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Energy self-localization and gap local pulses in a two-dimensional nonlinear lattice
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We study the formation of localized states, mediated by modulationa1 instability, on a two-

dimensional lattice with nonlinear coupling between nearest particles and a periodic nonlinear substrate
potential. Such a discrete system can model molecules adsorbed on a substrate crystal surface, for exam-

ple. The basic equations of the motion governing the dynamics of the lattice are derived from the model
Hamiltonian. In the low-amplitude approximation and sernidiscrete limit these equations can be approx-
imated by a two-dimensional nonlinear Schrodinger equation. The modulational instability conditions
are calculated; they inform us about the selection mechanism of the wave vectors and growth rate of the
instabilities taking place both in the longitudinal and transverse directions. The dynamics of the lattice
is then investigated by means of numerical simulations; due to modulational instability an initial steady
state that consists of a plane wave with low amplitude modulated by very weak noise, evolves into an os-

cillating localized state, inhomogeneously distributed on the lattice. These nonlinear localized modes,
which move slowly, present the remarkable properties of gap modes. Their amplitude is large and they
pulsate at a low frequency that lies inside the lower linear gap of the lattice.

I. INTRODUCTION

Formation and dynamics of localized states in non-
linear systems is of great interest in various branches of
physics. ' Particular interest has been devoted, recently,
to the dynamics of structures on two-dimensional sys-
tems. These structures (dislocations, domains walls,
vortices, etc.) play an important role in the material prop-
erties and they become crucial in nonlinear physics in-
volved in the problem of adsorbates deposited on crystal
surfaces, in superlattices of ultrathin layers, or in large-
area Josephson junctions, for instance. Most of the re-
cent literature has focused on dissipative structures in
open systems. Nevertheless, it is also important to exam-
ine conservative systems which are often concerned the
physics of materials at the microscopic level. In this con-
text, it is interesting to consider the response of a system
to an initial disturbance and possible energy localization,
that is, to study how an initial homogeneous and weak
energy distribution may induce the formation of localized
states with large amplitude.

In this paper we focus on the formation of localized
states mediated by modulational instability in a two-
dimensional lattice. The paper is organized as follows.
In Sec. II, we introduce our model which is a two-
dimensional nondissipative Frenkel-Kontorova model
with additional nonlinear interactions. In the low-
amplitude and semidiscrete limit, the basic equations
governing the dynamics of the lattice are reduced to a
two-dimensional nonlinear Schrodinger equation. Then,
in Sec. III, the modulational instability conditions of this
equation are calculated. Section IV deals with numerical
simulations, we investigate the role played by modula-
tional instability on the evolution into localized states of

A. The basic discrete model

The basic model is made of a two-dimensional (2D) lat-
tice equipped, at each node, with a rotator or rigid rotat-
ing molecule. Namely, each molecule can rotate in the
lattice plane. At site (m, n) the angle of rotation is @
(see Fig. l). Each molecule interacts nonlinearly with its
first-nearest neighbors and with a periodic substrate poten-
tial. Under these conditions the Hamiltonian is

+1 . - n+1I P

.. n
p

n-1. -- n-1

m-1 m+1

FIG. 1. The two-dimensional lattice model equipped, at each
node, with a rigid rotating molecule; a denotes the lattice spac-
ing and N „represents the orientation of molecule at site
{m,n).

an initial plane wave, with low amplitude, propagating on
the lattice. Section V is denoted to a summary and con-
cluding remarks.

II. THE MODEL
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X 2 m, n 2J m+1, n m, n ) 2r ( m, n+1 @m,n) + (@m+1,n

BT+ (@ „+,—0& „)"+coo(1 —cosN „)

Here, J is the inertia of the molecules, GL and GT are the linear coupling coefficients in the longitudinal and transverse
directions, while the parameters BL and BT are the nonlinear coupling coefficients in the longitudinal and transverse
directions, respectively. The last term in relation (1) is due to the substrate potential where coo is the strength of the po-
tential barrier and coo can be interpreted as the frequency of small oscillations in the bottom of potential wells. Note in
passing that the nonlinear interaction terms can be thought of as the first terms in the expansion of cosine of angles
differences. The equation of motion of the molecule at site (m, n) derived from Hamiltonian (1) is

GI GT
(N +, „+4&,„—2@ „)+ (@ „+,+N „,—2@ „)

+ [(@ +, „—4 „) —(@ „—@,„)3]

(2)

Note that if the nonlinear couplings are removed (BL =0
and Bz =0), Eq. (2) reduces to the 2D Frenkel-Kontorova
or 2D discrete sine-Gordon model. As we shall see in
the following, this nonlinear coupling will play an impor-
tant role in the instability conditions.

Co~ . , k, a2

cu =co +4 sin
a

48BI. 4 kI. a+g sin
2

COT kTa2

+4 sin
a

B. Nonlinear dispersion relation

„(t)=eg „exp[i(cot —kLma kTna)]+c. c.— (3)

Here c.c. denotes the complex conjugate, kL and kT are
the components of the wave vector k=(kL, kT), a1 is the
circular frequency of the carrier wave which varies rapid-
ly, and @&&1. The small-amplitude limit is considered,
this allows us to expand the sine function with respect to

„up to the third order. On inserting (3) into (2) and
neglecting the third-order harmonic terms we obtain the
nonlinear dispersion relation

In this section we derive the nonlinear dispersion rela-
tion corresponding to (2): this relation represents the key
equation which, in the weak-amplitude limit, allows us to
reduce Eq. (2) to 2D nonlinear Schrodinger equation To.
calculate the nonlinear dispersion relation, we assume
plane-wave solutions with slowly varying envelope of the
form

48BT kTa+ sin
2

——coo /
@/', (4)

where COL =Gta /J and Co&. =GTa /J. The first three
terms in the right-hand side of Eq. (4) represent the linear
contribution to the dispersion relation whereas the last
term corresponds to the nonlinear contribution. In the
above calculations we have used the continuum approxi-
mation and the slow envelope was considered as constant
in comparison to the rapid carrier oscillations.

C. Derivation of the 2D nonlinear Schrodinger equation

To reduce Eq. (2) to a 2D nonlinear Schrodinger (2D-
NLS) equation we can use the multiple scale perturbative
technique or consider the nonlinear dispersion relation
(4). We have verified that both methods give the same re-
sult. Here, for sake of clarity we present the second
method. Namely, if we consider slow modulation in
space and time of a carrier wave with given wave num-
bers kL, and kz; and expand the dispersion relation (4)
around the carrier parameters (kL„kz;, ~g~ =0), we ar-
rive at

co —co, =(k~ —kL, )
Bco

BkL
+(kT —kT, )

T, c

a2
+-,'(kL —kL, )

BkL

a2+ —,'(kT —kT, )
BkT

+ ( kL —kL, )( kT kT,)—
I T c

+
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where the subscript c denotes evaluation at ~„kL=kL„
kz. =kz;, lt/il =0. The frequency co, is the carrier fre-
quency and it is provided by the linear part of the disper-
sion relation (4). Let the operators kI —kI, = i—Ed/BX,
kz —kz; = —i EBIc]Y, and co —co, =ieBIBt]. Here,
X=ex, Y=ey, r]=et (with e((1) represent the slow
variables appropriate to the slow envelope variation. On
applying these operators to the amplitude function
g(X, Y, T), we obtain the following equation:

i@(4t]+Vgl. fx+ Vgrfr)+F- P]fxx+e P2grr

i]t' +P]]t'~~+P2$„„+Qlg /=0,
where

P, =[CoLco,a cos(k, a) —CoL sin (k,a)]/2a o], ,

P2 =Coz-/2~, ,

(8a)

(8b)

(8c)

Considering a frame moving with group velocity V L and
using the transformation /=X —

VgI t„ i)= Y, r=et„
next (VgL being the group velocity in the longitudinal
direction) we transform Eq. (7) into the standard 2D non-
linear Schrodinger equation:

where

+e P3]t'xr+e Qlgl /=0, (6)
1 2 BL 4 kca

Q = —coo —48 sin
2 J 2

(8d)

1 BQ)P =—
Bk

P3= 8 co

ak, ak,
C

BM
gL

L . c

Bco

ak T C

These coefficients, which represent the dispersion, the
nonlinearity, and the group velocities, are given in Ap-
pendix A. Without loss of generality, attention can be re-
stricted to the case of carrier wave propagating in the x
direction, i.e., kL, =k, and k~, =O. Under this condition
P3 and V r become zero (see Appendix A) and Eq. (6)
can be rewritten as

At this point, it is important to note that for a given k,
the sign of Q can be modified by changing the value of BL
which represents nonlinear coupling. Equation (8a) has
been extensively studied especially in plasma physics, hy-
drodynamics, and optics. We now restrict our study to
the isotropic case, i.e., GL:Gz. :G (Col =Coy'=Co) and
BL =B~=B. Proceeding as Yuen and Lake for their
study of hydrodynamic waves, it is convenient to reduce
Eq. (8a) to a 1D equation, that is, consider plane modula-
tion at an angle 0. from the direction of propagation of
carrier wave. Namely, we introduce the oblique coordi-
nate

S=gcosa+qsina .

Equation (8a) is then transformed into the 1D nonlinear
Schrodinger equation

]+(((g]+VgLgx)+~ P]0xx+E P2 (i rr+&'Q lpl']t =0. g,]+PP +ssQ l]tj /=0, (9)

(7) where the coefficient P is given by

P=
—4Co cos a sin (k, a/2)+(4Co sin a —2cooa Co cos a)sin (k,a/2)+Coo]oa

2' aC

Equation (9) describes the evolution of the envelope 1i in
the S direction of a carrier wave propagating in the x
direction. ~.+Pfomss =0 (13a)

where g (S,r) and ]p(S,r) are real functions and e is a
sinall parameter. Inserting (11) into (9) we obtain at O(e)

III. MODULATIONAL INSTABILITY

Equation (9) has a plane-wave solution of constant am-
plitude of the form

g=go exp(iQr),

where go and 0 are constants satisfying

Q=Qgo .

P ~ss+ 2Q
4o

we seek a solution to (13) in the form

A (S,r)= Ao exp[i(vr qS)]+c.—c. ,

&p(S, r) =q&o exp[i(vr qS)]+c.c. , —

(13b)

(14a)

(14b)

We now investigate the Benjamin-Feir or modulation
instability of the plane wave given by (11) to a perturba-
tion of the form

g= [go+ e A (S,&) ] exp I i [ Q /or+ ey(S, r) ]I, (12)

where Ao, yo are real constants, q is a real wave number,
and v may be complex. Here, c.c. is used to denote the
complex conjugate. Substituting (14) into (13) leads to
the following linear system:
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t v A p Pq Qptpp
=0, (15a)

P
q

—2QQp Ap+ivpp=O,
p

(15b)

the condition for a nontrivial solution gives the disper-
sion relative

v=P q q —2g—0 p (16)

If the right-hand side is negative then the angular fre-
quency v will be complex and the perturbation will grow.
In this case, the region of instability is given by

0&q &q& . (17)

The explicit expression for q&
= /pe'2Q/P is given in Ap-

pendix B. Thus, a perturbation with a wave vector
q=(qL, qT) satisfying

0&qL &q& cosa, 0&qT &q& sma

can trigger instability in the lattice. Here qL and qT are
the wave numbers of the perturbation in the 1ongitudinal
and transverse directions. a is an angle defined by
a=tan (qL /qT ). The maximum instability occurs at

qL (q( +2) cosa, qT,„=(q(/+2) sina

with a maximum growth rate given by o,„=~v~ =Quip.
The modulational instability criterion depends on the
sign of PQ which depends itself on the carrier wave num-
ber and on the modulation propagation direction for
a=0 the instability is longitudinal, for a =m /2 the insta-
bility is transverse. In the first Brillouin zone three cases
are possible (see Appendix C): (i) for 0 & k, & k, z, PQ & 0
for all a; (ii) for k, 2 & k, & k„, PQ is always negative; (iii)

if k, &&k, &n/a, then we have PQ&0 for a&a, and

PQ &0 for a & a, . In this last case, like for hydrodynam-
ic waves, there is a limiting angle which can be calculat-
ed from model parameters. Ho~ever, in the following
the inAuence of this limiting angle will not be examined.
We will restrict ourselves to case (i). For this case, we
have plotted in Fig. 2 the growth rate cr =

~
v~ versus q for

the set of parameters cop=0. 3, Cp = 1, k, =0.415, a =~/2
for two different values of B: 8 =0, B =0.1.

IV. NUMERICAL SIMULATIONS

The previous theoretical results tell us that in the semi-
discrete and low-amplitude limit the dynamics of the lat-
tice can be approximatively described by a 2D-NLS equa-
tion. This equation allows us to predict instabilities but
not their evolution as time increases. In this section we
want to clarify the role played by these modulational in-
stabilities on the response of the lattice tO an initial
homogeneous disturbance with low amplitude. Further-
more, we attempt to elucidate the exact nature of the
nonlinear structures which should appear in the long-
time evolution of the lattice and cannot be predicted from
the 2D-NLS model. At this end we use numerical simu-
lations which are directly performed on the original mi-
croscopic equations [see Eq. (2)] which govern the dy-

0
0 4 6 8

i00 q
10 12

FIG. 2. Growth rate cr= ~v~ vs q for the set of paratneters
co=0.3, Co = 1, k, =0.415, a =~/2 for two different values of B:
the solid line is for B =0 and the dashed line is for B =0. 1

namics of 2D lattice. Specifically, we consider a lattice
plane made of 106X82 points along with periodic bound-
ary conditions on left and right sides and on lower and
upper boundaries, as well. The initial conditions are pro-
vided by a harmonic wave carrier traveling in the x direc-
tion and homogeneous in the transverse direction. These
initial conditions are chosen to be

N(m, n)=22 sin[k, (m —mp)],

4(m, n) = —2' A cos[k, (m —mp )],
(18a)

(18b)

where 3 is the amplitude, m0 is an initial position, k, is
the wave number of the carrier, and co the corresponding
circular frequency which satisfies the dispersion relation
(3) where kT =0. This dispersion relation implies a
nonzero phase velocity because a forbidden band exists
for 0 & co & cop as given by Eq. (4) in the linear limit. We
have seven periods within the longitudinal length of the
lattice plane which leads to k, =0.415 the corresponding
circular frequency is co=0.509. In order that our initial
condition (plane wave) satisfies the nonlinear Schrodinger
approximation, we have take 2A =0.7. It means that the
maximum of the initial collective angular motion of the
rotations is equal to m/6. Note that this value is small
compared to the amplitude (slightly larger than n) neces-
sary to overcome the potentia1 barrier. In order to
trigger the instability, small ( = 10 ) random or
coherent perturbations are superposed to the initial ve-
locity N and removed afterwards. We have first checked
that for a=n/2 a small modulation gives rise to trans-
verse instability. Otherwise in the longitudinal case, that
is for a=0, we recover the classical modulational insta-
bility for a 1D system: the initial sinusoidal wave breaks
into a train of envelope solitons.

We consider, here, two sets of numerical simulations.
The first set of simulations is carried out for the discrete
sine-Gordon system, that is, with zero nonlinear coupling
(8 =0). In dimensionless units, the strength of the sub-
state potential is co0=0.09 and we have chosen C0=1,
a =1. The square of the quantity C0/co0=d represents
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the ratio of linear coupling energy to the strength of the
potential barrier. Here, in physicai units we have
d =3.3a. This choice corresponds to a real physical sys-
tem where the estimated values of the relevant parame-
ters are a=2 5 A, C0=3X10 ms ', coo=3 6X10'
rad s ', which corresponds to a wave number of about 20
cm ' in a spectroscopic experiment. Under these condi-
tions we find co=6. 1X 10' rad s ' and k, =16X10
cm ' for the initial plane wave. The results are collected
together in Fig. 3 where we have the contour line plots
for sgn(4)4& . Figure 3(a) shows the structures at initial
time T =0. The corresponding power spectrum is drawn
in Fig. 4(a) where one peak at the carrier wave number is
present. Then, as predicted by the NLS model, the insta-
bility occurs and after a lapse of time T =1280, the small
initial perturbation gives rise to stretched localized struc-
tures along the transverse direction. At time T=3500,
we observe very clearly some localized structures which
are ellipse-shaped as shown in Fig. 3(c). They look like
the ring solitons or pulsons observed numerica11y in the

2D sine-Gordon system with different boundary condi-
tions. ' When time further increases, we observe [see
Fig. 3(d)] that these localized structures still persist and
look like stable. No recurrence to the initial state of
these structures, in the Fermi-Pasta-Ulam sense, was ob-
served for these set of simulations. The characteristic ex-
tends of these structures are about 10 lattice spacings in
the x direction and 21 lattice cells in the y direction. We
attribute this anisotropy to the discreteness effects which
could be important in the x direction while the continu-
um limit seems to be acceptable in the transverse direc-
tion. The corresponding power spectrum is given in Fig.
4(b) where additional peaks at q WO are present, this
proves that transverse modulation components have
grown. In Fig. 5, we have represented the finite
differences gradient of the rotation N „ in the x and y
directions. The resulting structures present some similar-
ities with vortexlike structures. In order to obtain more
details about the dynamics of a particular structure we
have plotted the profile, in the x direction, of the struc-
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FIG. 3. Contour line plots corresponding to @ at various times for the pure sine-Gordon system (the solid line is for @&0, the
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O

lower linear gap of the lattice. Thus, in an experiment
the oscillations of the pulsons could be detected for wave
numbers of about (0.2/0. 3)X20 cm '=13 cm '. Final-
ly, we note that the amplitude of the pulsons is large and
such that —4'/3 (@&4'/3, thus the (molecular) rota-
tions overcome collectively the potential barrier, but they
do not reach the bottom of the next well. Our simula-
tions also show (not represented here) that the number of
pulsons decreases whereas their spatial extension in-
creases with the ratio d=CO/coo. We can roughly ex-
plain this behavior by considering that the energy local-
ized by modulational instability, allows in some places
collective particle motions. Thus, if d &&1, the particles
have an important probability to overcome collectively
the potential barrier over large distances giving rise to a
small number of extended pulsons. On the contrary, if d
decreases, the probability of collective jurnp decreases
with distance, the number of pulsons increases whereas
their dimensions are reduced. Nevertheless, this problem
must be further carefully investigated.

Next, a second series of simulations is considered, for
which the competing nonlinear coupling term is taken
into account (8 =0.1). We use same initial conditions as
previously [see Fig. 3(a)]. Typically, we recover the same
results as in the case of the discrete sine-Gordon system.
The set of Figs. 7(a) —7(c) corresponds to the birth of the

FIG. 4. Power spectrum of the rotation angle 4, (a) at initial
time, only the peak at the carrier wavelength is present, and (b)
at time T=4240, the spectrum exhibits additional peaks at
nonzero transverse wave numbers.

3.50
a t = 4zoo

ture located in the middle of the lattice between times
T =4200 and 4245, the results are shown in Figs. 6(a) and
6(b). It is now clear that the structure is moving in the x
direction while oscillating like a breather or a pulson.
From these results we can estimate the traveling velocity
of the pulson V„,„=0.55 and its circular frequency:
0=0.2. It is very interesting to note that this frequency
is smaller than the cutoff frequency coo=0.3: it lies in the
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FIG. 6. Evolution of the profile of a typical structure (a)
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structures formation, the localized structures, and the dy-
narnics of these nonlinear structures for a long time, re-
spectively. It is worthwhile noting that when the non-
linear coupling exists, the transverse instabilities appear
more slowly than in the case of the discrete sine-Gordon
system. In fact [Eq. (8d)], we can see that the nonlinear
coupling decreases the coefficient Q of the nonlinear
Schrodinger equation. Under this condition the growth
rate o. =~v~ [see Eq. (16)] is smaller than for the case
B =0. For example, 0.=0.0054 for B =0 whereas
o.=0.0044 for B =0.1. The power spectrum correspond-
ing to the structures at time T =5080 is depicted in Fig.
8. The structures corresponding to the gradient of N are
presented in Fig. 9. These patterns are rather similar to
those obtained by Ishimo and Miyamoto in their study of
the Gross-Pitaevskii equation. " ' At length, Figs. 10(a)
and 10(b) represent the evolution of the pulson located
near the point (80,55) between times T=5056.4 and
5103.4. As in the previous case, the pulson is moving in
the x direction while oscillating or breathing. The pulson
velocity is V„„=0.8, its circular frequency is 0=0.15,
once again it lies in the linear gap. We notice that these
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FIG. 7. Lattice dynamics when the nonlinear coupling is in-
cluded: contour line plots of the rotation amplitude @ . (a) The
birth of pulsons at T=1700, (c) pulsons at T=5056.4, and (d)
the pulsons a short time later at T =5098.8.
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arrows depict the rotation gradient.
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FIG. 10. Dynamics of the profile of the pulson located in the

middle of the lattice: (a) 5056.4 ~ T ~ 5080.4 and (b)
5085.0 ~ T ~ 5103.4. The pulson oscillates and moves.

important features of the pulsons are different from those
obtained for B =0. First of all, the velocity is larger but
the frequency is lower. Nevertheless, by increasing the
nonlinear coupling we can change the sign of the
coefficient Q in the nonlinear Schrodinger equation [see
Eq. (Sd)]. This implies that PQ can become negative and
the instabilities disappear as we have checked numerical-
ly.

V. SUMMARY AND CONCLUDING REMARKS

We have examined the formation of localized struc-
tures, mediated by modulational instability, on a two-

dimensional lattice where the erst-nearest particles are
nonlinearly coupled and experience a periodic nonlinear
substrate potential. The basic equations of motion
governing the dynamics of the lattice, were derived from
the model Hamiltonian. Then, we used the low-
amplitude approximation and semidiscrete limit, in
which the envelope of the wave is slowly varying whereas
the fast oscillations of the quasiharmonic carrier wave are
treated exactly, to approximate the equations of motion
by a two-dimensional nonlinear Schrodinger equation.
Hence, we calculated the modulational instability condi-
tions for a plane-wave propagating along a given direc-
tion. Namely, we determined the critical wave-vector
range and growth rate of the instabilities of the envelope
wave taking place both in longitudinal and transverse
directions with respect to the carrier wave.

The response of the lattice to a low-amplitude plane
wave modulated by a very weak noise was then investi-
gated by numerical simulations. These simulations were
directly performed on the original microscopic equations
describing the dynamics of the lattice. In the short time
or transient regime our results show that modulational
instability appears as we have predicted theoretically.
When time further evolves the unstable states break into
oscillating localized states or pulsons which move slowly
and are inhomogeneously distributed on the lattice. Re-
markably, the amplitude of the pulsons is large and their
frequency is lower than the cutoff frequency of the linear
gap of the lattice. In accordance with our theoretical
predictions, our numerical results show that the growth
rate of the instability can be reduced and even suppressed
if we increase, from zero, the value of the nonlinear cou-
pling term.

In conclusion, our present study shows once more that
the complex physics of nonlinear oscillations in extended
systems allows the jumping of energy from an initial ex-
tended state weakly excited, into local pulses. All our re-
sults indicate that the 2D-NI. S model is efficient to pre-
dict the instabilities of an initial steady state on the lat-
tice. Nevertheless, such a model does not allow one to
approach the long-time regime which is characterized by
the appearance of remarkable localized objects or pul-
sons. Moreover, the properties of these pulsons, their
number, and their distribution must be further studied
both numerically and theoretically. Such problems are
currently under investigation.

APPENDIX A

In the general case, the coefficients of the nonlinear Schrodinger equation are given by

Col co,a cos(kL, a ) —CoL sin (kl, a )P)=
2a (Al)

CoTco.a cos(kT a) Cor in (kr. a)P2=
2a 67

C

Coz. CoT
2

P3 = sin(ki, a ) sin(kT, a ),
a cu,

(A3)
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CoL sin(kl, a )
(A4)

CoT sin(kT, Q )
VT=

a
(A5)

BL kL, a

2 J
—no

—48 sin
2

BT kT a—48 sinJ 2
1/2

2co

COT 2 kT a2

+4 sin
a

Col . kL a2

co, = coo+4 sin
a

We deduce that P3 and VgT become zero for a carrier wave propagating in the x direction (kl, =k, and kT, =0).

APPENDIX B

(A6)

(A7)

The explicit expression for qi (qi being the limiting wave vector) is the following

2a [coo+4(Co/a ) sin (k,a/ 2)][(1/2)co o 48(BI /I—) sin"(k, a/2)]
o 44Co cos a siil (k~a /2)+(4Co s111 a 2Cocooa cos a) si11 (k~a /2)+Cocooa

' 1/2

APPENDIX C

The dispersion coefficient P given by relation (10) can be put into the form

P=f(k, )[g(k, ) —cos a],
where

f(k )
4C sin (k a/2)+(4C +2C co a ) sin (k a/2)

2' aC

4Co sin (k,a/2)+oioa
g(k, )=

4Co sin (k, a/2)+(4Co+2cooa ) sin (k, a/2)

For g(k, )) 1, i.e.,
1/2

2 2++ 4 4+4( 2 2 2

k, &k„=(2/a) sin
4CO

P is always positive. Otherwise if k, & k„, then P is positive for u & a, and negative for n (a, where o,, is given by

4Co sin (k, a /2)+cocoa
Aq =cos

4Co sin"(k, a/2)+(4Co+2oioa ) sin (k,a/2)

(C2)

(C4)

Let us define the critical wave number k, 2 for which Q becomes zero. Q is positive for k, &k,2 and negative for
k, &k,2. k,2is given by

4 1/4
Jco,2a4

k~2 = Sln (C5)

In the first Brillouin zone [O, m /a ], we deduce that if 0 & k, & k,2, then PQ is positive for all angles. If k, 2 & k, & k„,
then PQ & 0 for all a. If k„&k, & m /a then we have PQ )0 for a & a, and PQ & 0 for a )a, .
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