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Fast and slow dynamics in the one-dimensional 4 lattice model: A molecular-
dynamics study
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The separation of dynamics into slow and fast components for the one-dimensional C lattice
model with a nearest-neighbor interaction is studied. We find two dynamic scaling laws for the
displacement-displacement correlator in the strong-interaction case. The temperature window where
scaling appears has a nonzero lower bound. There exist no analogies between the found scaling
properties and structural relaxation processes in undercooled liquids near the liquid-glass transition.
This fact seems to be due to the presence of static on-site double-well potentials. In the case of weak
interaction only one dynamic scaling law seems to appear.

I. INTRODUCTION

This work is concerned with the separation of dynamics
into slow and fast components for a model of structural
phase transitions. Over the past 10—20 years the dynamic
and static properties of the scalar C4 lattice model were
studied with various methods. A lot of work was devoted
to the explanation of a central peak (CP) appearing in
the dynamic structure factor in neutron-scattering stud-
ies of perovskite crystals near structural phase transitions
(see Refs. 1 and 2 and references therein).

In Ref. 3 an intrinsic explanation for the CP appear-
ance was derived by Aksenov, Bobeth, Plakida, and
Schreiber (ABPS) using the C4 model. These authors
started with the assumption that the CP appears due to
the presence of precursor clusters of the low-symmetry
phase in the high-symmetry phase (see also Ref. 1). The
anomalous narrowing of the CP ABPS explained via a
freezing of the cluster system at temperatures well above
the phase transition, i.e. , via a structural relaxation of a
glasslike system. ABPS considered the equation of mo-
tion for the displacement-displacement correlation func-
tion Sik(t). Applying some approximation they derived
closed self-consistent equations for Sik(t). These equa-
tions are called mode-coupling equations (MCE's) and
were extensively studied by Gotze to describe freezing
phenomena for undercooled liquids within mode-coupling
theory (MCT) for normalized density-density correlators
C'~(t). The most important feature of MCE's is the ex-
istence of a bifurcation point or a dynamic singularity.
Near this singularity dynamic slowing down sets in and
thus a separation of the dynamics (slow and fast) ap-
pears. The existence of the MCT singularity is not nec-
essarily connected with divergences of static susceptibil-

ities in contrast to second-order phase transitions. The
bifurcation point separates the control parameter space
(e.g. , the temperature axis) into a region of ergodic states
[C q(t —+ oo) = 0] and nonergodic states [C ~(t —+ oo) g 0].
Thus, at io = 0 in the nonergodic region, a b(io) peak at
io = 0 in C ~(io) will appear. 4

The present paper completes a number of studiess s

of the applicability of MCE to the C model as reported
by ABPS. In Sec. II we introduce the model. Section III
is devoted to the derivation of MCE's following ABPS
(with some critical remarks) and to the main mathemat-
ical consequences following Gotze. In Sec. IV we present
molecular-dynamics studies for one-dimensional C4 sys-
tems. We discuss our results in Sec. V. A summary is
given in Sec. VI.

II. MODEL

The model under consideration is the so-called C lat-
tice model, which is often used to describe features of
structural phase transitions. Its Hamiltonian reads

N N. fl 2H = ) ] Pi + U(xi) -I + —) Cik(X, —X,),
i=1 i,k=r

U(x) = --,'x'+ —,
'x' .

Model (1) belongs to the universality class of the corre-
sponding Ising model. r All variables and parameters in
(1) are dimensionless. The corresponding transformation
rules are given in Ref. 5. The index l runs over all unit
cells; X~ and Pj are the conjugated displacement and mo-
mentum of the /th particle, respectively. The coupling
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constants C~k = C~+ k+ & 0 determine the dimen-
sion of the system and the radius of interaction. The
integrated interaction strength Co ——P& CiA, is usually
used to distinguish two difFerent regimes of (1), namely,
the displacive one (strong interaction Co ) 1) from the
order-disorder one (weak interaction Co ( 1).i s Earlier
studies suggested that in the displacive limit model
(1) exhibits a soft phonon mode (being the reason for
the phase transition), whereas in the order-disorder limit
a separation of the motion into a fast (phonons) and a
slow [hopping between the minima of the local potential
U(X)] should take place. Later, Bruce, Schneider, and
Stoll showed by use of the universality class of (1) that
also in the displacive limit the separation in the dynam-
ics (slow and fast) sets in near the phase transition. i2 is

Thus the classical soft-mode picture of the phase transi-
tion breaks down even in the strong-interaction case (see
also Ref. 14).

The mentioned separation of the dynamics naturally
leads to a CP at zero frequency in the displacement-
displacement correlation function Sii, (~),

Sii, (t) = (Xi(t)Xi,), Sii, = (XiXi, )

SiA, ((u) = Sip(z = u)+ i0)
1

A(z) = LT[A(t)] = —. dte' A(t)

Here ( ) denotes standard canonical average and LT[ ]
means Laplace transformation. The exact inQuence of
the separation of dynamics on the CP formation is very
complicated. A lot of work was devoted to classify the
dependence of the low-frequency part of S&&(cu) on the
temperature T and interaction C~k both numerically and
analytically. is s zs In all only Sik(w) on a linear cu scale
was studied. In Sec. IV we will show that a really pow-
erful method is to look at the imaginary part of the sus-
ceptibility y(~),

~i~(~) = &~Si~(~)

on a logarithmic frequency scale, as commonly done to
study slow relaxations in glass dynamics. It turns out
that previous characterizations of the CP in SiA;(cu) can
be replaced by a well-de6. ned low-frequency analysis of

Model (1) with a nearest-neighbor interaction (NNI)
exhibits a phase transition at a finite temperature T, g 0
for dimension d & 2, whereas T, = 0 for d = 1. As
we reported in Ref. 25 no indications of MCT predictions
were found for d = 2 and a NNI. The same holds for the
case d —+ oo (mean-field case).s s s Here we will study
the d = 1 case with a NNI.

TX

I/X,
z Mq(z)/T

q~ = S,(t =0)/T .
(4)

Here T denotes the temperature of the system. The re-
laxation kernel Mq(z) shall be expressed using two difFer-
ent methods, namely, the Tserkovnikov method and
the Mori method. Both methods are projection opera-
tor methods. The Tserkovnikov method uses frequency-
dependent projections:

Mq (z):—((Xi
~
Xi, ) ) ( l (z), (5)

((A B)),"'(z) = ((AiB)),'"(z) —((AiP)),'"(z)
1 ( )

(,) ((PIB)),' '(z) (6)

((AlB)),(z) = ((AIB)),(z) —((AlX)), (z)
1

x
((X~X)) ( )

((XIB)),(z)

((AIB)),(t) = (At(t) B(o)). .

Mq(t) = ((QXqe'&~&'QX ))

e'~'Xq ——Xq(t), Xq(t) = iLXq(t),

PA = ) (AIXq) / (Xq IXq) Xq + (AIP ) / (P IP ) P

Q = 1 —P, (AiB) = (AtB).
(10)

Here we have to work with q-dependent sets of variables
(Xq) and (Pq j to guarantee orthogonality (Xq~Xq ) =
(Xq ~Xq) 6q q . L denotes the Liouville operator. It is easy
to see that Mq(z) is invariant under the transformation
X ~ X+ aX+ bX for both representations. Note that
if Sq(t —+ oo) = Lq g 0, then also Mq(t ~ oo) P 0, and
both Sq(z) and Mq(z) have a pole at z = 0+ i0 But.
it is evident that even if a correlator Sq(z) has a pole at
zero frequency, all Laplace-transformed time derivatives
of the correlator will be regular at zero frequencies (no
pole):

Within the Mori method the projection operators P
and Q are frequency independent:

III. MODE-COUPLING APPROXIMATION

Using standard methods for the equation of motion of
correlation functions (see Appendix A) one can write the
following double fraction for the correlator Sq(z) with
Aq = Pk exp[iq (I —k)Aii, ]:z7

d"
lim zLT S(t) =0, n) 1

z 'O

Let us apply these sum rules (11) to the Tserkovnikov
representation of the relaxation kernel [Eqs. (5)—(8)]. At
first we have to calculate the pole of Mq(z):
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zM (z) = z((XlX)) (z) —z((XlX)) (z) — ((XlX)) (z) —((XlX)) (z)
z((xlx)), (z) .. . .. z((xlx)), (z)
z X X, z q q z((XlX)) (z)

((xlx) ),(z) —((xlx)), (z)

x ((XlX)) (z) —((XlX)) (z)
z((xlx)), (z)

(12)

Performing the limit z ~ i0 in (12) the first two terms on
the RHS in line 1 vanish because of (ll), the first terms
in the angular brackets in lines 1 and 3 remain, and the
pote of Mq(z) comes from the angular bracket in line 2 in

(12) (see also Appendix A). Hence decoupling methods
(factorizations of higher-order correlation functions) have
to take into account all angular brackets in (12). This
was not done by ABPS; instead all angular brackets were
neglected and a decoupling in the first two terms on the

I

RHS in line 1 led to the approximation

MiA:(t) = 6[S(y(t)] (13)

On the other hand, one can use the same treatment of
the Mori representation of the relaxation kernel as in the
MCT. 4 There one has to project the force Qxq onto the
product of the initial variables X~ in the lowest possible
order using the new projection operator

+MCT+ =
ql(qg( "(q

(~lxq, x,.) /&lxl', , lxl', „)x„x,„ (14)

Because of the symmetry of (1), the lowest possible order
of n is n = 3. After projection one has to decouple the
correlators of the products into products of correlators,
replacing the reduced time dependence by the full dy-
namics QLQ ~ L.4 This mode-coupling approximation
leads to an equation similar to (13):

Mq(t) ) V(q qi q2)Sq (t)Sq (t) 'Sq q q (t)

(15)

If we allow all possible combinations (qi, qq, qs) of the
triples Xq, Xq, Xq„as defined in (14), the calculation of
the vertex V(q, qi, q2) turns out to be complicated (see
Appendix A) and cannot be given here in an analytical
form. However remember that in our case we know that

xt = —x, + (1 —Co)xt + ) Ctl, xl.„.
A:gl

(16)

Thus X contains the product X of the initial variable X
from the beginning. In this case it might be reasonable
to proceed to the second step of the mode-coupling ap-
proach immediately and to decouple the products with-
out additional projection (this is equivalent to a pro-
jection of Xq onto Xq = 1/N P, , Xq, Xq, xq q, q, ).
Then we simply derive

6
V(q, qi, q2) =

This result is identical with (13). But strictly speaking
the calculation of Mq(t) remains an open question.

Equations (4) and (15) or (4) and (13) are called mode-
coupling equations in analogy to corresponding more gen-
eral equations for the density-density correlator in liq-
uids. Such types of equations have been extensively stud-

(18)

will exhibit an inflection point at C q(t;„s) = f'
q

L;/S, (T, ). For O'C, (t) = C, (t) —f; &g 1 and
& = (T —T, )/T, one obtains the P-scaling law4

bCq(t) = hq~~g(t/t, ), (19)

—1/2a= 7OE' (20)

ied (see Ref. 4 and references therein) and successfully
applied to describe the dynamics of undercooled liquids.
These MCE's exhibit a dynamic slowing down due to the
complicated feedback (15). The physical interpretation
of one part of the slowing down for liquids is the cage
effect. A particle rattles in a cage, formed by its neigh-
bors. The cages relax very slowly near some bifurca-
tion point due to the feedback. Passing the bifurcation,
a tagged particle becomes localized in space. In other
words, a complicated multiwell potential landscape orig-
inating from the interaction forms at the bifurcation
point. 4 In Sec. V we will apply this physical interpreta-
tion to our results. But in the following let us assume
the correctness of (15) for (1) and discuss in more detail
the mathematical consequences as reviewed in Ref. 4.

Variations of the control parameter T lead to variations
of Sq. Then the MCE's describe generically a transition
from ergodic states Sq(t ~ oo) = 0 to nonergodic states
Sq(t ~ oo) = Lq g 0 at some temperature TMc+. This
transition is an A2 singularity following the notation of
Ref. 4; i.e. , for T = T the Lq(T c

) = L~ solutions
are doubly degenerate. The whole A2 scenario of MCT
applies to the dynamics of Sq(t), and thus two different
dynamic scaling laws should appear for T ) TMc+. Note
that, at T, , S& is Gnite for all q; no static divergencies
are necessary. The normalized correlator
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For 4~(t) & f' one finds the a-scaling law

&,(t) = +,(t/. ),
~ ~

—1/2a —1/2b
7g = 7(}E'

I'z(1 —a) I"~(1 + b)

I'(1 —2a) I'(1 + 2b)

(21)

(22)

(23)

I'(2:) is the gamma function. The parameter A is model
dependent. The master function g(t) for the P-scaling
law [Eqs. (19) and (20)] can be specified as

g(t) t for g(t) )0,
g(t) t~ f—or g(t) & 0 .

(24)

(25)

Note that in the case of a second-order phase transition
only one dynamic scaling law of the type

+, (t) =("G(( q, C't)

should appear, where g is the correlation length:so

(26)

1 1'= —
2S, . d, ' q=0

(27)

To be sure that the MCE's (4) and (15) lead to a tran-
sition at some T~~ ) T, for model (1) one has to
calculate S~(T) and V(q, qi, q2) [see (15)]. This seems
to be impossible analytically. However, one can use the
fact of the static critical behavior of (1) near T, and use
the known critical exponents of the corresponding Ising
model. It can be shown that near the phase transition of
model (1) positive solutions fq g 0 exist for d = 1, 2, 3 us-

ing (13) or (15) and (17) (Ref. 31 and Appendix B).Thus,
increasing the temperature, one will find the nonergodic-
ergodic transition at T, ) T, using (13), since for
T —+ oo only the fq

——0 solution remains.
In the following we report on our studies of (1) by use

of molecular dynamics. We try to find a temperature
region above T, where dynamic slowing down appears.
Then we test applicability of MCT with respect to the
found slowing down.

IV. MOLECULAR-DYNAMICS ANALYSIS

The results of Sec. IV are obtained by use of molecular
dynamics for (1) with d = 1, Cii, = CSi, icosi. We solve
the classical Newton equations of motion using the Ver-
let algorithms2 with periodic boundary conditions. The
total energy of the system was conserved (microcanon-
ical simulation). The time step was h = 0.005. The
system size was N = 8000. In all cases the size of the
system was of the order of 100( or larger Comparin. g
our results with runs for N = 4000 and difFerent time
steps we can definitely exclude any h and N dependence
of our results. The energy was conserved within 0.001%
during one run. The total simulation time of one run
was tp = 10 —10 . To make sure we calculate the cor-
rect properties we performed two independent runs with
random initial conditions at each temperature. Then we
mapped both solutions onto each other to see that our
results are reproducible.

The following quantities were calculated during one

run: the temperature T = ~ P& —, fz' Xi2(t)dt, the
mean-square displacements

1 -1
Sit = (XiXv) = —)Ã -to

kp

X (t)X +g i(t)dt,

the mean cluster length (t) (mean length of chain parts
with equal sign of particle displaeernents), the mean con-
stant sign time (r) (mean time of constant sign of one
particle displacement), distribution functions of cluster
lengths and mean constant sign times, and the local time-
dependent correlator

1 -1
Sii(t) = —)N -to

'tp

Xi(t'+ t)Xi(t')dt' .

The Laplace transformation of Sii(t) we performed using
the Filon algorithm. 33

A. Strong-interaction case (displacive lixnit)

In this subsection we report on our results for C = 4.
This value corresponds to the strong interaction case of
(1), and following Aubry s it is possible to introduce a
reduced temperature T„~ T/v C. Thus changing the
interaction strength is equivalent to rescaling the tem-
perature.

Static properties

As we reported in Ref. 7 the inverse mean cluster
length (l) as a function of temperature tends to zero
at T —0.35. At this temperature the (t)(T) depen-
dence changes essentially. This may be considered as a
crossover temperature T* or a "suppressed phase transi-
tion" temperature T'. From our Sip data we obtained the
spatial Fourier-transformed structure factor Sq (Fig. 1):

S =) e'«' "lS
k

(29)

Fitting the q dependence for small q we extracted the
correlation length defined in (27), shown in the insert in
Fig. l. It turns out that ( is equal to (t) within 10%
of error. Thus the interpretation of T* in terms of a
suppressed phase transition seems to be reasonable. The
fact that at T* some thermodynamic properties of (1)
exhibit unusual properties is confirmed by plotting the
inverse local static susceptibility

1/Xii = T/S«

in Fig. 2. Clearly we see a bend at T* = 0.35. It shall be
noted here that Aubry found a maximum in the specific
heat at T = 0.4+C/4 = 0.4. This maximum seems to
correspond with our crossover temperature T*.

Finally in Fig. 3 a semilogarithmic plot of the cluster
length distribution function P~il(t) for difFerent temper-
atures is shown. It is seen that P~il(t) exp( —al) in
a large-l region. Assuming random (uncorrelated) posi-
tions of cluster boundaries one easily derives

P(il (t) 2 ——
~

e
1 2i-

(l) (l) p
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2. Dynamic properties

As we reported in Ref. 7 the inverse mean const tons an sign
s a unction of temperature tends to zero at T*.

In Ref. 8 we started to anal zyze the frequency dependence
o t e imaginary part of the normalized susceptibility

s'tl(~) = XII(~)/~« . (32)

sII (~) exhibits a high-frequency two-peak excitation spec-
trum, which can be explained b t'
one c uster. In the low-frequency region a ( 1 we found
a minimum of sII(w) at a = ~p (T) and at lower fre-
quencies a maximum at u = cu T

but we found no s" (up~) ~ (T —T de en
ras o ~ &. Surprisingly we find a scaling law

around the P' minimum as shown for the scaled func-

og-plot in Fig. 5. For T = 0.33, 0.346 0.364
er unction on the low-frequency side of th

imum o
si eo e min-

tion c
ver one decade in frequency. Thee master func-

ion can be fitted by a power law
" ~ 'th 6 =

( )]. This value leads to A = 0.5 [Eq. (23)]. It shall be
noted here that 1 ) A ) 1 .4 ~or lower temperatures

= 0.3 0.28 wT =, 8 we see a possible breaking of the scaling
behavior on the low-frequency side of the P' minimum.

the ~' mi
'

Now we stretch the a scale on th h' h-f
t e ~ minimum (Fig. 6). We again see a scaling behav-
ior for T = 0.33 0.346 0..364. But the master function
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T = 0.9, and (d) T = 10.
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atT =0.
In Fig. 9 the si'i(w) data for higher temperatures T &

1.2 are plotted. The cx' maximum shifts to higher fre-
quencies and at T —0.9 (T = 0.45v C) coalesces with the
lower-frequency peak of the high-frequency spectrum.

Finally we show in Fig. 10 so-called hypsometric plots
of the particle positions for diferent temperatures. In
these plots (particle number versus time on the axes) a
particle is marked by a dot if its sign is positive and is not
marked if the sign is negative. These plots are used to
detect solitary excitations. Clearly we see propagating
cluster walls (kinks) with velocities uy = 1, . . ., 2 for T &
0.9.

B. Weak-interaction case (order-disorder limit)

200 =

160

W W

S
W

s

120 =:—

80::—

'IO =

0=
20 90 60 80 100

200

160

120

'IO

K

S

L
x

W

k

Q

W

W
W

H

W

W

0 R w
K

R

We ~ e 0
~ a

p E
0 20 00 60 BQ 100

FIG. 14. Hypsometric plots for C = 0.1 (cf. Fig. 10). (a)
T = 02 and (b) T = 05.

In this subsection we will discuss the dynamic proper-
ties of (1) for C = 0.1. As we showed in Ref. 7 at T = 0.1
one can expect a crossover in analogy to C = 4, however
only due to an increasing of the mean constant sign time
(~) (see Fig. 5 in Ref. 7). The correlation length does not
exhibit unusual behavior at this temperature (( & 5 for
T ) 0.1). Again we observe a high-frequency two-peak
spectrum in si'i(u) with peak positions at ~ = 0.66 and
u = 1.3 (Fig. 11). This part of the spectrum can be qual-
itatively attributed to the spectrum of a single particle
moving in a double-well potential. 34 In the low-frequency
region of s'i'i(w) again a P' rninimurn and a a' peak are

observed. As in the strong-interaction case the o, ' peak
shifts to lower frequencies with lowering the temperature,
whereas the P' minimum does not shift. A scaling anal-
ysis shows that there is an indication of an a' scaling for
T & 0.125 (Fig. 12). However, no P' scaling is observed
(Fig. 13). Thus only one dynamic scaling law (n' peak)
seems to be present. In Figs. 14(a) and 14(b) hypsomet-
ric plots for T = 0.2 and 0.5, respectively, are shown. No
propagating kinks can be detected.

V. DISCUSSION

Let us first interpret our results in terms of MCT. The
nonapplicability of (15) in the strong-interaction case
follows from the (i) nonshifting of the P' minimum of
s"(w) with temperature, (ii) nonlinear s" (cup )[Tj de-
pendence, and (iii) nonexistence of a power law on the
high-frequency side of the P' master function.

In terms of MCT we can say that we are far away from
any dynamic singularity as described by that theory. All
arguments listed above are concerned with the P' mini-
mum. The corresponding time window for Sii(t) is the
decay onto a plateau (see Fig. 1 in Ref. 8). If up does
not shift with temperature, the time Sii (t) needs to decay
onto the plateau also does not change. This time is about
three to four periods of the short-time oscillations, and
thus this decay process (onto the plateau) takes place on
microscopic time scales. In contrast the corresponding
decay within MCT (and experiments conFirming MCT
for liquids) takes place on mesoscopic time scales, five
to ten decades larger than the microscopic time scales.
What is the reason for the short-time scale of the P' re-
laxation in our system? For low temperatures we have a
dilute gas of propagating kinks in the strong-interaction
case. The mean velocity of these kinks does not vary es-
sentially with temperature. The whole short-time dy-
namics then comes from the dynamics in one cluster.
In this cluster all particles are displaced and oscillate
around the mean nonzero position X. Then the corre-
lator Sii(t) will decay onto X for times large compared
with the oscillation time. The presence of propagating
kinks finally leads to some relaxation of the correlator
to zero. Thus the P' relaxation onto the plateau comes
from the time average over some short-time oscillations
in a cluster. The cx' relaxation from the plateau comes
from the presence of propagating kinks. Since by lower-
ing the temperature the density of the kink gas is lowered
(the correlation length increases), the n' relaxation takes
place at larger times with decreasing temperature. The
presence of clusters originates in the double-well on-site
potential in (1). Thus the P' relaxation comes from the
trapping of a particle in one of the two minima of V(X)
due to the appearance of kinks. In other words, the par-
ticle becomes localized in the static on-site double-well
potential V(X). This "cage" does not relax in time in
contrast to MCT. No stretching of the P' process then oc-
curs. In Ref. 31 the presented data for the static structure
factor Sq (Fig. 1) were used as inputs in (Bl) to calcu-
late f~ There 0.98 & .TMCT & 1.2 was found. Clearly
no low-frequency anomalies in s"(cu) are observed in this
temperature region (Fig. 9).
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place. From Fig. 16 also follows that in the tern era-( 1 t& ~t~ is nearly temperature
independent for times f & 30 d 'llan osci ates with a fre-
quency up 4.24. This value corresponds to th
sition of the h

s o e po-
e high-frequency band edge of "~ ) b

'
g

so nearly temperature independent Aen en . calculation of
e ime ependence of the correlator S~i(t) for a har-

monic chain [(I) with V(X) = Xzj usin the an
expression of e" ~
set in Fi . 16 .

Ref. 8) also yields an oscillati a ion (in-
'g. ). However, the corresponding fr

'
g requeney is

= ~ 2, which is the position of the tom-
frequency. band edge of the high-frequency band of s"(w .
T us the observed oscillation in S q4~ fin tt~ ~ or the C model

as i s origin in the nonlinearity of the model. It is un-
clear whether these oscillation ht bs mig e connected with
recently observed localized v'b t'
els e. . su

vi ra cons in nonlinear mod-
e s, e.g. , such as (1), with V(X) = X (Ref. 38) (note

~ ~ ~

that in such a case no kinks sh ld bs ou e present) or not.
This remains an interesting question.

Thus we obtain using

»m ((AIA)) = z(L» (AIA))

lim ((AlA)) = —i(AlA)

lim ((AlA)) = i(AlA),

lim ((AlA)) = i (LA~ —(AlA)), —

lim ((AlA)) =i(L~A —(AlA))

(A2)

(A4)

(A5)

(A6)

h
In the followin we will

'
g

' sketch the derivation to see that
t epoleofM z inthe Tser

) comes from the second line in (12). The equations of
motion for a correlator, ((AlB))(z) = LT[(A t B, read

z((AIB)) = (AIB) + i((AIB))
= (AIB) —i((AIB))

with (AlB) = (AB).
limp (A(t)A) = L~~

VI. SUMMARY

We studied the time de end
C4 l

ependence of a one-dimensional
lattice model with a NNI. F

. fo d
I. For strong interaction we

. ound a temperature re ion w
aws or the dis lac

g' where two dynamic scaling
'

p acement-displacement correlator Sii(t)
appear. The analysis of these scaling laws b h

p ica i i y o mode-coupling equations for St&(t). The
Thus the dy-scaling region is limited to T & 0.15 C.

namic sealing cannot be attribut d t hri u e o t e presence of a

~ ~a drastic increase of the correlation length in the scaling

Using these properties we derive from (12)

(A7)

(Aq Bq ):(Aq B q)bq— (A8)

(AILIB) = --((A*,») (A9)

» M, (.)=-
X~(X, —Lq/T)

Inserting (A7) into (4) one derives an id t't 1—.an i en ity 1=1.
e us analyze the Mori method for 1 . For t

we use the properties
or ~ . or that
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From

QXq ——Xq + Xq/y

we find with n = 3 for (14)

BA. BB
OX„OP„ (A10)

(A11)

it follows that PMCTQXq = 0. This is not surprising,
since the properties of (1) were not considered explic-
itly. Approximation (A14) becomes exact for, e.g. , a
harmonic chain, and there no relaxation kernel shouM
appear. Thus the correct calculation of V(q, qi, qs) in
(15) remains an open question.

Substituting QI Q in (9) and decoupling the time-
dependent correlator

(X,(t)X „(t)X „(t)X,X„X„)

We used the following approximation:

(X;,X;Xq,X,) = (IXq, l2)(IXq, l2)s . (A13)

= (X,(t)X,)(X „(t)X„)(X„(t)X„), (A15)

To calculate PMcTXq/yq one has to treat averages
(XqXq, Xq, Xq, ). If one decouples them using the ap-
proximation

(X X,X„X,) = (IX
I )(IX„I )b, ,6„,

+(IX.I') (Ix .
+(IX,I') (lx„I')

(A14)
I

we find (15).

APPENDIX B

Here we want to briefiy discuss the solutions of (4) and
(13) near the phase transition T, = 0 of (1).

With (13) one gets for fq = Lq/Sq(t = 0) (Ref. 4)

1 —fq BZ

T T Td'ql dq2 fqz Xq~ fqz Xq~ fq q& qz X—q —q~ —q~— (B1)

Using the known critical behavior of the d = 1 Ising modelss it follows that

,T-' =.-«T+ C, .q

Inserting (B2) into (Bl) and transforming q ~ Ce+~+q one finds for T ~ 0

(B2)

fq 6T',scyT~ 2

1 —fq 1+q dg1 ding
fq fq. fq-q -q.

(1+qi)(1+ n)(1+ Iq
—qi —q~l)

(B3)

Thus we obtain

f = ] g s+~T[] + O( s+~+)]
q qrg

with

(B4)

1 6|
Aq 1+q dqidq2(1+qi) '(1+q2) '(1+ lq

—ql q2I)
' (B5)

AtT:T:0 fq:1
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