Cu [Co(4 A)/Sm(3 A)]»
100 A Cu [Co(30 A)/Cu(100 A)]

Repetition
of F,S

15
50
11
20

RE/TM'

Fe4Sm
Fe3Tb
Co4Sm

Total volume
(cm )

7x10-'
5 x10-'
sx10-4
6x10-'

'The composition of the samples was obtained by calculating the evaporated mass of each metal, by us-

ing a crystal quartz oscillator. We have also performed the electronic microprobe analysis of each sam-
ple and obtained compositions in agreement with those calculated.
In the measurements we have used samples containing 40 films of each composition.
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perature in the thermal regime.
Magnetic properties of our random magnets are quite

well described by the random anisotropy model. Ac-
cording to this model, the ferromagnetic exchange aver-
ages on a small scale where the local magnetization is
formed, while the direction of the magnetization wanders
randomly, leading to a finite ferromagnetic correlation
length. This state can be thought of as formed by small
ferromagnetic clusters whose magnetization directions
are separated by anisotropy barriers.

Let us list major features of the relaxation process, ob-
served experimentally, and compare them with theoreti-
cal expectations.

(1) A small part of the total M is relaxing.
(2) Relaxation follows the log(t) law.
(3) S(T)~ T at high T.
(4) S ( T) is independent of T at low T.
(5) The crossover occurs at a few kelvin.
The first means that the decay of metastable states

occurs in a small fraction of the volume. This is what
one would expect looking at the ZFC M(T) curve (Fig.
9). According to this curve, most of the metastable states
freeze out below Tz —100 K because of large barrier
heights. The broad maximum in Fig. 9 indicates, howev-
er, that some fraction of the volume remains in a super-
paramagnetic state down to very low temperatures,
T «T~. In other words, there are small clusters whose
magnetic states are separated from the absolute energy
minimum by barriers much lower than average. As fol-
lows from Eqs. (28) and (29), the relaxing fraction of the
total magnetization, on the time scale of the experiment,
must be of the order of T'/T&. This agrees with the ex-
perimental data.

The log(t) relaxation is what one should expect in a
critical state, or for a complex system having a broad dis-
tribution of energy barriers. Such a relaxation is a simple
reAection of the fact that metastable states, having lower
barriers, decay on a shorter time. As the observation
time is running, the system comes to higher and higher
barriers which are more and more difFicult to overcome.
At any time of the observation t, metastable states, which
are currently decaying, are characterized by the lifetime
I '-t. This situation always lead to the log(t) relaxa-
tion, as has been demonstrated in Sec. II D.

The proportionality of S(T) to T at T, « T « T~ is in
accordance with the theoretical expectation, Eq. (29). It
may also indicate weak correlations between magnetic
clusters. The latter would be quite natural for our sys-
tems. First, the magnetic dipole interaction in these sys-
tems, which may be responsible for the interaction be-
tween the clusters, is much lower than the anisotropy en-
ergy responsible for the barriers. Secondly, since a small
fraction of the total moment is relaxing, the clusters
simultaneously involved in the relaxation process must be
separated by a large distance, which should additionally
decrease their interaction.

The existence of the plateau in the S ( T) dependence at
low temperature is exactly what one would expect in the
presence of quantum tunneling of magnetization, see Eq.
(29) and Fig. 4. One may notice that the transition from
thermal to quantum regime is rather sharp, certainly
sharper than for macroscopic quantum tunneling ob-
served in Josephson junctions. This is again in accor-
dance with the theoretical expectation of weak dissipa-
tion in magnetic tunneling' ' ' and the prediction of a
sharp transition in systems with weak damping. It
should be noted that, according to Eq. (29), the distribu-
tion in the geometrical shape (not the height) of the bar-
riers, must smear the transition. The sharpness of the
thermal-to-quantum crossover indicates, therefore, that
most of the barriers have the same physical nature.

The numerical analysis of magnetization curves, based
upon the random anisotropy model, shows that the an-
isotropy field in our samples is somewhat smaller but typ-
ically of the order of the effective exchange field. Corre-
spondingly, the effective anisotropy field must be of the
order of the local anisotropy, and the local magnetization
must be well off the local easy direction. This gives
H~~ -H~ -H,„where H,„ is the average local anisotropy
field. In all RE-TM systems studied, H,„was greater
than 1 T. Consequently, T, of the order of a few kelvin is
what one should expect in these materials.

Note that the observed crossover cannot be the cross-
over between two different thermal regimes (e.g. , from
coherent rotation of M in small clusters to tunneling of
domain walls) because the magnetic viscosity S(T) for
any thermal regime must be heading to zero as T~0.

One may try to invent a sophisticated model of interac-
tions between clusters which would mimic the observed
behavior of the magnetic viscosity. However, no such
model is known yet. On the other hand, the entire
correspondence between observations and theoretical
conceptions on magnetic relaxation provides strong
confidence that we are dealing with quantum tunneling of
magnetization. Based upon quantum theory and conven-
tional magnetism, the existence of this phenomenon
below a few kelvin seems unavoidable. Relaxation exper-
iments provide an ideal situation for the observation of
this effect. They automatically drive the system into a
state with extremely low-energy barriers, where the non-
thermal, subbarrier "leaking" of the magnetization from
metastable states occurs. A rigorous statistical theory of
this effect has yet to be developed, as the observation of a
single tunneling event remains a challenging experimental
task.

ACKNOWLEDGMENTS

The work of E.C. was supported by NSF Grant No.
DMR-9024250. X.X.Z. thanks the Spanish "Ministerio
de Educacion y Ciencia" for financial support. J.T.
thanks the CICYT for financial support.



QUANTUM RELAXATION IN RANDOM MAGNETS 14 987

~E. M. Chudnovsky, Zh. Eksp. Teor. Fiz. 77, 2157 (1979) [Sov.
Phys. JETP 50, 1035 (1979)].

E. M. Chudnovsky and L. Gunther, Phys. Rev. Lett. 60, 661
(1988);Phys. Rev. B 37, 9455 (1988).

For a recent review see, e.g. , P. C. E. Stamp, E. M. Chudnov-
sky, and B.Barbara, Int. J. Mod. Phys. B 6, 1355 (1992).

4X. X. Zhang, Ll. Balcells, J. M. Ruiz, O. Iglesias, J. Tejada,
and B. Barbara, Phys. Lett. A 163, 130 (1992); X. X. Zhang,
Ll. Balcells, J. M. Ruiz, J. L. Tholence, B. Barbara, and J.
Tejada, J. Phys. Condens. Matter 4, L163 (1992); Ll. Balcells,
X. X. Zhang, F. Badia, J. M. Ruiz, C. Ferrater, and J. Tejada,
J. Magn. Magn. Mater. 109, L159 (1992); J. Tejada, Ll. Bal-
cells, and X. X. Zhang, ibid. 118, 65 (1993); Ll. Balcells, J. L.
Thoulence, S. Linderoth, B. Barbara, and J. Tejada, Z. Phys.
B 89, 209 (1992); J. Tejada, X. X. Zhang, and B. Barbara, J.
Magn. Magn. Mater. (unpublished).

~C. Paulsen et al. , Phys. Lett. A 161, 319 (1991),and references
therein; X. X. Zhang, R. Zquiak, J. Tejada, and B.Barbara, J.
Phys. Condens. Matter 4, 10347 (1992).

D. D. Awschalom et al. , Phys. Rev. Lett. 65, 783 (1990); 68,
3092 (1992).

~The only exemption from that rule would be the case of a pure
uniaxial anisotropy, e.g. , along the Z axis, which commutes
with M, . In this case the commutation will be violated by the
magnetic field applied at some angle to the Z axis.

~See, e.g., M. Tinkham, Introduction to Superconductivi ty
(McGraw-Hill, New York, 1975) for details, and Refs. 9—11
for recent experiments.

Y. Yeshrum and A. P. Malozemoff, Phys. Rev. Lett. 60, 2202
(1988)~

Y. Xu et al. , Phys. Rev. B 40, 10 882 (1989).
L. Fruchter et al. , Phys. Rev. B 43, 8709 (1991).
C. P. Bean, Phys. Rev. Lett. 8, 250 (1962).
P. C. E. Stamp, Phys. Rev. Lett. 66, 2802 (1991).
E. M. Chudnovsky, O. Iglessias, and P. C. E. Stamp, Phys.

Rev. 8 46, 5392 (1992).
~~A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211

(1981);Ann. Phys. (N.Y.) 149, 374 (1983).
' A. Garg and G. H. Kim, Phys. Rev. Lett. 63, 2512 (1989);

Phys. Rev. B 43, 712 (1991).
' I. AfBeck, Phys. Rev. Lett. 46, 388 (1981).

A. I. Larkin and Yu. N. Ovchinrikov, Pis'ma Zh. Eksp. Teor.
Fiz. 37, 322 (1983) [JETP Lett. 37, 382 (1983)].

' H. Grabert and U. Weiss, Phys. Rev. Lett. 53, 1787 (1984).
~oC. Scharf, W. F. Wreszinski, and J. L. van Hemmen, J. Phys.

A 20, 4309 (1987).
E. M. Chudnovsky, Phys. Rev. A 46, 8011 (1992).
H. Grabert, P. Olschowski, and U. Weiss, Phys. Rev. B 32,
3348 (1985).
W. Zwerger, Phys. Rev. A 31, 1745 (1985).
P. S. Riseborough, P. Hanggi, and E. Freidkin, Phys. Rev. A
32, 489 (1985).

~~P. W. Anderson and Y. B. Kim, Rev. Mod. Phys. 36, 39
(1964).

See also D. K. Lottis, R. M. White, and E. D. Dahlberg, Phys.
Rev. Lett. 67, 362 (1991), where a similar approach is
developed for ferromagnets.
R. Street and J. C. Wooley, Proc. Phys. Soc. London, Sect. A
62, 562 (1949).
M. Uehara and B. Barbara, J. Phys. (Paris) 47, 235 (1986), and
references therein.
E. M. Chudnovsky and R. A. Scrota, Phys. Rev. B 26, 2697
(1982); E. M. Chudnovsky, W. M. Saslow, and R. A. Scrota,
ibid. 33, 251 (1986); see also E. M. Chudnovsky, J. Appl.
Phys. 64, 5770 (1988) for a review and Refs. 30—32 for most
recent experimental works.
J. Tejada et al. , Phys. Rev. B 41, 858 (1990);44, 7698 (1991).

~ P. M. Gerring et al. , Phys. Rev. B 41, 9134 (1990).
B.Barbara et al. , J. Phys. I (Paris) 2, 101 (1992).
J. Clark et al. , Science 239, 992 (1988), and references therein.


