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We report results from Monte Carlo computations for the average kinetic energy of rare-gas solids
(neon, argon, krypton, and xenon), modeled by a Lennard-Jones all-neighbor interaction. The main
motivation lies in the recent availability of direct experimental measurements of the average kinetic
energy of solid neon, by means of deep-inelastic neutron scattering (DINS). In our computations we
take strong advantage in using the effective potential technique, which has been proven to be very
useful for systems where quantum effects are not too strong: the path-integral Monte Carlo (PIMC)
can be replaced by the classical-like effective-potentia/ Monte Carlo (EPMC), in such a way that the
needed computer time is strongly reduced. We resorted to PIMC in the case of neon, due to its
rather high quantum effects. Our results for the low-temperature kinetic energy of neon are smaller
than the measured ones. This discrepancy could be attributed to the simple model of the interaction
we have used, as the agreement with previous theoretical calculations suggests. Moreover, we show
that the quantum contributions to the kinetic energy, at the same temperatures used in the above-
mentioned experiments, are unexpectedly relevant also for argon, krypton, and xenon crystals, so
that they should be experimentally detectable as well.

I. INTRODUCTION

Deep-inelastic neutron scattering (DINS) (Refs. 1—4)
is an experimental technique, based on the inelastic dif-
fusion of very energetic neutrons ( 1 eV) at large mo-
mentum transfer, that has become very effective in the
last decade, thanks to the availability of intense spal-
lation neutron sources. DINS experiments on liquids
and solids allow us to get direct information on single-
particle momentum distributions. This is apparent in
the so-called impulse approximation, where the momen-
tum transfer k —+ oo: in this limit each scattering atom
recoils as if it were free, and if p is its initial momentum,
the conservation of energy and momentum requires that
her = (@+yak) /2m —p /2m, where hw and hk are the
transferred energy and momentum. It follows that the
dynamic structure factor takes the form

S(k, w) cc (6' (kw ea pk/m) )——

m
oc 'P —(fute —ei, )k

where e~ = 5 k2/2m and the angular brackets denote the
thermal average over the initial single-particle momen-
tum distribution in the sample. Then, the measured line
shape consists of a peak, centered at the recoil energy ek,
whose form and width do reflect the equilibrium statisti-
cal distribution P(p~~) of p~~

——p k/k, i.e. , the component
of p in the direction of the momentum transfer. Classi-
cally, 'P(p~~) is a Gaussian with (p~~)

= m/P. This makes
DINS a very useful tool for the direct measurement of
the single-particle kinetic energy, a quantity that is not

accessible by other means. Actually, the impulse approx-
imation completely neglects final-state effects, which can
to some extent modify the line shape at intermediate mo-
mentum transfers. 3 5

Since from the first significant experiments, the atten-
tion of DINS experimentalists has been mostly devoted
to the study of strongly quantum systems, like solid
helium, 7 parahydrogen, and, more recently, liquid
helium, for which also the role of final-state eKects has
been experimentally investigated. ' The main motiva-
tion was in the interest of looking for the deviation of the
momentum distribution and of the kinetic energy from
their trivial classical behavior. Therefore, the theoretical
interpretation of the data requires quantum calculations.
For instance, by path integral Monte Carlo (PIMC) sim-
ulations Zoppi and Neumann have given a theoretical
counterpart of the DINS data for solid parahydrogen,
and the agreement with experiment is surprisingly good
in spite of the simple Lennard-Jones (LJ) model interac-
tion between hydrogen molecules.

Recently, Peek, Fujita, Schmidt, and Simmonsi4 per-
formed DINS measurements of the momentum distribu-
tion of solid neon. In this case the few available theo-
retical predictions for the kinetic energy at low tempera-
ture (Table VI; see also the comparison table in Ref. 14
and the references quoted therein) are lower than the
measured values. The above-mentioned authors conclude
that the disagreement is due to the fact that the theories
are of a harmonic type and that it signalizes the impor-
tance of nonlinearity in solid neon.

Thus, one motivation of this paper was to produce
theoretical data for rare-gas solids, using Monte Carlo
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techniques, in such a way that nonlinearity would be ac-
counted for, overcoming the problems of harmoniclike ap-
proaches. In a recent paper 5 we have applied to a model
for solid argon a theoretical method, that was previously
developed and successfully applied to low-dimensional
systems. s 20 The method is based on the definition of an
effective potential that is to be dealt with as in classical
thermodynamics. Using a Monte Carlo sampling for the
effective classical problem we were able to get quantum
results with an enormous reduction in the computer time,
compared with ordinary PIMC. In Ref. 15 our main goal
was to benchmark the usefulness of the effective poten-
tial approach by an accurate comparison of PIMC and
of efFective-potential Monte Carlo (EPMC) data. Simi-
lar EPMC computations were also employed by another
group s for models corresponding to rare-gas solids,
confirming the power of this method for solid systems
with not too strong quantum coupling. This last limita-
tion arises from a kind of low-coupling expansion that is
needed for eliminating involuted self-consistencies in the
evaluation of the effective potential. As a consequence,
it turns out that for the strong-coupling case of neon it
is more convenient to rely on PIMC results, rather than
on EPMC, even though the latter could be improved by
taking a higher order in the low-coupling expansion.
On the other hand, for heavier rare-gas solids (argon,
krypton, xenon) EPMC gives quite accurate results.

In Sec. II we give some details of the PIMC algorithm
we used, together with a simple device for improving the
extrapolations to the quantum limit of infinite Trotter
numbers, and we derive the expression of the average
kinetic energy within the effective potential method.

In Sec. III we introduce the model potential and report
the details of the PIMC- and of the EPMC simulations we
made; the explicit expressions of the effective potential
and of the average kinetic energy for the actual three-
dimensional solid model are given as well. The results
are reported and described in Sec. IV: in particular, the
calculated kinetic energy for neon turns out to be lower

I

P—1

p(q', q; p) =

than the experimental one, and not compatible with the
error bars. The main conclusions drawn in Sec. V are
that the LJ model seems to be an oversimplification for
the behavior of solid neon, and that the kinetic energies
of the heavier rare-gas solids are comparable to that of
neon, due to the different energy scales of the respec-
tive interactions, so that it should be possible to detect
them by DINS experiments similar to the one reported
in Ref. 14.

II. NUMERICAL AND MATHEMATICAL
TECHNIQUES

M

) —= K(p)+v(q) =)
2

+v(q)
1=1

(2.1)

where K(p)=K is the total kinetic energy and V(q)=V
is the interaction potential. The equilibrium density
operator of the system at the temperature T=P i, is

defined as p(P)=e P, and has the matrix elements

p(q', q; p) =(q'le p I—q)

A. Path integral Monte Carlo

The PIMC simulations presented in this paper were
performed with the usual "primitive algorithm. " It
is based on the semigroup property of the density matrix

(2.2)

Before coming to the particular solid-state model
which is the subject of this paper, we give in this sec-
tion some information and remarks about the general
techniques we used in the computations.

We refer to a general model system with M de-
grees of freedom, composed of interacting particles of
mass m, with coordinates (qi, ..., qM)—:q, and momenta
(pi, ..., pM) =p, such that [q, , p~] =iM,~. Such a system is
ruled by the quantum Hamiltonian operator

where w=P/P, and on the approximation at the high temperature 7 i of the density matrix

p(q' q ~) =
I 2 I

exp
I
—,(q' —q)' ——V(q')+V(q) I+&(~')'

(2vrh ~) 25 v. 2. (2.3)

The integer P is the Botter number, and for P—+oo the
exact quantum results are recovered. Of course, only fi-
nite values of it can be considered in PIMC, the computer
time needed being proportionally increasing with P. In-
deed, by means of the above formulas, the computation
of quantum thermal averages is reduced to a classical-like
thermal average, but over a system with MxP degrees
of freedom, corresponding to P copies of the original sys-
tem, interacting with a "quantum" quadratic potential.
As for the kinetic energy, it is calculated by PIMC as the
average of the "crude" energy estimator:

PM 1 m—
p ~2, ).(qe-qi i)

1=1
(2.4)

We remark that Eq. (2.3) is based on the free-particle
density matrix, so that it can happen that quite large
Trotter numbers are required just for describing the
quantum harmonic behavior of the system, while the non-
harmonic part of the interactions is adequately sampled
in PIMC simulations with a comparatively low P. This is
indeed true for solid-state systems with low and moderate
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quantum coupling, in the low-temperature region, since
the quantum anharmonic efFects are small compared with
the contribution from the harmonic excitations. Noting
that the thermodynamic properties of the harmonic os-
cillator can be calculated analytically also for the finite
Trotter number P, ' we are led to improve the PIMC
simulation results with the addition of the finite-P cor-
rections for the harmonic approximation of the model
system. We then replace the value Az of any thermody-
namic property A, obtained in a PIMC simulation with
Trotter number P, with

VG(q) = V(q) + —) ln
k

+—) o.„B;B,V(q) —B,Bs V(qp) (2.9)

with n;~ = P& UA, ,UA~o. A, , where

(LCA), is'i7's ss in its first ord-er form. ' s For a trans-
lation invariant system (see, e.g. , Refs. 33 and 34) the
LCA effective potential reads

A~ + (A~ ) —A~( ) ), (2.5)
( 1)

ai, =
~

cothfi, ——
~

2m~A, ( fk)
(2.10)

P 2
fr

f), + P2 sin (m.E/P)
T—) fg coth f~,P~oo

k

(2 6)

where A~ is the exact finite-P result for the harmonic
approximation of the model. The above picture has been
confirmed to be realistic in the case of solid argon, is

where this simple device has proven to be very eKcient
in improving the accuracy of extrapolated quantities to
P~oo: indeed the belief that rising P leads to more
and more precise values becomes illusory beyond a cer-
tain point, since for higher P the numerical uncertainty
increases.

In the present case we have used the finite-P expression
for the harmonic kinetic energy at T=p

dq e PVG(q) f(q)

the final result is

(2.11)

is the pure-quantum (i.e. , the difference between quan-
tum and classical) square fluctuation of a harmonic os-
cillator with frequency ~I, .

In order to yield the expression for the average kinetic
energy, one has simply to take the explicit expression for
the average of squared momenta, and to perform the
LCA exactly as shown in Sec. 3.3 of Ref. 33. Defining
the classical-like configuration average with the effective
potential,

where fi, = 2 Phrs), and cup are the frequencies of the har-
monic approximation to the model, defined by the secular
equation

(2.12)

mu& bt i = ) UA, i BiB&V(qp) Uiq .

The orthogonal matrix UA, , is a Fourier transformation
(possibly multiplied by a polarization diagonalization),
if the reference configuration qo is translation invariant.

with

p), = 2mhcu), coth fi,

and 8;~ = g& Uy, Ug~8g, where

8i, =
~

cothf), — fi,
sinh fi, )

(2.13)

(2.14)

B. EfFective potential method

The Giachetti-Tognetti variational method~
allows us to define a "global" efFective potential V~(q),
such that the quantum partition function is at best ap-
proximated by the classical-like formula

The first term in Eq. (2.12) represents the quantum har-
monic result, so that the second one arises from quan-
tum nonlinear effects. Indeed, in the classical limit, i.e.,
for f),~0, the correct equipartition result is found, since
p), ~m/P and eA,, ~O.

M/2

(27rh pp
dq e

—PVG(q) (2.8)
III. MODEL POTENTIAL AND

MONTE CARLO SIMULATIONS

Without going into the details of the effective potential
framework, which has been extensively discussed and ap-
plied in other papers (see, e.g. , the references quoted
above), we note that it shares with the "trick" for the
extrapolation of PIMC data described in the previous
subsection the underlying general idea of giving exact
account for the quantum harmonic part.

For the purposes of this paper we resort to
what we have called the lou-coupting apprommati on

As a model for rare-gas solids we consider a system
composed of N atoms (pointlike particles in three di-
mensions without internal degrees of freedom, so that
M=3N) of mass m, arranged on a three-dimensional fcc
lattice with fixed volume (or number density). These
atoms are labeled by their classical equilibrium positions
1=(li, l2, ls), and ai=(xi~) (o.=1,2, 3) is the instanta-
neous position of the 1th atom. The potential energy
consists in a pairwise central interaction u(r), so that
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the Hamiltonian of the model system is

(3.1)

where xj~l ——a~ —mli. For the particular form of the pair
interaction we choose the widely used Lennard-Jones
(LJ) "6-12" potential

(3.2)

TABLE I. Characteristic parameters of the L3 potential
for the rare-gas solids considered in this paper. Values of e
and o' taken from Ref. 37 (Ne), Ref. 36 (Kr, Xe). The values
for argon are those already used in Ref. 15, and diR'er slightly
from those of Ref. 36 (namely, a=119.0 K and o=3.395 A).
Also reported are the corresponding coupling constants A and
the relevant "natural units" for density, p' = m/o, and for
pressure, p"—:e/a. .

m amu
(K)

o (A)
A

p" (bar)
p (gem )

Ne

20.18
36.68
2.787
0.694
233.9
1.5479

Ar

39.95
119.8
3.405
0.223
418.9
1.6803

Kr

83.80
164.4
3.638
0.123
471.4
2.8900

Xe

131.3
231.1
3.961
0.0768
513.4
3.5081

The parameters c and o. are adjustable parameters, to be
optimized for the description of each rare-gas solid. The
values we have used are listed in Table I. They have been
taken from the literature, where they have been obtained
in such a way to match theoretical predictions and exper-
iments for the subliination energy and for the density at
zero temperature and pressure. s s7 Clearly, the LJ inter-
action potential is to be considered merely as an effective
potential for the description of the real systems, whose
"true" interaction is much more complicated (in this re-
spect more realistic potentials have been proposed in
Refs. 38—40) and involves many-body irreducible terms.
On the other hand, the leading quantum effects are well
described by such an efFective model. For instance, the
experimental equation of state and specific heat of solid
argon have been shown to be well reproduced. 5

The strength of the quantum behavior of the interac-
tion is ruled by a coupling parameter A=M/s, which
is defined as the ratio between the characteristic quan-
tum energy M=hgu"(r )/m of the harmonically ap-
proximated pair potential (around its minimum r ),
and the overall energy scale s.4i For the potential (3.2)
r =(2) i/scr and A 7.56 h/(o v'ms).

In all our Monte Carlo computations we have disre-
garded the dynamic effect of the interactions beyond the
nearest-neighbor (NN) distance, i.e. , we have replaced
x i with the equilibrium value ~1

—I'i in the Hamilto-

nian (3.1), unless 1 and 1' are first neighbors. This static
approximation is common practice in condensed matter
simulations, and allows us to keep the well-established
parameters s and o, determined for the more realistic
case of all-neighbors interaction. In other words, we are

dealing with a NN Hamiltonian, plus a volume depending
correction, which describes the static potential energy of
the long-range interactions. The most important effects
that are included in this way are temperature indepen-
dent additive terms to the average potential energy and
to the pressure. In addition, sample calculations allowing
for dynamic interactions up to the second neighbor shell
were performed but showed no significant differences in
the numerical results.

The formalism of the preceding section straightfor-
wardly applies to the model Hamiltonian (3.1). Of
course, the simplified notations used in Sec. II must be
replaced by those ones suitable for the crystal lattice. For
instance, the coordinates q, (i=1, . . . , M) are replaced by
xi (I runs over the N lattice sites; a=1, 2, 3 labels the
Cartesian components of xi), and the indices k of Sec. II
are replaced by kp, {k E first Brillouin zone; p=l, 2, 3 is
the polarization index).

Then, for our fcc lattice model (3.1) with dynamic in-
teraction limited to the nearest neighbors, and with a
fixed particle density corresponding to an average NN
distance d, the frequencies of the harmonic excitations
are defined as the solutions of the secular equation

= ) e~ (k) wk p e ii(k),
n, P

{3.3)

where e~(k) =(e„~(k))are the polarization vectors and

u(~~x~~=d) ) 2sin~1 02 . 2k d
(3.4)

with d running over the 12 first neighbors, is the dynamic
matrix (see also Ref. 15).

In this paper we report results only for the zero-
pressure state. At each temperature, the thermodynamic
state of zero pressure has been reached —with an accu-
racy of less than 6 bars (35 bars for neon), which is prac-
tically zero in solid-state systems —by slightly varying
the lattice constant in successive test runs, taking into
account the experimental compressibilities. The maxi-
mum deviation from the experimental densities is found
to be very small, thanks to the above-mentioned cut-off
correction to the pressure.

Monte Carlo simulations with the effective poten-
tial (EPMC), i.e. , for the distribution (2.11) (see also
Refs. 15, 22 and 23), were made for the rare-gas solids
with lower coupling (A((1). The usefulness of this ap-
proach has been carefully verified in Ref. 15, where the
EPMC technique has been extensively tested against
path integral Monte Carlo (PIMC) computations for the
case of argon (A 0.22). In the stronger coupling case of
neon (A 0.7) the EPMC is less convenient since the full
"second-order" approach has to be used, and we pre-
ferred to rely on PIMC simulations, with the improved
extrapolation procedure (2.5).

In both EPMC and PIMC the sample consisted of an
fcc lattice of 108 atoms enclosed in a cubical box, with
periodic boundary conditions, and the simulations were
based on the Metropolis algorithm and single-particle
moves. The maximum displacement was chosen such
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VG x& = — uG x&&1 + — u l-l'

1 ) . sinh fi,
„ (3 5)

as to lead to an acceptance ratio of 30—50 % of the trial
moves. Each run was started from a perfect fcc lattice
at the appropriate density and equilibrated for a suitable
number of steps (trial moves per particle), depending on
the specific Monte Carlo technique used.

In the PIMC simulations we varied the Trotter number
P between 4 and 32, and and each run consisted of 50000
steps for equilibration and 450000 steps of further run,
during which the averages were accumulated every tenth
configuration.

The EPMC simulations consisted of 25000 steps each
(after 2500 equilibration steps), with every fifth configu-
ration taken for calculating averages. Due to its temper-
ature and density dependence, the effective potential has
to be recalculated for each thermodynamic state. How-
ever, the time required for this is entirely negligible com-
pared to the total simulation time. The actual expression
for the efFective potential is easily found from Eq. (2.9):

P

uG (r)= u(r)+ 2
u" (r) —u" (d) ni

1 /'u'(r) u'(d) l+—
I

2 i r d ) (3.6)

and o,p and o,~ are, respectively, the longitudinal and
transverse renormalization parameters:

1 . . 2k d /d e(k)b
~i, = —) 4sin

2
I d I

crkP &I

2 ( d
(3.7)

21 ).4 . ~ k d
1 —I/'d e~(k)ll . (3.8)

Eventually, Eq. (2.12) is put in explicit form in terms
of the parameters 8r„~(defined in the same way as ni, ~,
with ak„replaced by 8k~):

The aforementioned static approximation for the interac-
tion beyond the first neighbors is explicitly shown, while
the NN effective pair interaction is

u'(d)
d

(3.9)

The calculation of the quantum average kinetic energy
per atom, eK=—(K )/N, by means of Monte Carlo evalua-
tion of the elassieal-like averages with the effective poten-
tial appearing on the right-hand side of Eq. (3.9) is what
we have indeed called EPMC. Since the effective poten-
tial depends on temperature as well as on density it is not
possible to use the standard classical expression for the
calculation of the pressure p. Rather, one has to rederive
the microscopic expression to be averaged, by starting
from the thermodynamic relationship p = P 0 ln Z/OV,
and taking explicitly into account the dependence on the
equilibrium lattice spacing d, arising through Eqs. (3.3)
and (3.4), of the renormalization parameters ni, ~ and of
the logarithmic term in VG. The same holds for other

quantities, like internal energy, specific heats, compress-
ibilities, which are not considered in this paper.

IV. RESULTS AND DISCUSSION

In Table I the characteristic parameters we used for the
four rare-gas solids (neon, argon, krypton, and xenon)
are reported. The values of the L3 parameters e and
o. have been taken from Ref. 37 for neon, from Ref. 36
for krypton and xenon, whereas their values for argon
are those already used in Ref. 15 (determined in Ref. 42
from the high-temperature gas-phase data, they differ
slightly from those of Ref. 36, namely, e=ll9.0 K and
o=3.395 A).

TABLE II. Solid LJ neon at T = 5, 10, 15, and 20 K: PIMC results for pressure p and kinetic energy per atom eK, at the
fixed values of the density p reported in the first row. All the values are inclusive of the harmonic correction as in Eq. (2.5).
The extrapolated values are listed as P = oo. "Natural units" p*, p*, e from Table I. The absolute value of the extrapolated
pressure is always less than 0.09p* 20 bars.

T=5K
p p ——0.9735 p*

p = 0.9650 p'

T=10K
pg~p = 0 ~ 9710p*

p = 0.9630 p*

T = 15 K
p „p= 0.9628p'

p = 0.9550 p

T=20K
pexp = 0 9477p*

p = 0.9440 p*

8
16
24
32

-0.397
-0.435
-0.313
-0.239
-0.189
-0.03

eK/e

0.919+ 0.001
0.981+ 0.001
1.062 + 0.002
1.094 + 0.003
1.111+0.005
1.167+0.011

-0.406
-0.290
-0.192
-0.170
-0.118
-0.04

eK/e

1.005 + 0.005
1.083+ 0.002
1.132+ 0.005
1.141+ 0.007
1.161+ 0.010
1.178+ 0.015

-0.316
-0.191
-0.160
-0.136
-0.130
-0.09

eK/&

1.107+ 0.002
1.168+ 0.003
1.199+ 0.008
1.202 + 0.012
1.213+ 0.015
1.218+ 0.020

-0.104
-0.059
-0.002
0.002
0.001
0.00

eK/e

1.236 + 0.002
1.286 + 0.005
1,300+0.009
1.302 +0.015
1.300+0.020
1.300+0.025
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The results of our calculations are reported in Ta-
bles II—V and Figs. 1—3. Most quantities are given in
dimensionless form, by reducing them with respect to
the "natural units" induced by the mass m, , the energy
c, and the length o.. For density and pressure they arep":—m/os and p* = s/as, whose CGS values are also
reported in Table I. The equilibrium NN spacing d is re-
lated with the reduced density by p/p* = (d/r ), r~
being the minimum of the LJ potential (3.2), so that the
reduced density p/p' at zero pressure reasonably turns
out to be close to 1. The zero-pressure density is deter-
mined by competing effects, namely, the attractive in-
teraction due to the interactions beyond first neighbors,
which tends to increase the density, and the (quantum
and thermal) fluctuations, which enhance the repulsive
part and thus push to lower density. At the lowest tem-
peratures the only pure-quantum fluctuations do matter,
so that the reduced density is expected to be smaller the
higher the coupling, as it indeed happens. Remarkably,
the maximum deviation of the calculated densities from
the experimental ones at all temperatures is always less
than 0.3% (0.9% for neon).

In Table II we report the results for the kinetic energy
e~ and the pressure p from the PIMC simulations made
for neon, at the selected temperatures T = 10, 20, 30,
and 40 K, and at the indicated densities. The latter have
been chosen through successive trial test runs in order to
get a practically vanishing pressure (of course, this proce-
dure is limited by the available computer time). Since the
PIMC results have to be extrapolated to infinite Trotter
number P, separate runs were done with P=4, 8, 16, 24,
and 32. When plotted as a function of 1/P, the finite-
P values usually fall on a smooth curve, which tends to
a rather well-defined limit as 1/P ~ 0. The data of
Table II are inclusive of the "harmonic correction" intro-
duced at the end of Sec. II A, Eq. (2.5), and the last row,
marked "oo," refers to the extrapolated values, obtained
by a quadratic fit to the points at P ) 8. The qualita-
tive improvement in the extrapolation of the "harmonic
corrected" PIMC data at 5 K is made apparent in Fig. 1,
where also the raw PIMC data are reported for compar-
ison. Even for low Trotter numbers the corrected PIMC

TABLE IV. Solid LJ krypton: EPMC results for the ki-
netic energy per atom eK at different temperatures, for the
fixed-density values reported in the third column, for which
the calculated pressures are p = 0+ 0.011p' = 0+ 5 bars (see
text). The second column (p p) reports the experimental
values from Ref. 46.

T (K)
4

10
15
20
25
30
40
50
60
75

pexp/p

1.07015
1.06961
1.06825
1.06606
1.06323
1.05996
1.05248
1.04417
1.03426
1.02028

»/»"

1.06985
1.06917
1.06764
1.06523
1.06220
1.05857
1.05076
1.04204
1.03230
1.01655

eK/e

0.2207 + 0.0004
0.2284 + 0.0009
0.2452 + 0.0012
0.2704 + 0.0021
0.3014+ 0.0021
0.3361+ 0.0033
0.4126 + 0.0035
0.4944 + 0.0041
0.5791 + 0.0048
0.7092+ 0.0059

results are now closer to the quantum mechanical limit,
and the extrapolated values are in good agreement with
the extrapolation of the bare PIMC results.

In Tables III—V the EPMC data for the kinetic energy
per atom eK of solid argon, krypton, and xenon are re-
ported. Due to the much lower computational weight, the
EPMC computations have been made for many tempera-
tures. In addition it has been possible to get closer to the
zero-pressure state (p 0 + 6 bars) by means of prelimi-
nary runs devoted to adjust the corresponding densities.
The reported uncertainties are those arising from the nu-
merical MC simulations. A systematic uncertainty is,
of course, embodied in the variational calculations that
lead to the effective-potential method, which just for this
reason has been tested for many "toy models. "is 2o

In Fig. 2 these densities can be compared with the ex-
perimental ones (their values, p,„p,are reported in the
second column of Tables III—V). The agreement with the
experimental equation of state of these rare-gas solids
appears almost perfect, if one considers that we have
used the simple LJ model (3.2), with the non-nearest-
neighbor interaction treated in the static approximation

TABLE III. Solid LJ argon: EPMC results for the kinetic
energy per atom eK at different temperatures, for the fixed
density values reported in the third column, for which the
calculated pressures are p = 0 + 0.01p' = 0 + 2 bars (see
text). The second column (p,„p)reports the experimental
values from Ref. 46.

TABLE V. Solid LJ xenon: EPMC results for the ki-
netic energy per atom eK at different temperatures, for the
fixed-density values reported in the third column, for which
the calculated pressures are p = 0+ 0.012p' = 0 + 6 bars (see
text). The second column (p, p) reports the experimental
values from Ref. 46.

T (K)
4

10
15
20
25
30
40
50
60
75

pexp/p*

1.0540
1.0535
1.0525
1.0500
1.0467
1,0426
1.0326
1.0207
1.0070
0.9825

»/»*

1.0523
1.0522
1.0509
1.0487
1.0449
1.0408
1.0304
1.0181
1.0045
0.9804

eK/e

0.3830 + 0.0007
0.3920 + 0.0013
0.4106 + 0.0019
0.4360 + 0.0026
0.4720 + 0.0030
0.5130+ 0.0042
0.6080 + 0.0049
0.7120+ 0.0054
0.8230 + 0.0071
0.9950+ 0.0092

T (K)
5

10
15
20
25
30
40
50
60
75

pexp/p

1.0782
1.0779
1.0771
1.0758
1.0741
1.0713
1.0665
1.0604
1.0534
1.0419

»/»"

1.0781
1.0776
1.0764
1.0745
1.0721
1.0696
1.0641
1.0579
1.0513
1.0416

eK/e

0.1399+ 0.0003
0.1458 + 0.0009
0.1598+ 0.0012
0.1798+ 0.0011
G.2035 + 0.0014
G.2297 + 0.0015
0.2863 + 0.0021
0.3459 + 0.0029
0.4072 + 0.0042
0.5009 + 0.0046
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FIG. 1. (a) Kinetic energy per atom eK and (b) pressure

p of solid neon, vs the reciprocal Trotter number 1/P, at
T = 5 K and p = 0.9650p' = 1.4937gcm . Open circles:
raw PIMC data; solid circles: PIMC data plus the harmonic
correction as in Eq. (2.5). The dotted lines are quadratic y
fits to the points P&8, drawn in order to extrapolate to P=oo.

(see Sec. III). For the purpose of this paper a good repro-
duction of the equation of state is very important, since
the average kinetic energy strongly depends upon den-
sity: In the Debye approximation AzK/e'K pzAp/p,
with pL a lumped Gruneisen constant, so that the un-
certainty in the density corresponds to a possibly higher
uncertainty for cK.

The temperature behavior of the kinetic energy per

FIG. 3. Reduced kinetic energy per atom eK/e of solid LJ
neon (solid triangles), argon (diamonds), krypton (circles),
and xenon (squares), vs reduced temperature T/e. This scal-
ing (see Table I) gives a representation depending only on the
coupling constant A (e.g. , at T +0, eK/z —~ 1.7A). The solid
line is the classical result eK = (3/2) T, the open triangles are
experimental data for neon from Ref. 14.

atom is plotted in Fig. 3, using the reduced units for both
axes. In this way one obtains a representation which de-
pends only upon the coupling constant A, so that the de-
viation from the classical behavior eK = (3/2)T is larger
the larger the coupling. In Fig. 3, indeed, the largest de-
viation occurs in the case of neon, and the heavier rare-
gas solids (krypton and xenon) seem to behave more and
more classically. Remarkably, using dimensionful units,
the same data bear the quite diiferent aspect reported in
Fig. 4. This is due to the increasing energy scales e corre-
sponding to the interaction of heavier rare-gas atoms (see

1 08 60

1.06

1.04 50

1.02

1.00
40

~"

0.98

0 20 40 60 80
T (K)

0 s3
10 20

T (K)
30

FIG. 2. Calculated reduced densities p/p' for argon, kryp-
ton, and ~enon, vs temperature. The curves do interpolate
the calculated (solid lines) and the experimental (dotted lines)
point data reported in Tables III—V.

FIG. 4. Kinetic energy per atom eK vs temperature. Sym-
bols and lines as in Fig. 3. It is apparent that, in dimensionful
units, the quantum kinetic energies at low temperatures are
comparable, in spite of the quite difFerent quantum couplings.
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TABLE VI. Comparison among various results for the kinetic energy of rare-gas solids at T = 0. The experimental and
calculated nearest-neighbor distances d are also reported. Bernardes uses the values o = 2.74, 3.40, 3.65, and 3.98 A, and
e = 36.2, 121.0, 163.0, and 231.8 (K) for neon, argon, krypton, and ~enon, respectively. Nosanow and Shaw (Ref. 44) use the
same o and e, as well as the same densities obtained by Bernardes. See also the discussion made in Sec. IV.

Experiment (Ref. 46)
Bernardes (Ref. 43)
Nosanow and Shaw (Ref. 44)
Present work

Neon
d (A)

3.156
3.13

3.16

eK (K)
498

47.9
42.8
42.8 + 0.4

Argon
d (A)

3.755
3.76

3.76

eK (K)

54,7
48.8
45.5

40.2
36.8
36.23 99

Krypton
d (A) eK (K)
3.992
4.01

Xenon
d (A)

4.336
4.35

4.34

eK (K)

37.2
32.7
32.1

Reference 14.

Table I). Paradoxically, solid argon displays a kinetic en-
ergy per atom larger than that of neon at the same tern-
perature, and for krypton and xenon eK appears to be
of the same order of magnitude. As a remarkable conse-
quence, such large quantum effects should be measurable
for atl rare-gas solids, including krypton and xenon, by
means of the deep-inelastic neutron scattering technique.

The experimental data for solid neon, from Ref. 14,
are also reported in Figs. 3 and 4. They appear to be
systematically higher than our theoretical results, even
if the given error bars are of the order of the deviation
from our results.

In Table VI we compare data for the zero-pressure
nearest-neighbor spacing d and kinetic energy at T = 0.
Reported are experimental outcomes and the results of
previous calculations by Bernardes4 (variational with
trial wave function) and by Nosanow and Shaw44 (self-
consistent solution of Hartree equations). In both papers
a LJ all-neighbors model is used, with interaction param-
eters as reported in the table caption, and in the second
paper the same density values obtained in the first one
have been used. For the kinetic energy, our results are
generally close to those by Nosanow and Shaw, whereas
Bernardes found much higher values. This disagreement
can be perhaps attributed to the rough trial wave func-
tion he used.

However, in the case of neon, the above-mentioned
DINS experiment agrees with Bernardes result. Our
opinion is that this agreement is incidental, and that the
correct results for the "all-neighbors LJ crystal" are those
we have reported. This judgment is confirmed by the re-
sults by Nosanow and Shaw (even though a significant
deviation is still there for argon), and also by the self-
consistent approximation approach by Koehler4s (yield-
ing eK=42.6 K). The disagreement with the real rare-gas
solid should be due to the oversimplification of the LJ
model, which neglects the fine features of the true inter-
action potential, as well as many-body interactions.

V. CONCLUSION
In this paper we have reported Monte Carlo results

for the quantum kinetic energy per atom of the rare
gas solids of neon, argon, krypton, and xenon. We have
used the Giachetti-Tognetti effective potential method~s
in order to reduce the computational efFort: indeed that
method yields classical-like expressions for quantum av-
erages, that we have evaluated by standard Monte Carlo
simulation (EPMC). The usefulness of EPMC has al-
ready been proven in a preceding paper. In the strong-
coupling case of neon we have performed path integral
Monte Carlo (PIMC) simulations, for which an improved
method for the extrapolation to infinite Trotter number,
Eq. (2.5), has been implemented.

The interaction potential was chosen of the Lennard-
Jones form, and the interaction between non-nearest-
neighbors has been taken into account in a static approx-
imation. Then, the simulations have been performed at
the zero-pressure state, whose density has been deter-
mined by preliminary test runs. The resulting tempera-
ture behavior of the density is in quite good agreement
with the experimental equation of state for all the four
rare-gas solids.

The results for the kinetic energy per atom eK show
that even for argon, krypton, and xenon the quantum ef-
fects are quite evident, in spite of their "almost classical"
character, due to the different energy scales characteriz-
ing their interaction. The deviation of the kinetic energy
per atom should be directly detectable by deep-inelastic
neutron scattering (DINS). As for the recent DINS re-
sults for neon, 4 there is no quantitative agreement with
our results, maybe due to the oversimplification of the
LJ model.
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