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A method for the calculation of the hole self-trapping (ST) energy in ionic crystals is proposed. It
combines model-Hamiltonian and quantum-chemical approaches. An artificial path for the ST process
has been suggested containing (a) a free hole not interacting with the lattice vibrations; (b) a free-hole
wave packet localized in a small crystal volume in the form of the real ST state, all crystal ions being in
their perfect lattice positions; (c) the final ST state of the hole, accompanied with a corresponding lattice
relaxation, including strong displacements of ions belonging to the hole region. Some intermediate states
might be adopted between (a) and (b) in order to simplify the calculations. The first step (a ~b) is calcu-
lated with the use of a simple model Hamiltonian taking into account inertial-free crystal polarization;
the latter is calculated by means of Toyazawa's electronic polaron model. Quantum-chemical calcula-
tions are used for the last (b~c) and all intermediate (if any) steps, and are made by means of the
embedded-molecular-cluster model combined wtih a self-consistent treatment of both the crystal polar-
ization and the electronic structure. In order to illustrate the method, a ST hole in the form of the Vk
center (X2 quasimolecular ion) in the KCl crystal is considered and the ST energy is calculated as care-
fully as possible. In particular, the semiempirical intermediate neglect of the differential overlap
modification of the unrestricted Hartree-Fock-Roothaan method is employed for actual calculations.
The hole ST energy in the KC1 crystal is found to be near —2.4 eV.

I. INTRODUCTION

For a long time the small-radius polaron phenomenon
has remained quite a fundamental problem in solid-state
physics. ' Of special interest is the elFect of self-
trapping (ST) of carriers, both electrons and holes. It
happens when a particle-lattice interaction exceeds some
critical value leading to a large self-induced distortion of
the solid and strong localization of the wave packet of the
particle. ' As a result (absolute temperature T =0 is as-
sumed), the ST particle acquires a very large efFective
mass and can be treated as being almost completely local-
ized within a small crystal volume, jumping quite rarely
from one position in the lattice to another due to a
thermal activation.

%'hether free holes or electrons can be self-trapped or
not is a very important property. ' A quantitative cri-
terion providing such information is the so-called ST en-
ergy. Usually it is defined as the energy difference be-
tween a fully relaxed ST state ' and the bottom of the
free particle band (the-lowest energy state of the particle
without coupling with the lattice distortions). If it is neg

ative, the particle can spontaneously self-trap in a materi-
al; otherwise, it is not the case, or the ST state might be
metastable. ' The larger the absolute value of the nega-
tive ST energy, the more stable the ST state.

Since the observations presented above are rigorously
valid only for strongly localized polarons, let us introduce
a more general definition of the ST energy. It should be
noted that a degree of localization of a ST polaron de-
pends closely on its bandwidth Ss~. Let us define the en-
ergy of the ST state Esz as the energy at the middle of
the ST band. Then the following definition of the ST en-
ergy can be stated, AEsz =Esz —EI;, where Ez
represents the energy in the bottom of the free-particle
band. This more correct definition of the ST energy
works even for quite mobile ST polarons having not so
narrow ST bands. However, it is well known that the in-
equality AEs~))8s~ holds for the ST hole (STH) in
alkali-halide crystals, in which the STH effective mass is
enormously large and hence Bs~ is very small (T =0 is
assumed). Only STH's in ionic crystals are considered in
this paper.

Due to a very large local relaxation of the lattice in the
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ST state, the hole represents a sort of a point defect in a
crystal. The most well-known example of the STH is the
Vk center in alkali-halide crystals. This defect has been
investigated intensively both experimentally' ' " and
theoretically. " ' Traditionally it is treated as a nega-
tively charged diatomic halide molecule X2 occupying
two anion sites and oriented in the [110] direction.
Quite recently, this model was checked by means of semi-
empirical' and ab initio Hartree-Pock' ' cluster simu-
lations. Thus the Vk center geometric structure, and its
optical, spin-resonance, and other static properties have
been investigated quite well.

Despite a long history of theoretical studies of carrier
self-trapping in polar media (e.g., 1, 2, 4, 5, and 12—24),
at present there is no clear and reliable model of a process
of hole self-trapping in alkali halides. Starting from Gil-
bert' the process of the Vk-center creation from a free
particle (electron or hole) state in which the lattice is
undistorted, is usually qualitatively estimated using a hy-
pothetical three stage pr-ocedure: (i) localization of a wave
packet made up of free polaron states on several lattice
sites, (ii) relaxation of the surrounding lattice induced by
the localized hole wave packet (crystal polarization),
though both Vk anions are still in their perfect lattice po-
sitions, and (iii) the relaxation of the Vk anions toward
each other forming a strong chemical bond. The first step
is characterized by a positive energy E&„, whereas the
second and the third result in negative contribu-
tions. A very simple estimate' yields E&„ to be a
half of the width of the upper valence band in alkali-
halide crystals (typically, 1.5 eV) giving a total hole ST
energy that is negative, i.e., such a process seems to be
favorable in ionic solids with rather narrow upper valence
bands. Despite the correct physical picture, which can be
drawn by means of this method, its main disadvantage
consists in its qualitative character. The most weak and
delicate points are the calculation of the localization en-
ergy E&„and an artificial division between the second
and the third steps in the path connecting the free and
the localized ST state, since both these steps depend on
each other and in fact cannot be correctly separated.

Another approach, which is based on the pioneering
ideas of Toyozawa, has also been proposed in a series of
papers. ' ' In this method both states (free and ST
hole) are considered by means of one and the same model
Hamiltonian (MH), which makes it possible to calculate
the ST energy in some consistent way, taking correctly
into account the lattice polarization as well. However, at
present such a method does not allow us to take into ac-
count the microscopic structure of the STH (i.e., both the
electronic density redistribution around the STH and the
large displacements of surrounding ions), which is possi-
ble only by using quantum-chemical methods. The latter
methods fail, however, to consider hole states delocalized
through the whole crystal.

Strictly speaking, in order to calculate the hole ST en-
ergy we have to use a uniPed method suitable for both lo-
calized and completely delocalized hole states. The MH
approach is good for delocalized states, while quantum-
chemical methods are well suited for describing local
chemical interactions. In a number of recent papers a

novel method has been suggested, based on a combina-
tion of both techniques mentioned above —the MH
and the embedded-molecular-cluster quantum-chemical
methods. It was assumed there that the difference of en-
ergies at various points of an adiabatic potential energy
surface of the hole ST process are reproduced quite well
independently by both methods.

In this paper we have made an attempt to gather all
useful ideas proposed in these papers and generalize them
in order to develop a quite general quantitative approach
suitable for hole ST energy calculations in any material.
With the help of the rigorous formal analysis made here
we have shown how the inertia free p-olarization of the
crystal produced both by the free and the ST hole can be
taken into account. This point has been missed in previ-
ous studies although, as is shown here, it might be
quite important in calculating the hole ST energy. As a
particular example we have calculated as carefully as pos-
sible the hole ST energy for the V& center in a KC1 crys-
tal. Although it is known' that one-center hole localiza-
tion in alkali halides does not exist (although it exists in
some other crystals such as AgC1, for instance ' ), we
study also this vague state in KC1 to demonstrate the
general advantages of the approach proposed here as a
useful tool to choose the most fauorable ST state.

The plan of the paper is as follows. In Sec. II we dis-
cuss the basic concept of the approach proposed in the
paper for any ionic crystal. A microscopic model for the
hole self-trapping in alkali-halide crystals is considered in
Sec. III. Methods used during the calculations, both the
MH and the quantum-chemical, are described in Sec. IV,
while actual calculations of the ST energy in KC1 are
represented in Sec. V. General conclusions are drawn in
Sec. VI, where the main steps of the approach are given
as generally as possible.

II. BASIC IDEAS OF THE METHOD

Let the state I' with an energy EF correspond to a free
hole (hole polaron). It is followed by the electronic
(inertia-free) polarization only, since as is well known,
the value of inertial (ionic) polarization is negligibly small
for the free polaron having a small coupling with lattice
vibrations and so can be completely neglected.

Since there exists no clear method of how to calculate
directly AEsT, following the main ideas of the papers,
we suggest here the introduction of a number of auxiliary
stages between completely delocalized (F) and localized
(ST) states. Thus we consider the passage F~ST as hap-
pening along some hypothetical path qualitatively just in
the same way as was proposed by Gilbert, while consider-
ing the ST process for the Vk center in alkali-halide crys-
tals. '

Suppose we know both the lattice relaxation near the
STH and the hole distribution in the defect region. It
means that the STH state itself has already been obtained
by means of a quantum-chemical method. Let us split all
crystal ion displacements Q into two sets, namely, Qd f,
which belongs to the strong relaxation of the lattice
toithin the defect region and (as it is assumed) contributes
significantly to the ST process, and Q', which describes
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all residual lattice normal coordinates. At least three
states must be introduced along the passage F~ST in or-
der to calculate the hole ST energy: (i) a free hole (F); all
crystal ions are in their regular sites (Q~,t =0, Q'=0), (ii)
the hole is localized within a small crystal volume (in the
defect region) just in the same fashion as it is in the final
ST state (Qd, t=0, Q'=0, since there is still no relaxation
of crystal ions); we will refer to this state as state L (local-
ized) in the following, and (iii) the final hole ST state
(Qq, t&0, Q'WO).

Besides, some intermediate states might also be intro-
duced between points (ii) and (iii), depending on the real
system under consideration. These states must be local-
ized (with respect to the hole distribution) just in the
same way as the states L„ST. All intermediate steps ex-
cept the second one (L) will be denoted by the capital
letter I in this section.

Note that in all these stages the electronic polarization
should be taken into account. The state L and possibly
all I's (if any) are not stable and probably do not corre-
spond to some stationary hole states in the crystal (for in-
stance, the state L is characterized by a localized wave
packet of all possible states of the free hole). However, as
will be shown below, the main advantage of this hy-
pothetical path (F~L —+I~ST) is that it permits us to
calculate the hole ST energy EEsT sought for.

Indeed, let A'=8„+8„& be an exact Hamiltonian of
the crystal; r denotes a set of electron coordinates, while

Q is a set of phonon ones (ion displacements). Here 8„ is
the crystal Hamiltonian with undisplaced ions; it takes
into account electron-nuclear and nuclear-nuclear in-
teractions. All interactions of the hole with lattice vibra-
tions are included in 8„&. As it is known, ' due to the
periodic symmetry of the crystal (all crystal anions are
equivalent as traps for the hole) the wave function of the
intrinsic hole in both states X( =F,ST) are Bloch-like and
can be represented as follows:

)II(x)(r g) — y e
—ik R(P(x)k(r g)

1
kj ~ ~g Rj

R

where X is a number of unit cells in the main region of
the crystal, C&R('"(r, g) is a normalized function, and j
numerates the branches of the corresponding hole energy
bands. Let us show that for comparatively narrow bands
of the STH (BsT « lE~ —EsT l ) the function @RJ

' (r, g)
may be approximately chosen as a wave function of the
STH instead of the exact one, given by Eq. (1). It means,
that this localized function can be reasonably interpreted
as a wave function of the defect state, describing the hole
localized around the site R. Therefore, it can be obtained
by means of the usual variational procedure and calculat-
ed using any cluster quantum-chemical method.

Indeed, omitting both the indices of the state (ST) and
the branch (j) and expanding @R(r,Q) through a set of
known orthonormalized and localized (in the vicinity of
the lattice site R) functions,

coefficients, c (k):

Hp (k) —E'"'Sp (k) c (k)=0,
CX

where

Hpa«)= X e'"'"&NRpl&leap. & (2b)

is the appropriate matrix of the Hamiltonian and

Sp (k)= ge'"' &P pl/
R

(2c)

+R"'(r Q)= X c.NR. (» Q»

where R is any lattice vector in the vicinity of which the
hole is assumed to be localized. We can choose R=O for
the sake of simplicity. Therefore, the STH can be simu-
lated as being strongly localized and @p( '(r, g) can be
used as its wave function.

Then, following the standard assumption ' ' ' we ad-
mit that the dispersion of the free-hole bands coincides
with that of the upper valence band of the crystal. This is
usually the case in ionic crystals. For instance, in alkali
halides the hole bands are formed by anion p-like atomic
orbitals (AO's). Then we adopt also (although this as-
sumption can easily be avoided and is taken here for the
sake of simplicity only) that the vector k =0 corresponds
to the top of the valence band and all dispersion branches
degenerate at this point (as happens in alkali-halide crys-
tals). So the branch index j can be omitted in further
equations. Thus we are able to estimate the value of the
ST energy considering the free-hole state belonging to the
k=0 point.

Therefore, we get

represents the corresponding overlap matrix. Since in the
ST state under consideration the effective mass of the
hole is much larger than that for the free one, the band-
width of the former is much smaller than that for the
latter. Besides, it is assumed here that the STH band is
strongly separated from the free-hole band. Summing up
all these arguments we can conclude that the dispersion
of the STH is no more important here and can be neglect-
ed, while considering the calculation of the ST energy.
The ST band can be substituted by a single level having
an average STH band energy value. This means that to a
good approximation the overlap of the functions
(()R (r, Q) centered on difFerent lattice sites can be treated
as negligible and therefore only the largest (diagonal,
R=O) matrix elements in Eqs. (2b) and (2c) are left:

(k)= &Pppl&leap & and Sp (k) —&(t)ppl(t)p & =~ p.
This ensures that Eq. (2a) does not depend on k at all and
gives solely only one level instead of the whole band.

On the other hand just the same simplest secular prob-
lem arises if the following localized variational ansatz for
the STH is considered:

C'R(r, g) = pc (k)PR (r, Q), E( =o)—E( ) —
&

)p( )lHl)II( )
&
—

&
)I)( )lH l@( )

& (3a)

we arrive at the usual secular problem for the unknown at the bottom (k=O) of the free-hole band, and
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( @(ST)jp
~

@(ST)) (3b)

as an estimate for the energy of the ST state. It has been
used in Eq. (3a) that (%0& )j8„&~VO&

) ) =0, which is
correct for any state 'Ir(r, Q) with Q=O. The function

' must be calculated by a direct variation of EsT.
Thus, the usual cluster quantum-chemical philosophy can
be implemented here.

Let us introduce now two additional auxiliary hole
states @0&

' and @0&
' (again for R=O) corresponding to the

points L and I, respectively. Keeping in mind that Q =0
still holds in the state %0 ', we arrive at the following set
of equations:

~EST ~EF~L +~EL~I +~EI~ST &

(@(r)jH~@(r) ) (@(z)jpj@(z))

sT)(H
(

@&sT)) ( @&r)(p (

@&r) )

(4)

(5a)

(5b)

(5c)

The difference EEL L is the energy needed to localize
the hole in the vicinity of the defect region just in the
same fashion as it is in a real ST state. This value is posi
tive due to the large kinetic energy acquired in the state
L. EEL sT ~EL I +~EI sT represents an energy
gain caused both by the chemical bonding within the de-
fect region and the relevant strong lattice relaxation, and
is negative. Thus whether the hole ST energy will be neg-
ative (a ST state exists) or positive (likely does not exist)
depends on the balance managed by these two contribu-
tions. Note that all these energy differences are calculat-
ed by means of the different Hamiltonians (B„and 8)
and represent differences between mean values taken with
various wave functions. However, the choice of the inter-
mediate states I is quite arbitrary. Note also that the ac-
tual sign of the each particular contribution EEL ~ de-
pends on the state I chosen.

Our general idea is to calculate each difference
( b Er; L, EEr r, AEr sT ) by means of diferent
methods, the most favorable and suitable in the given par-
ticular case. Practically it means that for each difference
(each step of the path F~L +I~ST) we in—tend to em-
ploy different Hamiltonians (such as the Hartree-Fock
Hamiltonian augmented with polarization correction, the
MH, etc.) and, as a consequence, different wave func-
tions. Particularly, in order to calculate AE~ L we use
the MH method whereas, while calculating both EEL
and AEz sT cluster quantum-chemical calculations are
applied. The latter method can be used for these steps
due to the localized nature of the wave functions in the
states L,I,ST. Note also that even clusters of different
sizes in principle could be used on two last steps (L ~I
and I—+ST).

The wave functions which coincide for any two sequen-
tial stages [for example, C&0&

' in (Sa) and (Sb)] should be
the same. In practice, however, they are not identical,
since various methods are used on each step as is adopted
here. Thus we have to take care of at least their physical
equivalence in order to diminish as much as possible the
main error of the present approach which comes from

the usage of different Hamiltonians in actual calculations.
However we believe, that energy differences are repro-
duced quite well in the methods mentioned above, and
therefore our approach is able to yield a comparatively
good estimate of the real hole ST energy, taking into ac-
count in a physically transparent way all important con-
tributions.

Unfortunately it is not possible to formulate our gen-
eral approach further in more detail without considering
a concrete system. For this reason we concentrate here
on the case of alkali-halide crystals and present our esti-
mate of the hole ( Vk center) ST energy in KCl crystal.

III. MICROSCOPIC MODEL OF HOLE SELF-TRAPPING
IN ALKALI HALIDES

The following auxiliary stages shown in Fig. 1 can be
chosen in this particular case:

(i) a free hole (F), crystal ions are in their regular sites;
Q„,(=0 and Q'=0, where Q„,) is a valence vibrational
mode of the X2 molecule, ' while Q' is a set of residual
lattice normal coordinates, as before; the point F in Fig.
1'

(ii) a hole shared by two nearest anions oriented along
the [110]axis; still Q„,) =0 and Q'=0, there is no relaxa-
tion of surrounding ions; the point L in Fig. 1;

(iii) relaxation of Xz surrounding ions (Q %0), but
both ions ( Vk-center precursors) are still in their regular
sites (Q„,(=0); the point LR in Fig. 1 (the point I in the
notations of Sec. II);

(iv) at last, the Vk center is formed (Q„„WO,Q'%0);
the point ST in Fig. 1.

Thus, the process drawn here practically coincides
with that given above for the general case. The state LR
has been introduced by Gilbert' and is used here as an
intermediate state. %e will show however that this state
appears to be useless for actual calculations and may be
removed after all. As before, the difference hE~ L is the
energy needed to localize the hole on two adjacent anions
and is positive. EEL Lz is in fact negative due to an en-

ergy gain arising after lattice relaxation around the X2

j]
F ===) fj

~def ( Qval)

FIG. 1. Schematic representation of the path for the hole
self-trapping in the alkali-halide crystals used in the present cal-
culations.



47 THEORETICAL ANALYSIS OF HOLE SELF-TRAPPING IN. . . 14 879

quasimolecule. At last, AELz s~ represents an energy
gain, caused both by an alteration of the chemical bond-
ing in the Xz molecule and the relevant lattice relaxa-
tion, and is also negative.

While calculating AEF I we use the MH method aug-
mented by the inertia-free polarization treatment by
means of Toyazawa's electronic polaron model,
whereas, while calculating both EEL L„and AEI~ s~
the quantum-chemical calculations within the cluster
model are applied.

Before discussing the numerical results obtained for
the STH in KC1, let us consider the principal features of
the methods used below for the actual calculations at
each step.

IV. CALCULATION METHODS

and consisting of the diagonal elements T, T „and T„2
only. For example, for R'=a(1, 1,0) the matrix CR
represents an anticlockwise rotation by an angle ~/4,
t)( =T, t22 = T„), and t33 = T 2. We proceed in a simi-
lar way for anions R' from the second coordination
sphere, in this case toR. is diagonal for all R, these diago-
nal elements are either T' or T' =T', = T'

2 (their
meaning is the same as for those in the first sphere). De-
tailed expressions for the matrices toR are given in an Ap-
pendix.

However the parameters T, T, , and T 2 of the hole
MH introduced above are unknown. In order to obtain
them, we can match the eigenvalues of the MH with
those resulted from band-structure quantum-chemical
calculations. Indeed, the diagonalization of the MH
given by Eq. (6),

A. Model-Hamiltonian method

%'hen constructing the MH, one should take into ac-
count that, since the upper valence band of alkali halides
is formed mainly by anion p-like atomic orbitals, the off-
diagonal (in terms of lattice sites) matrix elements of the
MH must differ from each other. Neglecting those
differences leads to an essential overestimate of the hole
localization energy.

Accounting for all arguments discussed above, let us
write down the MH for the perfect crystal in the tight-
binding approximation incorporating only two anionic
spheres of nearest neighbors (cf. Ref. 7). In the site rep-
resentation the free-hole Hamiltonian reads:

h g Xi Top. ,R'p' Rp R+R', p'
RR' pp'

where

Top, R'p' ED~OR'~pp' ( 1 fiOR' ) tOp. ,R'p. '

(6a)

(6b)

and R, R' are lattice translational vectors ( IR'I ~ 2a, a be-
ing an interionic distance), p, p'=x, y, z and IR,p) is the
p-like function localized on the site R and orthogonalized
to those centered on the nearest neighbors (coordinate
axes are oriented along [100], [010], and [001] crystal
axes); asap and az„are the hole creation and annihilation
operators for the orbital

I R,p ).
In order to derive rigorous expressions for the matrices

tpR I I top Rp I I
used in the MH, let us consider two

anions lying along the X axis. It fol1ows from symmetry
that the interaction of these anions in fact depends on the
following three parameters only: T (interaction of two

p orbitals which lie along the X axis), T, (p orbitals
oriented along F axis), and T 2 (p orbitals oriented along
the Z axis). Note that it is necessary to distinguish both
latter cases due to a different crystal environment. Thus,
we found for an arbitrary vector R' belonging to the first
sphere that the matrix

toR' I I top, R'p, 'I I CR'tR'CR'

where CR. is the three-dimensional rotation matrix
orienting sites 0 and R' along the X axis, tR is the diago-
nal matrix belonging to the ions lying along the X axis

Hk = g X Tpp (k)akpakp = g EJ(k)ck~JckJ,
k pp' kj

(6c)

permits us to calculate the dispersion of the hole bands
E (k), j=1,2, 3. Thus, the hole energies at the I,X,L
points of the Brillouin zone (BZ) are

s(I ) = —
Eo

—8a —4y —26,

E~~(X)= —so+ Sa —4y —25,
E~(X)= —Eo+4y —25,

i(L) = —.,+8~+2fi

E~(L ) = —eo —4P+ 25,

(7a)

(7b)

(7c)

(7d)

(7e)

where subscripts II, l denote energy branches whose
eigenvectors are paralle1 and perpendicular to the direc-
tion of the wave vector k, respectively. Besides,
a= —,'(T +T

& ), P= —,'(T —T, ), y=T 2, and 5=T'
+2T.'.

The corresponding band-structure calculations of the
KC1 perfect crystal were carried out by means of the
modified semiempirical method of the intermediate
neglect of the differential overlap (INDO) combined
with the large unit-cell (LUC) model. (Note that just
the same INDO method was used for the V& center cal-
culations, discussed below. ) The LUC's used allow us to
get energies at least at the I,X,I points of the BZ. Re-
sults are presented in Table I. It is clear that the 64-atom
LUC (supercell) is large enough to get the MH parame-
ters quite reliably.

To estimate the energy of the inertia-free polarization
produced by the Coulomb field of the hole, we used the
electronic polaron model. ' In this model the distor-
tion of the electronic subsystem (inertia-free polarization)
is described in terms of virtual Frenkel excitons created
around the hole. Proceeding in this way, one arrives at
the following total MH (i.e., the Hamiltonian of a system
"the hole + Frenkel excitons"):

H„=H~ +8',„+Hh'
Here Pk is the free-hole Hamiltonian, Eq. (6), without
polarization; m,„=g E b b is the Hamiltonian of the
free excitons carrying the identical energy E (the forbid-
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TABLE I. The free-hole band energies at 1,X,L points of the Brillouin zone and parameters of the
MH, Eq. (6), for different LUC's used in the calculations: (a) [KC1],6,

' (b) [KC1]«', (c) [KC1],2,.

Band energies (a.u. )

LUC ~(r) &~~(X) ~,(X) &~l(L) &,(I )

Parameters of MH (eV)

—T7T2 E,p

0.391
0.394
0.394

0.453
0.472
0.472

0.403
0.411
0.411

0.436
0.449
0.449

0.393
0.401
0.401

0.203
0.242
0.242

0.008
0.024
0.024

0.065
0.075
0.075

0.035
0.034
0.034

11.15
11.42
11.42

den gap width), bz and bz are creation and annihilation
operators for the excitons with the wave vector q. In-
teraction of the hole with the excitons is described by an
operator:

Hi, ,„=—g g [ VR„R+R.„(q)b~+h.c. ]aR„aR+R„
q RR'

PP

is the wave function of the localized hole and y is a wave
function of excitons describing electron polarization, in
the Landau-Pekar approximation ' ' the total wave
function of the crystal is N=%y. Varying the total ener-
gy of the system (4 IA'„l@) with respect to g (similarly
as it has been done in Refs. 5, 21, and 26), we obtain the
following expression for the total energy of the hole in
the electronic polarization field

F-[e]=(,elH„Ie)+z...[q']=@,[q']+E...[q'] .
where

VR„,R+R„(q)= Vq& R,@le"'IR+R',p' &,

2',
V =—i 1—

'q
Vq

2

(9b)

(9c)

The first term here corresponds to the hole self energy-
defined via + and the MH parameters in Eq. (6), while
the second term in Eq. (11) is the inertia free polari-zation
energy

q'= XfR.aR. I0& (10)

Here V=Nv, is the total crystal volume, v, is the unit-
cell volume, and c is the high-frequency dielectric con-
stant. If

q

(12a)

where 4'=QR fR, IR, v) is the coordinate one particle-
representation of 4 [cf. Eq. (10)]. To estimate the in-
tegral over the BZ in Eq. (12a), let us replace the integra-
tion over the BZ by that over a sphere with radius
q =sr/a. The result is (cf. Ref. 34)

&p.i = —(q'q'Ig
I
q'q') = —j I

q'(r) I'g( lr —r'I ) I
q'(r') I'««'

fR&~&fR2~if R3~3fR4~4( i i R2 vilg IR3 3 4 4)
R). . .R4 vl. . .v4

(12b)

where

g(z) = 1 1— 1
Si —z

a
(12c)

is an operator of the hole self-action via the hole-induced
polarization field (the so-called dielectric screening), Si(x)
being the usual integral sine function. Of course, the
rigorous result (12a) may be used for straightforward cal-
culation of the polarization correction instead of the ap-
proximate one given by Eqs. (12b) and (12c). In this case
the method of special points is used to perform the nu-
merical integration over the BZ. However, one should be
aware that in doing this, since

I
V

I

~q, to avoid the
singularity at q=0, a special method'" must be used.

Therefore, assuming that the hole wave function 4 has
a particular given form through its coefficients fR, and
using the anion orbitals IR, v) as Wannier functions, we
can employ Eqs. (6), (11), and (12) and obtain finally the
total hole electronic energy E[%] for any state in which
all atoms occupy their regular lattice sites (Q =0).

It should be mentioned that the inertia-free polariza-
tion energy caused by the free hole (F) cannot be calculat-
ed directly with the aid of Eq. (12a), since the latter is no
longer valid due to the failure of the Landau-Pekar ap-
proximation. It can be taken however from perturbation
calculations also based on the electronic polaron
theory. For this purpose it is necessary to generalize
the equations therein for the case of three free-hole p-like
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bands, taking correctly into account their degeneration at
high symmetry k points (only the simplest case of a
unique s-like band was considered in Ref. 29). This yields
the following result for a shift of the threefold degenerate
state at the bottom (k=O) of the free-hole band (see also
Ref. 31):

E „(F)=-
e, (q) —E(I )+E

X g U„J(q)(O, x ~e'~'~O, p) (13)

B. Quantum-chemical methods

To carry out the above-discussed calculations of the
hole local states we need a method reproducing reliably
both chemical interactions of ions nearby the Vk center
and the long-range interactions known as the crystal po-
larization produced by the STH. The embedded-
molecular-cluster ' (EMC) model was used, which has
been successfully applied earlier to find static properties
of Vk centers in alkali halides' and impurity-induced
hole trapping in MgO. In this method a division of the
defective crystal into two regions —quantum cluster con-
taining the defect with its important neighborhood and
the rest of the crystal is carried out. Then two different
problems —the electronic structure of the quantum clus-
ter embedded into the Coulomb field of the rest of the
crystal and the relaxation of the surrounding crystal (its
polarization, both inertial and inertia-free) induced by the
defect have to —be solved in a self consistent way (see-
also Refs. 7—9, 17, and 18). We have used here the sem-
iempirical SYM-SYM code in which the EMC method is
implemented and the system symmetry is entirely taken
into account.

The SYM-SYM code is based on the INDO method.
This package permits one to obtain (with reasonable ac-
curacy) the electronic structure of quantum clusters con-
taining several hundreds of ions. Note that it is fully
equivalent (except in the usage of the symmetry) to the
CLUSTER code. Besides, a special geometry optimiza-
tion routine is built into the package which allows one to
obtain an optimum set (or even subset) of the cluster ion
coordinates. Other details of the INDO scheme imple-
mented here can be found elsewhere.

where e(I ) =EJ(0), and E~(q) represents the energy of the
bare (without polarization) free-hole band [see Eq. (6c)],
while U(q) is a matrix providing the diagonalization of
T(q) in Eq. (6c), ~O, p) is used to denote AO's as before.
A corresponding correction for any k point of the free-
hole band can be easily derived in the same way. Note
that the polarization energy for a heavy hole calculated
by means of Eqs. (12) might be either larger or smaller
than the corresponding value for the free hole, Eq. (13),
leading to either smaller or larger total hole localization
energy value, respectively.

V. HOLE SELF-TRAPPING ENERGY CALCULATIONS
IN KCl

A. The case of the two-site STH

At the beginning we intend to consider the two-site
STH known as the Vk center; the hypothetical one-site
localized hole will be considered later, in Sec. V B. In or-
der to calculate the hole ( Vk) ST energy, let us start with
the localization energy, AEF I, which could be found
with the aid of the MH method. According to Eq. (11),
the free hole at k=O has an energy Eh(F)+E„,&(F),
where Fh (F ) =E( I ).

In order to proceed to the next state (point I.) it is
necessary to find out the correct hole distribution in the
fully relaxed (true) ST state, as is clear from the above
given arguments. That is why we will describe in detail
the STH state at the beginning.

An entirely relaxed state (point ST in Fig. 1) is ob-
tained in the following way. Strictly speaking, the equi-
librium displacements of the inner (molecular-cluster)
MC ions must be obtained via the minimization of the to-
tal MC energy, evaluated in its turn within a completely
self-consistent calculations by means of the EMC
method, described above. Besides, the size of the MC
chosen for the calculations must be large enough to be
sure that the boundary conditions inherent to the MC
model itself ' are almost perfect and do not affect the
positions on the MC ions thus computed. It was found,
however, that it is too tedious to perform these calcula-
tions in a fully self-consistent way. In order to simplify
the calculations, the following fact has been used: In-
clusion of the polarization practically does not contribute
to the values of the optimal ions positions at least in the
case of alkali-halide crystals. Therefore, we have
simplified our calculations considerably ignoring the po-
larization correction while optimizing the MC geometry.

An extremely large MC [K74C17&], containing 148
ions and represented in Table II, has been used for these
calculations, taking completely into account the hole D2&
point symmetry. During the calculations all MC bound-
ary ions have not been displaced in order to improve the
boundary conditions (see Table II). Nevertheless, the
complete optimization of the MC total energy over 64
MC inner ion coordinates has been performed. In this
respect we would like to point out that for the MC of that
very large size the boundary conditions thus adopted in
fact are almost perfect. (Indeed, removing the hole from
the MC the displacements of inner MC ions have been
found to be not more than 0.01—0.02a. ) The equilibrium
displacements of the inner MC ions were obtained within
the constraint that the defect D2& point symmetry
remains unchanged. Relaxations of ions surrounding Vk

center found in our semiempirical calculations are sum-
marized in Table II, They agree quite well with results of
earlier calculations. '

Then using the displacements of both Vk and neighbor-
ing ions thus obtained we have worked out a completely
self-consistent calculation of the Vk center electronic
structure. For this purpose a smaller MC [KppClpp]+ has
been used, however, containing only 40 ions (Table II).
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TABLE II. The molecular clusters used in our calculations and the corresponding equilibrium
geometry (in the units of interionic distance, a) of the Vk center in KCl. Only nonequivalent (with
respect to the D2& symmetry) ions are shown explicitly. For the largest MC used in the calculations,
[K74C174]+, only displaced ions are shown. The fixed boundary of this MC has been made by the addi-
tional 16 spheres of ions. The first ten spheres of the largest MC have been chosen for the MC
[KioClm]+ used in our self-consistent calculations.

Ion

Cl
K
K
Cl
K
Cl
Cl
K
Cl
K
Cl
K
K
Cl
Cl
K

Perfect
lattice

0.5;0.5;0.0
0.5,—0.5,0.0
0.5;0.5;1.0
05 —05'10
1.5;0.5;0.0
1 5 —0 5'00
1.5;0.5;1.0
1.5,—0.5;1.0
1.5;1.5;0.0
1 5' —1 5'00
O.S;0.5;2.0
0.5;—0.5;2.0
1.5;1.5;1.0
1S —1510
2.5;0.5;0.0
2.5;—0.5;0.0

Present work

0.309,0.309,0.0
0.605,—0.605,0.0
0.483;0.483;1.026
0.514;—0.514;0.99
1.544;0.497;0.0
1.522; —0.505;0.0
1.47;0.486;0.973
1.507;—0.499;1.008
1.453;1.453;0.0
1 504' —1 504'0 0
0.494;0.494;1.987
0.505;—0.505;2.004
1.519;1.519;0.997
1.51;—1.51;0.987
2.498;0.498;0.0
2 515 —0.498'0.0

VI, center
Ref. 17

0.313;0.313;0.0
064 —06400
0.497;0.497;1.06

1.56;0.48;0.0

1.477;1.477;0.0

Ref. 13

0.295;0.295;0.0
0.634 —0.634 0 0
0.487;0.487;1.034
0.509;—0.509'0 977
1.541;0.492;0.0
1.564;—0.502;0.0
1.48;0.495;0.985
1 519 —0.504'1 011
1.479;1.479;0.0
1.528;—1.528;0.0
0.494;0.494;2.005
0.507 —0.507 2 006
1.501;1.501;1.004
1.496;—1.496;0.993
2.509;0.5;0.0
2.535' —0 506'0 0

= 1
(ao+ +a+, )~0& .

2
(14)

The site 0 is placed at the coordinate origin, site 1 lies on
the cr= [110] axis (the anions 0 and 1 form the Vk

center). The hole self-energy in this state is evidently (cf.
Refs. 5, 7, and 21)

E (L, )=(C'"iA„ie'"&=— (15)

whereas the electronic polarization energy, in line with
Eqs. (12), is

Ep,i(L) = —
—,'[(O, o",O, o. ~g ~O, cr;O, o. )

+(O, o; l, o ~g ~ l, c;O, o )] . (16)

Note that small contributions arising from the overlap of
the orbitals ~O, cr) and ~l, cr ) occupying diff'erent lattice
sites are omitted here, which lies within the ideology of
the INDO method. Our calculations based on Eqs. (13)

In full agreement with previous studies (see, for example,
Refs. 1, 9, 13, and 40) it was found that the hole is almost
completely distributed over both Vk anions (the Lowdin
population analysis gave =90%%uo of the hole located on
the central C12 molecule). So, ignoring small contribu-
tions from other ions outside the Vk anions we can adopt
(with reasonable accuracy) that the hole is shared equally
between these two ions only.

These findings allow us to choose the following two-site
ansatz for the hole wave function, while calculating the
point L shown in Fig. 1 by means of the MH method (cf.
Ref. 7):

4&' '= —(ao+„+ao +a i+„+a, )~0)
1

and (16) and performed with the aid of the special points
method mentioned above, gave E,i(L)= —1.56 eV and
E i (F)= —2.08 eV. These values lead to
AEz i(F~L )=0.52 eV as the (inertia-free) polarization
contribution to the hole localization energy. Thus, the
hole localization into the two-site state, Eq. (14), created
from its free state formed near the top of the valence
band approximately requires an energy

E„,=DE~ L
= [Eh(L ) E„(F)]+A«p—,i(F~L )

=0.47+0.52=1.0 eV .

At this stage the energy loss is positive and is associated
with an increase of the kinetic energy of the localized
hole (0.47 eV) and the positiue inertia-free repolarization
energy (0.52 eV), which appears to be half the total value
of Ej„. Note that the inertia-free polarization contribu-
tion was omitted in previous studies of the hole self-
trapping. However, our calculations indicate the crucial
importance of this term in the localization energy calcu-
lations.

Proceeding to the next stage let us estimate the relaxa-
tion energy, EEI Iz, by means of the INDO quantum-
chemical calculations. The main difficulty encountered
here is concerned with the point L where it is necessary
to localize the hole in the perfect crystal having all its
ions on their lattice sites, since in this case there is no
chance to get a proper localizing potential (recall that the
states L,LR are not true stationary states of the system).

At least two di6'erent methods can be used at this stage
to overcome this difficulty and estimate the relaxation en-
ergy for the second step of the ST path.
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First of all, let us consider the smallest molecular clus-
ter, (X2), comprising the two anions only, on which the
hole is necessarily localized due to the minimal cluster
space. The energy AE~ J~ equals the total-energy
difference of the cluster with inertia-free polarization be-
fore and after the relaxation of the ions outside the MC
(taking into account the Coulomb interaction of the MC
with the rest of the crystal), provided that both the ions
of the Clz molecule are still in their perfect lattice posi-
tions. In fact the lattice relaxation energy under con-
sideration involves only the ionic (inertial) component of
the polarization, since its electronic (inertia-free) part
practically coincides in both states L and LR. Our esti-
mate of AEz ~~ yields the value of —0.64 eV for this
smallest MC and is covered here by the ionic polarization
contribution only. It should be stressed, however, that
the value obtained is underestimated (see below), since in
this case the continuum approximation ' used for the po-
larization energy calculations fails due to the small clus-
ter size. Besides, the short-range contributions to
AEr rz (arising from the chemical interaction between
the two Cl atoms of C12 ) also are not included here be-
cause of the limited variational space of the cluster (only
s,p orbitals were used for each Cl ion).

Another method which seems to be rather general
operates with just the same MC, containing 40 ions, used
before for the description of the STH state itself. The
MC density matrix previously computed for the STH
state has been stored in order to fix the correct localiza-
tion of the hole. Now it is used for a number of proceed-
ing calculations in which the self consistency w-ith respect
to the MC electronic density is completely ignored. It al-
lows us to calculate the total MC energy for any point of
the path (L,LR and ST), since the MC electronic density
already corresponds to the true STH, as it should be (see
Sec. II) in particular for the L point.

Using this approach, while regarding the L point we
have fixed all (including Vk) ions on their lattice sites and
have computed the MC total energy, allowing only for
the inertia-free polarization of the remainder of the MC.
The latter (within the accuracy of the method) is practi-
cally the same as that obtained while calculating the ST
point, though some small inhuence of the omitted inertial
polarization (Q=O) is observed. Then, while regarding
the next LR point, we have taken the equilibrium
geometry of all MC ions as that computed before for the
STH state although the Vk center ions are still fixed in
their regular positions (Q„,~ =0). After that the full op-
timization (via the polarization calculations) of the crys-
tal ionic positions outside the MC (together with accom-
panying inertia-free polarization) have been worked out.
The total-energy difference obtained in this way
represents the contribution to the second step of the ST
path and is found to be —1.5 eV. This value is
significantly larger than the estimate made above for the
smallest MC.

At the next step LR ~ST only the large MC
[KzoClzo]+ has been used. At this step an appreciable en-

ergy gain hE~~ sT due to chemical bonding within the
X2 quasimolecule accompanied by the mutual approach
of two anions along the valence vibrational mode Q„„

(Fig. 1) is expected. To calculate EEL& sT, the total en-
ergies of the MC's consisting of unrelaxed (point LR,
Q„„=O) and relaxed (point ST, Q„„AO) anions forming
the Vk center have to be obtained, incorporating also ad-
ditional contributions from the total polarization energy
of the rest of the crystal; these latter energies differ slight-
ly in the two cases. For the point LR just the same calcu-
lation performed before on the second step has been used.
In this way we have found the value —1.9 eV for the Vk-
center chemical bonding energy hE~~ sT. Note that
this value is larger than the C12 -molecule dissociation en-
ergy as it must be. Indeed, an analysis shows that our
value (

—1.9 eV) is almost equally shared between the
change in the chemical bonding inside the molecule asso-
ciated with the passage LR ~ST and an alteration in the
interaction of the molecule with the remaining part of the
crystal. Note, that while calculating the point LR the
density matrix of the ST state has been used leading to a
higher total energy of the MC than one would expect by
calculating the point LR self consisten-tly with respect to
the MC electronic distribution.

At last, based on these findings, we are able to estimate
the hole ST energy. It appears to be
bEsT=1.0+( —0.64)+( —1.9)=—1.54 eV or
EEsT =1.0+( —1.5)+(—1.9)= —2.4 eV for the case of
the small and the large MC's used on the step L ~LR,
respectively. The second value (bEsT = —2.4 eV) is more
reliable, since it was obtained by means of the larger MC
having better boundary conditions. Moreover, the total
relaxation energy [(—1.5)+( —1.9)=—3.4 eV] obtained
in the second case agrees quite well with the value of
—3.476 eV obtained by means of atom-atom potentials in
Ref. 13. Therefore, we prefer —2.4 eV as an estimate of
the ST energy in KCl.

As was expected, the main contribution to AEsT comes
from both chemical bonding and crystal polarization. Its
quite large negatiue value confirms the well-known fact
that self-trapping of a hole favored in the KC1 crystal,
forming the two-site charged defect, known as the Vk

center. The value of AEsT is larger than that obtained by
the MH method only ( —0.96 eV), since the chemical
bonding has been neglected there.

It should be stressed that in the second case when just
the same MC has been used, while considering the pas-
sage from the point L to the point ST, introduction of the
intermediate point LR along the path is of no importance
here and can be omitted altogether (see the dashed line in
Fig. 1). Thus, two different routes have been used here to
connect points L and ST in the self-trapping path and
both of them gave qualitatiuely identical results for the
ST energy (i.e., large negative values). However, this, in
fact two step method (F~-L —+ST), has an additional ad-
vantage already mentioned in the Introduction. It con-
cerns the division of the ST path into steps. This division
is too artificial in the first method proposed by Gilbert,
whereas in the second method we dealt with a two-step
procedure only which seems to be more reasonable from
the physical point of view. Nevertheless, the second
route used here demonstrates quite evidently the princi-
pal possibility of introducing some additional intermedi-
ate steps along the path whenever necessary.
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B. The case of the one-site STH

Now let us outline briefly the calculations concerning
the hypothetical one-site STH in a KC1 crystal. In this
case the wave function belonging to the point L reads

'=a+„~0),

and the corresponding hole internal and polarization en-
ergies are Eh (L)= —so and

E &(L)= —(O, x;O, x~g~O, x;O, x)= —1.73 eV,

respectively. Therefore, the localization energy necessary
to gather the free-hole wave packet on one particular lat-
tice site of the lattice is equal to E&„-—1.1 eV.

Then we must consider the passage L ~ST using
quantum-chemical methods. For the calculation of the
one-center STH the 0& -symmetry MC containing 27 ions
was employed, and its equilibrium geometry was obtained
allowing self-consistently for the polarization of the outer
region. Then just in the same way as in the previous cal-
culations, the density matrix thus obtained was stored
and used for the total-energy calculation at the point L
(the point LR has not been considered in these calcula-
tions). However, the gain in the energy acquired on the
second step practically coincides with the lack of it on
the first one. Thus we can conclude that one-center hole
does not self-trap in KC1 in complete agreement with ex-
periment. '

VI. CONCLUSION

Results of our combined "model-Hamiltonian
—quantum-chemical" simulations demonstrate quite
clearly that the method presented in this paper is capable
of giving a good quantitative estimate of the hole ST ener-
gy in a real material, like alkali-halide crystals. Quite re-
cently it has also been implemented for the study of the
ST hole in the perfect MgO crystal where a comparative-
ly small value for the ST energy was found, justifying its
high mobility. The case of the mixed valence bands has
been considered in Ref. 8.

Let us summarize all the important steps during the
calculations of the hole ST energy by means of the ap-
proach proposed here. Formulating these stages as gen-
erally as possible we can distinguish the following steps.

(i) A model Hamiltonian enabling us to describe quite
correctly the free hole bands must be derived and its pa-
rameters must be obtained using the comparison with any
band-structure quantum-chemical calculations (from a
LUC calculations, for example).

(ii) A guess concerning the STH structure is made (the
hole is localized either on one or two sites, etc.).

(iii) Cluster calculations of the adopted STH state are
made (ST point) taking into account the polarization of
the remainder of the crystal in a self-consistent way; the

equilibrium cluster geometry is obtained and the corre-
sponding STH density matrix is stored.

(iv) An intermediate state L on the path between the
free (F) and fully relaxed hole (ST) states is chosen in
such a way that all crystal ions occupy their regular lat-
tice sites whereas the electronic distribution of the crystal
corresponds to that for the hole in the ST state.

(v) The localization energy (the energy difference be-
tween points F and L on the path) is calculated by means
of the MH method, a wave function belonging to the
state L is taken from the quantum-chemical calculations
of the true STH, described above.

(vi) Using the density matrix of the STH stored previ-
ously, the total energy of the point L is calculated by
means of the same MC used for the STH calculations. If
necessary, a number of additional intermediate steps
along the route L —+ST might be introduced; for these
steps some other MC's can be used as well.

(vii) All these steps might be repeated for other possi-
ble structures of the STH in the material leading to the
opportunity to choose the most favorable one (or a num-
ber of them) having the largest negative ST energy or
draw the conclusion that all STH's considered are unsta-
ble or even do not exist at all if the ST energy turned out
to have a small negative or positive value, respectively.

We believe that our method with some reasonable im-
provements (mainly concerning the localization energy
calculations by means of the model-Hamiltonian method)
and the choice of the ST path could be successfully ap-
plied to a wide range of materials. It is of special interest
to apply it to the study of crystals with an intermediate
character of chemical bonding such as corrundum
(a-A1203) (Ref. 42) for which the issue of whether the ST
hole exists or not is still a challenging problem.
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APPENDIX

In this appendix we give the detailed expressions for
the matrices toR =

~ ~to„R„~ ~
for the free-hole Hamiltoni-

an 8z in Eq. (6). Let us start from anions which are
nearest neighbors to the given one located in the origin,
and enumerate them sequentially from 1 to 12 as follows
(lattice vectors are given in units of a, the interionic dis-
tance): (1,1,0), ( —1, 1,0) ( —1, —1,0), (1,—1,0), (1,0, 1),
( —1,0, 1), (

—1,0, —1), (1,0,—1), (0,1,1), (0, —1, 1),
(0, —1, —1), and (0, 1, —1). Then, the matrices
to R (i = 1, . . . , 12) have the following form

a P 0'
toR, =toR = /3 ~ 0

0 0 y
to, R~ to, R~ p R 0

0 0 y
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tO, R, =tOR = 0
0

0 P
y 0
0 a
0 0
a p
p a

tO R6
=

tO, R~ 0
—p

t,R =toR»=
0

0 —P
y 0
0 n

0 0
a —p

Then let us enumerate six anions of the second shell as follows: (2,0,0), (
—2, 0,0), (0,2,0), (0, —2, 0), (0,0,2), and

(0,0, —2). The corresponding matrices tm all are diagonal and have the form

tOR =tOR, =
tO, R, =tO, R,

=

O, R
—

tO, R

All parameters (a, p, y, T', and T') used here are given in the text.
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