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Porous media containing Auids and subject to the field of an NMR instrument usually have incremen-
tal local magnetic fields due to susceptibility differences yd, such as between a Quid and a solid matrix. If
~yd ~

((1 the effective variation co of the local precession angular frequency is limited to + zyzcoo, where

coo is the mean precession angular frequency. Diffusion of Quid molecules through these local fields leads
to a 7-dependent increase Rd in the value of 1/T2 obtained from Carr-Purcell-Meiboom-Gill (CPMG)
measurements. Many porous media appear likely to have significant co variation over a substantial range
of diffusion time scales, or correlation times. For a sample with a single correlation time ~, the loga-
rithm of the additional decay of the nth echo amplitude due to diffusion through regions of different m is
fl r, [2nrf(r/r, ) —r, [(l—x) /(1+x ) ][1—

(
—)"x "]], where f(t)=1—(tanht)/t, fl =(co ), and

x =exp( —~/~, ). The term without n causes only a shift in the relaxation curve, and the terms in x " are
small, so Rd =0 r,f(r/r, ). The function f (t) starts quadratically at small t, has a nearly linear portion,
and then approaches 1 —1/t at large t How. ever, the superposition of terms of the form f(r/w„) tends
to give a nearly linear portion of the Rd vs v. curve extending from small values of Rd to about a third of
the asymptotic value if there is a significant range of ~„.For this linear portion the effect of a shift in all
the ~„., such as from a change of temperature or from a liquid with a different diffusion coefficient, is
small. Examples of measurements of T&, of T2 by Hahn single echoes, and of T2 by CPMG measure-
ments for a porous porcelain sample and a natural porous chalk sample illustrate this nearly linear ~
dependence, which is quite different from the quadratic dependence for unrestricted diffusion in a uni-

form field gradient. The CPMG data were fit very well over the entire range by a function of the form

R, +Rb tan '(R, ~), and the computed asymptotes match the Hahn single-echo results for ~)&~,
surprisingly well. Our result depends on the limited range of field variation and does not apply to the
case of ferromagnetic or superparamagnetic grains in close contact with diffusing Quid molecules. Our
approach can also be applied, under particular circumstances, to biological tissues.

INTRODUCTION

The surfaces of porous media have long been known to
increase both longitudinal and transverse relaxation rates
for nuclear magnetization in nuclear magnetic resonance
(NMR) measurements of Auids in the pore spaces. The
media have been as diverse as rocks, ceramics, plastic-
fiber composites, plants, and biological tissues, which
can, for our purposes, be considered to be porous media.
Most of the early work relating NMR to fluid Aow prop-
erties of porous media was done on longitudinal relaxa-
tion times T, . However, one early application, the nu-
clear magnetism logging (NML) of oil wells' made the
tentative identification of producible Auid on the basis of
transverse relaxation times T2. Not very much work has
been done until more recently on T2 behavior of Auids sa-
turating porous media. A problem in the interpretation
of the T2 data has been that inhomogeneous fields of
several sources other than the atomic- and molecular-
scale effects cause transverse signal decay. For laborato-
ry NMR, in the usual strong magnetic fields but without
intentionally applied field gradients, the difference in

magnetic susceptibilities between the porous material
and the pore Quid makes inhomogeneous magnetic fields
in the pore spaces. These cause a transverse signal decay
which Inay not be refocused in spin-echo measurements if
diffusion of Quid molecules is rapid enough. This effect is
also relevant in magnetic resonance microimaging. '
The Carr-Purcell-Meiboom-Gill" ' (CPMG) measure-
ment is often used to minimize the diffusion effects. Here
trains of echoes spaced at intervals of 2v. are produced. If
z is sufficiently short that molecules in the Quid do not
diffuse far enough in a time ~ to change field and preces-
sion frequency significantly, then the echo decay curve
represents transverse relaxation from the surface effects
plus that of the bulk Quid. However, the distance for a
significant change of field in some parts of the pore space
may be so short that the shortest experimentally available

values may not completely suppress the diffusion
effects. For this reason various workers in both biologi-
cal and nonbiological fields have made measurements at
series of ~ values and made extrapolations of various
kinds ' ' ' to 7 —O.

The transverse relaxation rate 1/T2 can be regarded as
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the sum of the surface contribution R„the bulk fluid rate
Ro, the rate difference Rd(r) caused by diffusion in the
inhomogeneous fields due to susceptibility differences in
the porous medium, and in some cases still further mech-
anisms. In addition, there are usually inhomogeneous
fields from the NMR instrument itself, but these are nor-
mally on a suKciently large distance scale that diffusion
does not interfere with the refocusing into echoes. Any
or all of these sources of relaxation may lead to decay
more complex than single exponential, that is, that can-
not be described by a single relaxation time. For in-
stance, many sandstone rocks have wide distributions of
relaxation times even for Ti or for CPMG T2 measure-
ments at very short w values. Some of these materials are
homogeneous to the eye and yet have different surface re-
laxation environments over very short distances, with
sufticiently little mixing by diffusion in measurement
times not to give a single uniform relaxation time. This
does not mean that individual pores are in the "slow
diffusion regime, " but rather that the large pores do not
mix with some of the smaller ones in measurement times.
Some natura1 and artificia1 porous media have given an
initial linear ~ dependence for various "average" relaxa-
tion times such as stretched exponential or geometric
mean. Le Doussal and Sen' have recently shown that
diffusion in a parabolic magnetic field leads to a linear ~
dependence of 1/T2 from CPMG measurements.

In the present work we assume that this diffusion in the
presence of field gradients due to susceptibility differences
is the only source of dependence of 1/T2 on ~. However,
Santyr, Henkelman, and Bronskill' have shown that the
CPMG echo sequence can reduce 1/T2 to 1/T, at fre-
quency 1/(4r). For systems that have significant T,
dispersion below the maximum value of 1/(4r) for the
data, an alternative' to the CPMG sequence is given.

Several approaches '' to the extrapolation of Rd(r) to
~=0 have been based on the expression for the ~ depen-
dence of Rd in an unbounded homogeneous Quid in a uni-
form field gradient, Rd(r)=(y G D/3) nowhere y is the
magnetogyric ratio, G the field gradient, and D the
diffusion constant. In some work an estimate of a typical
value of some form of average of the gradient in the
porous medium is used for G. Therefore, Rd(r) has been
plotted against ~, but straight lines have not really re-
sulted. The present problem differs from the uniform-
gradient model in two ways. The gradient is quasiperiod-
ic rather than uniform, and the diffusion is severely re-
stricted by the porous medium.

MAGNETIC FIELDS
FROM SUSCEPTIBILITY DIFFERENCES

Most porous media are too complex to be exactly de-
scribed by mathematical models. An attempt will be
made here to identify relevant features of these media and
to find the consequences of these by approximate
mathematical treatment. The aim is to understand the
approximately linear dependence of 1/T2 on ~, which has
been noted by Borgia et al. , and to establish some limi-
tations on the conditions for this to occur.

A central feature of the inhomogeneous magnetic fields

in porous media resulting from differences of diamagnetic
(or weak paramagnetic) susceptibilities between the solid
matrix and a Quid in the pore spaces is that there is
significant variation of fields or field gradients over a wide
range of distance scales in different locations in the sam-
ple, including even within a single pore. Field gradients
are most intense near sharp discontinuities in the pore
system. In these regions diffusion over very small dis-
tances can bring a molecule to a different precession fre-
quency and prevent the refocusing of part of the signal
that would otherwise contribute to spin echoes. On the
other hand, there is likely to be a region in the middle of
a pore where the field is relatively uniform and where
diffusion must occur over longer distances, and hence
over longer times, to cause deterioration of contributions
to spin echoes. It may be noted that a spherical or ellip-
soidal cavity, with a different susceptibility from that of
an infinite medium in which it is embedded, has no field
gradient at all. It does, however, have a frequency shift,
and in a porous rock a pore may have a different frequen-
cy from those of other pores or channels. Diffusion over
pore size dimensions may be required before significantly
different fields are encountered by molecules starting in
the middle of such a pore. Diffusion over distances of
pore spacings or more may play a part in CPMG echo
train decay if T2 is long enough.

We will first discuss some general geometrical features
of porous systems, including biological tissues, and the
related magnetic field differences Bd due to volume-
susceptibility differences. For instance, diamagnetic sus-
ceptibility differences yd between quartz or calcite and
water are of the order of 0. 5 X 10 S.I. units (or a factor
of 4' smaller in emu). This is so small that we may tenta-
tively regard the magnetization difference between the
solid and the Quid as everywhere in the solid phase equal
to pd Hp or pd Bp/p where Hp and Bp are the main
magnetic fields of the NMR instrument and

p, =4m X 10 H per m is the permeability of free space.
Thus, we neglect second-order terms representing magne-
tization due to the fields from the other magnetization,
notwithstanding the existence of formal singularities to
be discussed. That is, we are not discussing the channel-
ing and concentration of Aux as is done by high permea-
bility magnetic circuits. Furthermore, we consider only
Bd, the component of Bd parallel to Bp, since this deter-
mines the precession frequency. There can, of course, be
more components with different (but small) susceptibili-
ties, and in media such as biological tissues there is not
necessarily a solid component.

The contribution to Bd due to a dipole moment
(gd Bp/p, )d V is given by

d Bd =( —1/4')V(gd B V')(1/y)d V .

Integrating over the solid framework of the porous medi-
um, letting yd be constant, and letting z be the unit vec-
tor in the direction of Bp, we have

+d p ~ ~ 18 = f (z V)(z.V) —dV
4n r

Xdor 8 1

4~ Bz



CONDITIONS FOR INITIAL QUASILINEAR Tz ' VERSUS r. . . 14 825

where r is the radial distance from field point to source
point, and dV is the contributing volume element. This
may be converted into a surface integral,

—x&og ()

4~ az

Z
I

B

r

gd Bo z&
—zs

dS, ,
4m

(2)

yd Bo zI —z,
2' r

(3)

where y is the dimension normal to z, and the integral is
around each solid area of the two-dimensional porous
material. Note that for an element of surface that is nor-
mal to the z direction, the contribution to the integral in
Eq. (2) is the element of solid angle subtended.

To see how to get the strongest Bd for a given gd and
80 in a porous material, note that a contribution of a
volume element is, in spherical polar coordinates, propor-
tional to (3 cos 8—1)/r . Contributions are positive
if

~
cos8

~
& 1/&3. Thus, a cone of half-angle

8o=cos 'v 1/3=55', or actually, two opposing cones of
this angle, gives the maximum field at the apex. To study
the behavior of this we can evaluate Eq. (2) to get the
field at the apex of a single truncated right circular cone
when 80 is parallel to the axis of the cone. The integrals
for the plane surfaces at the top and bottom can be ex-
pressed in terms of angles, with lengths canceling, so
these contributions cancel. If h is the distance along the
slant edge, and 8 is the half-angle, Eq. (2) gives

Xd&o f "2 (h cosg)(2m. h sin8dh) sin8
4~

XdBo h2
sin 8cos8 ln

2 hi
(4)

We note that the field becomes infinite as h, ~O or
h2~~. If we regard our cone as a sharp point on the

where the subscripts f and s indicate the field and source
points, respectively, and dS, is the projection of the sur-
face element onto the x-y plane. In two dimensions we
have the analogous expressions

Bz= I ( —21nr)dS
+dB0 8

4~ gz

FIG. 1. The crosshatched area represents the section of ei-
ther a cone or of a wedge of material of magnetic susceptibility
slightly different from that of the surroundings. The slant
height is ho and slant distance from the origin is h. The half-
angle is 8, and the field is calculated at a point on the z axis.

edge of a pore, we see that h2 cannot be larger than some
fraction of a pore radius; at larger radii the solid is seen
at angles making negative as well as positive contribu-
tions. On the other hand, h, could be small down to
atomic dimensions.

As noted, we could double the above field by the un-
likely geometry of two opposing cones. However, the re-
lated geometry with Auids in the opposing cones and with
a narrow connecting cylindrical region near the apex
gives the integral in Eq. (4) but with a factor of 2 and the
opposite sign. This hourglass-shaped Quid region could
be a channel connecting two pores. Thus, we have
identified the geometries giving the strongest positive and
negative local fields. As a function of h, /hi these fields
are not bounded, so we will investigate the consequences
of the logarithmic singularities. To examine the nature
and the consequences of the strong fields near the apex of
the cone, we will compute the field on the axis of a right
circular cone with a mathematically sharp point.

The geometry is shown in Fig. 1, and we let g=z/ho,
where ho is the slant height of the cone. There is rota-
tional symmetry about the z axis, and the cross section
represents a cone of susceptibility difFerence gd. We use
Eq. (2) for this three-dimensional case to get

Xe+o cos8(2 cos 8—I ) g+cos 8Bd=
+1+2/ cos8+g

2 . 2 +I+2gcos8+g' +1+(cos8—cos 8+cos8 sin Bln 1+cos8

For investigating the field in the vicinity of the singularity, it is convenient to expand Eq. (5) to first order in g,

+d 0

2
—cos8( 1 —cos8)( 1+2 cos8) +sin 8 cos8 ln

2 + 3g sin 8 cos 8 —sin 8 cos8 in'1+cos8
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We see a logarithmic singularity at the origin, and we
now compute an upper limit to the dephasing effects of
fields stronger than —,'gdBO for the conical geometry. We
integrate the rate of dephasing, originating near the ori-
gin of coordinates in Fig. 1, over volume out to the dis-
tance zo where Bd= —,'gdBO and the angular frequency

difference is co= —,'gdcoo. Here coo is the mean precession
angular frequency of the signal-giving pore space. We as-
sume, without specific computation, that Bd falls off with
distances in various directions from the origin roughly as
fast as along the z axis. The volume element at a distance
r from the origin is proportional to r dr, so we evaluate

Jo r co(r)dr and divide by for dr out to an eff'ective pore
radius a, where m is the incremental frequency due to our
cone. We assume that ho is not more than half the
effective pore radius a. For the coe%cient of —,'ydBo in

Eq. (5) to equal 1.0, we need I /go = h o /zo =40, or
a/z0=80, using t')=Do for the maximum effect. For a
NMR frequency of 200 MHz and yd =0.5 X 10,we get
a rate of phase change of about 0.01 sec ' for the entire
pore space if there is full mixing by diffusion. The region
for which ~co~ ) —,ydcoo is only one part in half a million of
the pore volume, so, with no diffusion, signal loss from
this region would be negligible. With diffusion the phase
changes could, in a time of 1 sec, conceivably be spread
more effectively to give a phase distribution with a width
of the order of 0.01 rad, which would be negligible in
most work. At lower NMR frequencies this would, of

I

course, be less yet. Furthermore, this is an unrealistic
"worst case," in which we have assumed the following
three conditions: (1) Diffusion prevents any refocusing
whatever to produce echoes for the magnetization in-
volved. (2) There is no "averaging out" of phase disper-
sal. (3) There is no "overkill;" that is, no large amount
of the phase dispersal is "wasted" on a small amount of
magnetization.

In short, for practical purposes, one can ignore the
singular contributions and regard the local magnetic field
variations Bd, due to susceptibility variations ~yd ~

« I,
from the local mean field in the pore spaces as limited to
roughly +—,'ydBo, although, as we have seen, this can be
doubled for a small volume in the case of the "hourglass"
geometry. We will show later, however, that this limita-
tion does not apply to inhomogeneous fields from sources
such as magnetite grains' ' which behave very
differently and may have local frequency variations com-
parable to coo.

There are probably not many conical points on pore
surfaces, but there are crystal corners which sometimes
have sharp points and should give fields much like the
cones. Crystal edges are often encountered in porous
rocks. At a substantial distance from corners the system
may locally be approximated by a wedge, giving a two-
dirnensional magnetic field problem. Using Fig. 1 now as
representing a two-dimensional wedge and applying Eq.
(3), we get

Bd= dBO In't/ I +2g cos8+ g —in( —tan2 —1 sin8
g+cos8

1+gcosg+sin 8 tan
sin8

( —sin6 cosB in/ —8 cos 6+2g cos 8 sin8) .
Bo 2 2

In two dimensions the field on the z axis of Fig. 1 can
be continued analytically to give the field off axis. The
singular part of Eq. (7) gives the analytic function ln(g) of
the complex variable g. If we let g =pe '~, then
in/= lnp+ iy. Since we are interested in the z component
of the field, we have simply Re(g)=lnp. If ho=a/2
(wedge edge equal half the pore radius), we have
zo=a/110. We repeat the worst-case computation for
two dimensions, where the area element is proportional
to pdp. With the same parameters as for three dimen-
sions, we get a worst-case dephasing rate of about 0.3
sec '. Again, the possible logarithmic singularities do
not have practical importance, and we may regard fields
as limited to about +—,'ydBo.

Equations (2) and (3) lend themselves to our visualizing
some features of the magnetic fields when we note that
only components of surfaces normal to Bo contribute to
Bd. Furthermore, only changes of magnetic fields over
distances of the order of a few times the one-dimensional
difFusion distance &4Dr are relevant for spin-echo mea-
surements. The inherent field inhomogeneity of most in-
struments would not be significant, and in particular,

fields dependent on the external shape of a sample of
magnetic susceptibility of magnitude ((1 are not impor-
tant. We are interested in contributions of surfaces in
Eqs. (2) and (3) only within a few diffusion distances. The
surfaces at great distances contribute only a very slowly
varying field, the results of which are canceled in the
echoes despite the diffusion. Note that cylindrical boun-
daries with edges parallel to Bo with arbitrary cross sec-
tion, make no contribution to the integrals. Thus, if we
regard our sample as an infinitely long cylinder parallel to
Bo, we have the geometry where only local surfaces con-
tribute. Note also that, once the distance is a few pore
spacings from the local surfaces contribute. Note also
that, once the distance is a few pore spacings from the
field point, the solid material is statistically fairly uni-
formly distributed in the solid angle, hence making no
contribution to the field at the point in question. It
should be noted that we cannot do the usual matching of
normal B and tangential H fields at boundaries when we
ignore variations in H of first order in yd.

With the conventions adopted above, we can list the
fields in a few idealized pore shapes. First, related to the
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discussion of sample shape, we note that a long thin cy-
lindrical pore with axis parallel Bo has no additional field
due to the susceptibility difference, as there is no contri-
bution from the sides, and the ends are far away. The
same would apply to a narrow crack with walls parallel
Bo. However, the additional field in a narrow crack nor-
mal to Bo is yd Bo. The field surrounding a solid
cylinder of radius a and axis normal to Bo is
Bd= 2ydB—O(alp) cos2y, that of a two-dimensional di-

pole; the uniform field inside a cylindrical pore with axis
normal to Bo is Bd =

—,'ydB0. The dipole field surrounding
a solid sphere is Bd =

—,'ydBo(a/r) (3 cos 8—1); the uni-
form field inside an isolated spherical pore is Bd =

—,'gdBO
(with respect to field in the absence of the solid frame-
work, not with respect to that in the solid).

A porous rock cannot easily have a solid sphere sur-
rounded by fluid for large distances, but this can exist in
a gel suspension. Furthermore, porous media made of
various kinds of sphere packs are used for many pur-
poses. For these, the field in the pore spaces is simply the
sum of the fields of dipoles located at the centers of the
spheres. As before, this simple relationship depends on
~yd ~

&& 1. Some very high-porosity artificial porous media
have some features that are somewhat like columns, or
short cylinders. Most rocks do not have pores that are
very nearly spherical, and furthermore, most pores have
neighbors and are thus not isolated in an infinite medium.
Nevertheless, special cases of these types give ideas about
some of the properties of the fields. A pore that has di-
mensions in all three directions significantly larger than
the scale of the surface roughness and of connecting
channel diameters should have a significant region of rel-
atively uniform field. Molecules starting in the middle of
such a region would have to diffuse much longer to ex-
perience a change of field sufficient to interfere with echo
formation than would molecules starting near sharply
changing fields in channels, corners, edges, and smaller
grains. We wish to get a rough idea of the ranges of local
fields and diffusion times for significant change of local
fields.

Equations (2) and (3) are particularly easy to interpret
for a surface normal to Bo, since, in two dimensions, the
integrand of Eq. (3) is in this case simply the angle sub-
tended from the field point by dy, and in three dimen-
sions', the integrand of Eq. (2) is the element of solid angle
subtended. Suppose we have a pore that has on one side
a plane solid wall normal to Bo intersecting a wall parallel
to Bo. A molecule of fluid very close to the first wall, the
wall contributing to Bd, sees wall through an angle of
nearly ~ in two dimensions (or a solid angle of 2m. in three
dimensions). As the molecule is moved while remaining a
fixed short distance from the wall to a point in line with
the second wall (parallel Bo and hence not contributing to
Bd) the angle subtended by the first wall is now only ,'vr. —
If the point moves until it is in line with the first wall and
a very short distance out from the second wall, the angle
subtended by the first wall is zero. If now we move a dis-
tance along the second wall, the first wall subtends an an-
gle of —

—,'~. Thus, by going around the corner, the in-
tegral in Eq. (3) changes by an amount ,'vr, so the change—

in Bd is —,'gdBO. By staying very close to the solid we
have been able to go around the corner by moving only a
very short distance, thus not changing distances to other
surfaces significantly. However, if we wish to consider a
significant amount of the liquid sample, and hence a
significant amount of signal, we must include molecules
of the liquid somewhat farther from the surfaces, and
these must diffuse greater total distances, probably also
changing distances to other contributing surfaces and
probably also reducing the subtended angles somewhat.
Many porous rocks contain crystals with sharp edges.
We have numerous configurations that give the possibili-
ty for a fraction of the fluid molecules, under diffusion, to
change field and precession frequency significantly in
much shorter times than for parts of the fluid starting in
other positions, such as in the centers of large pores.

In summary, field variations Bd in the pores of a
porous medium where there is a susceptibility difference
gd between components, such as between solid and fluid,
may, for practical purposes, be regarded as roughly
confined to the range +—,'pdBO from the local mean
values. Local mean values refer to values in pore spaces
accessible by diffusion in time 2~, where 2~ is the CPMG
echo spacing. Significant changes in Bd occur over quite
different correlation times for fluid molecules starting in
different parts of a pore, and local fields may be different
also. It may be that fields in the larger pores may, in
some porous materials, have values closer to the mean
(smaller ~Bd ~) and also have longer correlation times for
molecular motion than some others. Our derivation in
the next section will apply our finding that the diffusion
of fluid molecules through the pore spaces leads spins to
experience a limited range of precession frequencies but
with the changes of frequency occurring over a substan-
tial range of time scales for spins starting in different po-
sitions in the pore space.

APPROXIMATE COMPUTATION
OF CPMG ECHO AMPLITUDES

The pore systems of many porous media are so corn-
plex that it is not possible to specify geometrical detail
sufficiently for numerical computation, let alone for ana-
lytic computation, of CPMG echo train decay. We will
use a model for computation which, under conditions to
be discussed, appears to account for appropriate ranges
of magnetic field variation and of times for changes of
magnetic field experienced by molecules because of their
diffusive motion. We assume that there is no applied
macroscopic field gradient, and we ignore effects of resid-
ual gradients from the instrument because they would be
canceled in a CPMG measurement, so would effects of
sample shape and macroscopic variations in susceptibility.
We start by considering properties of correlation func-
tions for local variation co of precession angular frequen-
cy, which is the frequency variation with respect to the
local mean, and is hence a zero-mean variable. We will
then use the correlation function to compute the mean-
square phase dispersal (y ) of the spins at time 2nr, the
time of the nth echo in a CPMG echo train. We then
compute Rd as if the distribution of phases were Gauss-
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ian, in which case decay is by a factor of

(2vr&g'&) '"f" exp( ,'—q'—/&q'&+ip)dq

=exp( —
—,
'

& (p ) )

(Ref. 20) and Rd =
—,
'

& (p ) /(2nr). We then try to see un-

der what conditions this assumption gives reasonable re-
sults.

The correlation function is defined

F„(t,t') = f co(t)co(t')du

= &co(t)co(t') =F,( t t'~ ), —

where dv is the Quid volume fraction, or fraction of spins.
It depends only on ~t

—t'~ because in the diffusion there is
no change in probabilities with time shift or reversal. It
is not possible to specify the exact form of F, (~t t' ), —
but it has the property of decaying to zero at long times,
since co is a zero-mean variable. We can represent a rath-
er general function of this sort as a sum of decaying ex-
ponentials of the form exp( —

~t
—t'~/r„), where . the r„

are correlation times. An example of a system with a sin-
gle correlation time would be two pores of the same size,
with precession frequency uniform within each but
different from each other and with loose coupling by
diffusion between the two. A number of isolated such
systems of different sizes will give a range of ~„-;however,
the porous media we are considering are not isolated sys-
tems. The fact that we represent F, by a sum of exponen-
tial components in no way means that we merely have
different noninteracting parts of the system with their
own different correlation times. It also does not mean
that the m of a subset of spins starting at some time in
one very small region are exponentially correlated in time
with their future co values; in fact, such correlations need
not even be monotonically decreasing, although most
probably are. Likewise it does not mean that the spins

F, =g U;0; exp( —
~t

—t'~/r„), (8)

where U; are the volume fractions and 0;= &co; ) are the
rms values of co for v;. We will use the correlation func-
tion to compute &q&; ). The contributions of the various
exponential components in Eq. (8) are additive, so it will
suffice to derive the contributions to & y ) of a single ex-
ponential component.

For each spin we find the phase shift at time 2n ~ by in-
tegrating its co over a time r (between the initial 90 pulse
and the first 180' pulse), subtracting the integral from ~ to
3~, and alternately adding and subtracting phase shifts
for intervals 2~. The final interval is ~, ending at the time
of the nth echo. The indicated averages are over all
spins:

with a given ~„allstart in the vicinity of some particular
point. Rather, they may represent eigenstates of a
diffusion equation in the pore system, usually too compli-
cated for computation. Of course, if there are subregions,
either macroscopic or microscopic, that do not communi-
cate significantly by diffusion in measurement times, we
will regard these regions as having their own separate
computations of contributions to &y ). In this connec-
tion it should be noted, for instance, that diffusion in
some visually homogeneous sandstones is not sufhcient to
prevent distributions even of T, (which involves longer
times than T2 and is not affected by the susceptibility
differences) from extending over as much as three de-
cades. 2'22

Thus, we surmise, without proof, in order to show gen-
eral properties of CPMG echo trains in many porous
media, that F, can be represented by a sum of exponen-
tial components which are all of the same sign and that
there are substantial components over a range of the or-
der of a decade or more in correlation times, giving a
correlation function of the form

n —1
2

(q')=( f ttt(t)dt+ X (
—) f tt(t(dt+( —t"f ~(t)dt ),0 k=1 (2k —1)w (2n —1)~

(9)

+2 g ( —) +2 ( —)"—(2k+1)& "
z+kf 2nv' f (2k+1)r

t =0 t'=(2k —1)~ t =(2n —1)w t'=(2k —1)w

n —2n —k —1

+2( —)"
t =0 t'=(2n —1)~

+2K X
k=1 1=k+1

(2k + 1)v. [2(k +I)+1]~—) ft =(2k —1)~ t'=)2(k+1) —1]~
(10)

where all integrands are &co(t)co(t'))dt dt' In each. in-
I

tegral &co(t)co(t') ) =0 e
To save writing, we will express t, t', and ~ in units of

The first and third integrals in Eq. (10) are the same
by time reversal and will each be called IOOQ r, . The
first sum of integrals will be called 2IkkQ r, These.
represent the squared terms in Eq. (9). The cross terms

all have factors of 2 if they are restricted to having the
second index larger than the first. The first cross term is
between the first and last intervals, which have widths of
v instead of 2~, and it will be called Io „0H. The two
single sums among the cross terms are identical by time
reversal and will each be called —,'Io kQ H. The double
sum will be called Ik k+I 0 H. We now have
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2
=Io o+Ik 1, +Io n+Io t, +Ik k+1

C

The r, in the denominator comes from putting dt and dt'
in units of ~, . We have

——f dt f +(t' —t)dtt+ f —(t' —t)dtt
0,0

t =0 t'=0

Io„=(—)"f dt f e " 'dt'
t =0 t'={2n —1)~

)n( 1 e
—r)2e —2(n —1)r

I0 k is a geometric series and can be summed,

I = —2
(1 —e ')(1—e ')

O, k
1 + 2'7

(14)

=2&—2+2e

Ik k =(n —1)(2r—1+e '),
(12)

(13)

g [1+( )n 2(n——1)r]

The integral Ik k+l is a double sum,

(15)

n —l —1n —k —1

k=1 I=k+1 t =(2k —1)w t'= [2(k +I)—1 jr

The terms with equal I values are equal, giving us the single sum,
n —l —1

Ik k+&= g (n —l —1)(—)'f dt f e " "dt' .
1=1 t'=(2l —1)~

Doing the sums and gathering terms,
r

—
( 1 2r)2

k, k+l

1 + ( )ne
—2(n —1)r

+
(1+ —21)2

(18)

factor of exp(3Rd', ).
For CPMG data we note that the term in Eq. (19) con-

taining the factor e " is both small and also much
smaller than the term with the factor 2n~ and that the
term not involving n merely causes a shift in the decay
curve. This shift would lead us to overestimate the spin
density by a factor of

Putting Eqs. (12)—(15) and (18) in Eq. (11), we have,
with considerably more gathering of terms,

&92) tanh(. )

20 r
—r 4

1+( )n
—2nr]

( 1 + 2'r)2
(19)

It is worth noting results for some special values of n.
Equation (18) for Ik „+&was derived assuming that n )2,
but we note that it is zero for n =1 or 2. Likewise, Eq.
(13) for Ikk and Eq. (15) for Io k were derived assuming
that n & 1, but we note that they are zero for n =1. In
addition, we may note from Eq. (19) that tI1=0 for n =0.
For single spin echoes instead of CPMG echo trains we
get for n =1,

@=2r (1—e ')(3 —e —)

3 4 T+ 2'7

=27 1—
27-

(20)

(single echoes) Rd =0 r,

if measurements are made only at times much longer
than ~, . The spin density would be overestimated by a

For very small r, Eqs. (19) and (20) have the same
behavior, namely as r /3. For large r Eq. (20) goes as
2r —3 (still in units of r, ). That is, the observed addition-
al relaxation would be

(CPMG) Rd =0 r, 1— (22)

We now drop the convention of specifying times in
units of r, and consider (t(p ) resulting from several
correlation times or a distribution of times. If v; is the
fraction of the spins contributing to the ith mode, we get

Rd=g U;0.;r„f(r/r„), .

tanh(r/r„. )f(rlr„)=1-
&/w„.

(23)

Thus, assuming for the present that the y distribution is
close enough to Gaussian and that relaxation is close
enough to single exponential, Rd(r) is given by Eq. (23).
Curve a of Fig. 2 shows f (rlr, ), which starts out qua-
dratically and has a fairly long, nearly straight, section.
Curve b of Fig. 2 is

If(r/r, )+0.If [r/(0. I&, )]]/1. 1,
which is equivalent to components a factor of 10 apart in
~, with the same v;0, ; product, with the curve normal-
ized to the same asymptotic value. This curve also, of
course, starts out quadratically, but on the scale of this
plot it appears nearly linear to about 45% of its asymp-

exp[(1 —e ') (Qr, ) /(1+e ') ],
again, with ~ still in units of ~, . Therefore, Rd can be
well approximated by
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1.0

FIG. 2. Curve a is f(t) =1—(tanht)/t, where t =r/r„corre-
sponding to Rd for a single correlation time. Curve b is

[f (t)+0.1f(10t)j/1. 1, corresponding the contribution to Rz of
equal numbers of spins (times mean-square frequency variation)
with ~/~, = t and with t/~, = 10t, normalized to unit asymptote
for large t. The coefficient is proportional to ~, . Curve c is

[f(t)+0.2f(10t)]/1.2 corresponding to twice the short com-
ponent.

totic value. Curve c shows the result of doubling the
short-~, component. This "overcorrects" for the slow
start off(rlr, ).

We find that many sums of the form of Eq. (23) have
nearly constant slope for small ~, and that all such sums
and distributions have slopes proportional to 1/2 for

large ~. These features can be conveniently combined in
the function 1/(1+r ), which is the derivative of the
arctangent function. We will compare this function with
both some sums and distributions of functions f(r/r„)
and also with sets of experimental data.

In Fig. 3, all curves are normalized to unit asymptote
and have the value of 0.25 at unit abscissa. Curve a of
Fig. 3 is otherwise the same as curve b of Fig. 2. Curves
b and c of Fig. 3 are sums of 11 components equally
spaced in log time and spanning a correlation time ratio
of 100. The components have equal Q; v; products except
for the end points. For curve b the end weighting is
threefold, and for curve c the end weighting is half. It
may be noted that the stronger end weighting gives a
longer nearly linear region. A fourth curve, shown by
solid circles instead of solid lines, is the arctangent func-
tion, similarly normalized. A straight line with slope 0.25
is shown for reference. It can be seen that a considerable
variety of distributions of ~, s can give substantial initial
portions of the curves that are nearly linear.

Fj.gure 4 shows the dependence of Rd on ~, g, the
geometric-mean correlation time, for four different distri-
butions of ~, 's. Curve a is for a single ~„curve b is for
the pair of ~, 's of curve b of Fig. 2 or curve a of Fig. 3,
curve c corresponds to curve b of Fig. 3, and the curve
shown by X's to avoid confusion with curve c corre-
sponds to curve c of Fig. 3. Note that all but curve a
have significant regions that are relatively Rat. For these
a small change of diffusion coeKcient D of the Quid
would have minimal effect on Rd if ~, g

starts in the Bat
region. The correlation times should vary inversely as D,
which can be changed by changing temperature or by

.6

C3
I

h

C&

bO0

)og~a(~. -cM /~)

'/'c —ref

FIG. 3. All curves are normalized to unit asymptote and to
be equal to 0.25 at unit abscissa. Curve a is otherwise the same
as curve b of Fig. 2. Curve b and c correspond to sums of 11
terms with ~, values equally spaced in logIO(~, ) over a factor of
100, with equal 0;v; products, except that the end points for
curve b have threefold weight and the end points for curve c
have half-weight. The curve shown by solid circles is the
arctangent function, similarly normalized. A straight line with
slope 0.25 is shown for reference. The above normalization
determines ~, „f,the reference value for 7„..

FIG. 4. The curves plotted are proportional to the depen-
dence of Rd on ~, for fixed ~. For the distributions ~, g refers
to the geometric mean r, . Curve a is g(t)=tf(2/t), where
t =~, /~, and the factor of 2 (using a ratio of correlation time to
echo time 2~ rather than to ~) is for near symmetry on the log
plot. Curve a thus represents a single correlation time. Curve b

corresponds to curve a of Fig. 3 or curve b of Fig. 2. Curve c
corresponds to curve b of Fig. 3 (stack with threefold end
weighting), and the X's correspond to curve c of Fig. 3 (half-
weight for ends). In the nearly flat areas Rd is not sensitive to
small changes in correlation times, as from change of fluid or of
temperature.



47 CONDITIONS FOR INITIAL QUASILINEAR T2 ' VERSUS r. . . 14 831

changing the Quid. The region of minimal dependence of
Rd on ~, is the region of nearly linear dependence on

The above shows that such combinations or distribu-
tions of correlation times over a decade or more tend to
give quasilinear ~ dependence of Rd for small v.

DISCUSSIQN AND EXAMPLES

Many porous media containing Auids are subject to
precession angular frequency differences, which for prac-
tical purposes are limited to a range of about +—,'ydcoo.
Furthermore, there are different porespace regions in
close proximity where diffusion leads to changes of local
co over quite different time scales or correlation times.
The distribution of correlation times leads to a mean-
square phase dispersal (y ) at the time of the nth
CPMG echo, that is, for small ~, roughly quadratic in ~
rather than cubic as for unbounded diffusion in a uniform
field gradient. This corresponds to a roughly linear rise
of Rd with ~ for small ~. If the distribution in y is Gauss-
ian, the normalized echo amplitude is

S=exp( —
—,'(g') ), (24)

a relationship we have already used. If (y ) that accu-
mulates in regions of short ~, is not large at time 2~ and
has time to spread to regions of longer ~, in time 2n~, the
increment to 1/T2 from the inhomogeneous fields from
susceptibility differences is reasonably approximated by
Rd =

—,'(y )/(2n r)

The special nature of the properties of the magnetic
fields described above can be made clearer by an impor-
tant example of locally inhomogeneous fields with quite
different properties. In areas as diverse as oil well log-
ging' and medical magnetic resonance imaging, magnetic
grains such as magnetite grains have been used as con-
trast agents to decrease the transverse relaxation times
T2. Hardy and Henkelman' ' (HH) and Muller et al. '

have done Monte Carlo calculations for CPMG echoes to
find the dependence of Rd on grain size, concentration,
dipole moment, diffusion coefficient D, and ~. HH find
best fits to their computations with Rd proportional to
D and to w . In the present problem D is inversely re-
lated to correlation times, which over a substantial range
are shown, however, to have relatively little effect on Rd.
The ~ dependence for CPMG with the magnetic grains is
even further from the traditional r dependence than the
linear dependence discussed in the present paper. HH
point out that in their cases it is not sufficient to compute
second moments of phases distributions ( y ) because the
distributions are not known a priori and are not close to
Gaussian. They have a sharp central peak and broad
tails and can have the same second moment as a Gauss-
ian which gives a very different Rd.

The phase distribution for free precession signal decay
or for magnetic resonance imaging (MRI) gradient echo
decay due to magnetic grains is even more extreme than
for CPMG. Brown' has shown that in the field of ran-
domly distributed point dipoles the phase distribution is
of the Cauchy form, which does not even have a finite
second moment. Here, an analytic expression is given for

S=g A; exp( —
—,
'o.

, )= exp ——g A;o;
1

(25)

the contribution of the grains to Rd, which, quite re-
markably, does not depend on D at all. In this specific
system the frequency averaging from diffusion is exactly
offset by the "hazard" of coming close to the very strong
field of a point dipole. This feature is what sets the dipole
problem apart from our present problem, where the
effective frequency range is limited to compact distribu-
tions without long tails.

It is clear that the present paper does not apply to
cases where compact magnetic grains are present. How-
ever, the scope can be extended somewhat to include
some paramagnetic materials imbedded in the solid phase
of the porous material. Some smooth magnetic coatings
might also fit the conditions of the present work, but the
limited frequency range from the inhomogeneous fields is
essential to the present problem. It is not essential to the
considerations of this paper that yd be constant over the
medium or even everywhere of the same sign, but we re-
quire ~gd~ &&1. Diamagnetic susceptibility should not
have significant temperature dependence, but paramag-
netic susceptibility usually follows the Curie-Weiss law.
Thus, a temperature increase could decrease yd, thereby
decreasing Q, and would also increase D, thereby de-
creasing the ~, 's related to diffusion.

We have shown that porous media can have substantial
ranges of correlation times, and we have computed (y )
for some specific distributions. We do not in this paper
attempt to evaluate any specific model of porespaces, but
it is necessary to discuss conditions for (qr ) to be related
to Rd as for a Gaussian distribution in y. There are
several ways a distribution might be qualitatively
different from Gaussian. We do not see how to get a bi-
modal distribution or rectangular distribution of echo
phases from diffusion through a range of frequencies.
Distributions resulting from repeated contributions from
compact distributions, even with alterations by diffusion
and repeated refocussing, should tend toward Gaussian.
We have already discussed the distributions with extend-
ed tails being excessive in the sense that very large phase
shifts at echo time are experienced by small numbers of
spins. These large phase shifts do not reduce the signal
any more than moderate shifts, but they make inordinate
contributions to (p ).

A condition for not having excessive contributions to
(y ) in time 2r is that there not be significant local re-
gions with ~p~))1 rad. This requires that the overall
echo decay by much less than 1 Np. Another way of say-
ing this is that there should be a substantial number of
echoes in time T2. Our measurements at 20 MHz suggest
that about seven echoes in time T2 are required for the
quasilinear ~ dependence to apply.

The above argument can be given slightly more quanti-
tatively by considering at any echo time a distribution of
phases which is a sum of Gaussians with amplitudes 3;
and half-widths o.;. This can represent the above- situa-
tion where a large contribution to (y ) can come from a
small fraction of the signal. If g A; = 1 then
( g ) =g A; o.;. The echo amplitude S is now
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100
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FIG. 5. Experimental 1/T2 values from CPMG measure-
ments as a function of w for water in an artificial porcelain sam-
ple at 25'C and 41'C. The solid curves are the arctangent fits,
and the solid horizontal lines are the asymptotes. The dashed
horizontal lines are the 1/T2 values from the nearly single ex-
ponential portions of Hahn single-echo data, presumably for
times longer than prominent correlation times.

if o., are small. For the tissue and porous media cases
that we are discussing, the limited range of ~co~ gives the
possibility for o, & 1 if 0 is not too large. For measure-
ments on tissues, rocks, and artificial porous media at 20
MHz these conditions seem to be satisfied just about to
the end of the straight portion of Fig. 3. At much higher
frequencies, and hence higher 0, the failure of Eq. (25)
should cause the quasilinear portion of Rd vs ~ to end be-
fore the end of the quasilinear behavior of curve b of Fig.
2. For much lower frequencies Rd is much smaller, but
Eq. (25) should apply, and Rd should roughly follow the
pattern of Fig. 3.

Most porous media have spins with a range of correla-
tion times for spins diffusing in the porespaces in such a
way that mixing throughout the system may be limited in
time 2~ but substantial in time 2n~. This mixing corre-
sponds to a summing of samples from a distribution
which is not Gaussian but which does not have long tails.
These sums tend toward Gaussian distributions, leading
to the validity of Eq. (24). As already mentioned, these
communicating and mixing sets of spins with a range of
~, 's may be a subset of all spins in a complicated sample
such as a rock with a wide range of relaxation times. It
should be noted that different measurements, such as T&

or such as T2 by CPMG with different ~'s, on a given
sample can give very different relaxation times and hence
different ranges of mixing by diffusion.

We now compare the behavior shown in Figs. 2 —4 with
experimental results for T„T2from Hahn single echos,
and T2 from CPMG echo trains at 25 C and 41 C at 20
MHz. Details of sample preparation and NMR measure-
ments are published elsewhere. '

Figures 5 and 6 are plots for an artificial porcelain sam-
ple of uniform pore diameter of the order of a few pm.
Discrete multicomponent relaxation fits were made with

90

0.1 0.2 0.5

FIG. 6. Expanded plot of the first four points of Fig. 5. The
solid lines are linear regression fits to the first four points, and
the equally spaced dots are the same arctangent fit to the entire
data set as shown in Fig. 5. The dashed line near the bottom is
the mean of the 1/T, values for the two temperatures. The
separate 1/TI values would be barely resolvable on the scale of
the plot.

signal value at infinite time as a regression variable and
with as many exponential components as improved the
standard error of fit without amplitudes of different signs
or relaxation times outside the range covered by the data.
T& was single exponential for both temperatures. At 25,
T, =327 msec and at 41' TI =360 msec. Correction for
bulk water relaxation times changes these only to 360
and 388 msec, respectively. Thus, the surface effect for
T i varies in the "normal" direction with temperature.
The logarithms of the Hahn single-echo decay curves
showed straight-line portions after 3 msec, corresponding
to T2 =2.8 msec at 25' and T2 =3.2 msec at 41'.

The CPMG data for the several shortest-~ points gave
substantially the same values of So, the signal extrapolat-
ed to zero time, and this point was added as a point to the
longer-~ data sets, stabilizing these T2 computations con-
siderably, since for the longer ~ 's 2~ can be longer than
T2. The extrapolated signals were nearly the same for
several r values, confirming that the terms in Eq. (19)
without the factor 2n~ do not significantly distort the ra-
tio of So to the later data points. Adding the extrapolat-
ed zero points is useful for our samples because there are
narrow distributions of relaxation times. Otherwise,
there is excessive detail between the point at time zero
and the next data point and no information to supply this
when 2~ is large.

Nearly all of the CPMG relaxation curves yielded two
components. The few that got three showed only slight
improvement in fit with the third. The standard error of
fit relative to the relaxing amplitude was 0.4%. The
two-component fit for ~=0. 1 msec at 25 was 87% at 57
msec and 13% at 8.6 msec. For plotting a single-
parameter T2 vs ~ we have used the two-component
geometric mean, namely, exp(gp, lnT, .), where p,. are the
signal fractions. When the deviation from single ex-



47 CONDITIONS FOR INITIAL QUASILINEAR T2 ' VERSUS r. . . 14 833

ponential behavior is mild, as it is here, various kinds of
"averages" can be used, such as geometric mean, single-
component fit, the 1/e value, or the stretched exponen-
tial, but when there is substantial deviation from single
exponential the different averages give quite different re-
sults.

Figure 5 shows the two-component geometric mean re-
laxation rates for various ~'s and the two temperatures.
The solid curves are nonlinear regression fits to the
arctangent

250

200 41'C

100

1/T2--R, +Rb tan '(R, r) . (26)
50

1/T,
The initial slopes are P=R,Rb. The horizontal solid
lines in Fig. 5 are the asymptotes R, +28blvr, and the
horizontal dashed lines are the Hahn single-echo values
of 1/T2. The agreement is good considering amount of
the extrapolation and the fact that the single-echo data
could be used only after several msec. It is not possible
to carry the data meaningfully out to much larger ~'s to
approach the asymptotes more closely, as 2~ is greater
than T2.

Figure 6 shows an expanded plot of the nearly linear
portion of Fig. 5, with four well-spaced experimental
points very close to a straight line for each temperature,
showing slopes g(25 ') =0.156 (msec) and
f(41')=0.133 (msec) . The straight lines are linear re-
gression fits to the four points only, and the equally
spaced dots show the same arctangent functions fit to the
entire data sets as shown in Fig. 5. The arctangent fits
gave essentially the same values of P and only very slight-
ly lower values of the ~~0 intercept.

For unbounded diffusion in a uniform gradient the rate
is proportional to the diffusion coefficient D, and for
diffusion in the vicinity of magnetic grains, HH (Refs. 17
and 18) found proportionality to about D ' . For water
D(25')=2. 590 (pm) /msec and D(41')=3.793
(pm) /msec, a ratio of 1.46. The mechanisms discussed
in the present paper suggest minimal dependence on the
~, 's for the region of nearly linear ~ dependence, and we
assume that the ~, 's correlate inversely with D. For the
sample of Figs. 5 and 6 we have weak dependence on D in
the opposite sense, with a higher rate at the lower tem-
perature. This probably indicates that we are on the
long-~, side of one of the curves of Fig. 4, leaving some-
what less short-~, contribution at 25' than at 41 . If we
are in the "undercorrected" regime, between curves a and
b in Fig. 2, the extrapolation could deviate from ~ lineari-
ty at very small ~, probably with a larger deviation for
the 25 curve. In Fig. 6, the two curves cross at v.=0. 1

msec, and the intercepts correspond to T2=160 msec at
25' and 115 msec at 41 . However, the extrapolation is
in this case severe, about three times the lower intercept,
and it is probably not reliable to use the ~-linear model to
infer the difference between the "true" T2's, the values
due to surface and bulk effects without the susceptibility
differences. The intercepts are, as they must be, some-
what higher than the values of 1/T, , the mean of which
is shown as a dashed line near the bottom of Fig. 6.

Figure 7 shows data for a highly homogeneous natural
porous chalk sample, with pore diameter in the range
from 0.1 pm to 1pm, saturated with water. The T& com-

0.5 1.0 1.5 ~ (ms) 2.5

FIG. 7. Experimental 1/T2 values from CPMG measure-
ments as a function of ~ for water in a chalk sample at 25 'C and
41'C. The solid curves are the arctangent fits, and the solid
horizontal lines are the asymptotes. The horizontal dashed lines
are the single-echo values of 1/T2. The horizontal long and
short dashes show 1/T&, which is the same at both tempera-
tures.

putations at the two temperatures were substantially
identical and show two components, 8% at 100 msec and
92%%uo at 21 msec. The two-component geometric mean
1/T, is shown by the horizontal line of long and short
dashes. Three-component fits were obtained to the
CPMG data, but, for the sake of robustness, two-
component geometric mean rates are plotted in Fig. 7.
The fits at r=0. 1 msec are 25 ': 6% at 44 msec, 84% at
10.6 msec, 10% at 3.0 msec; and 41: 5% at 47 msec,
84% at 11.5 msec, ll%%uo at 3.5 msec. Because of these
10% short components we used data only at multiples of
2.4-msec echo time in computing rates for ~=0. 1, 0.2,
and 0.3 msec, giving the same amount of detail in the
three cases and hence making rate comparisons on an
equal basis. Otherwise, even fairly narrow distributions
of relaxation rates can lead to a sampling of longer relax-
ation times for a longer w. Like the previous sample, the
chalk shows only mildly non-single exponential relaxa-
tion. However, unlike the previous sample, the values of
1/T2 extrapolated to ~=0 are high. The solid curves in
Fig. 7 are the arctangent fits, and the asymptotes are
shown by the solid horizontal lines. The dashed horizon-
tal lines are the values of 1/T2 from single-echo data.

The slopes f are nearly the same for the two tempera-
tures and are an order of magnitude less than for the pre-
vious sample, with /=0. 040 (msec) . Here the inhomo-
geneous field effect depends less on temperature, and
hence on D or ~„than for the sample of Figs. 5 and 6.
There is not much doubt about the relatively small extra-
polation to the r =0 intercept, which is about 9% higher
at 25 than at 41', whereas the T&'s are the same. For
water the rate is 43% higher at the lower temperature.

Jerosch-Herold, Thomann, and Thompson have plot-
ted T2, rather than 1/T2 vs r and fit the data with an ex-
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ponential decaying from a T2 intercept to a lower asymp-
tote. We have scaled and replotted the points on one of
their published curves to show 1./T2 vs ~, and we find the
substantial linear portion similar to that shown in our
Fig. 3. Their theoretical model, however, assumes uni-
form gradients in individual pores.

A tentative illustration of the significance of the limita-
tion of the frequency variation co to a limited range can
be taken from work on experimental use of fine magnetite
particles as a contrast agent in biological tissues. Rozen-
man, Zou, and Kantor' have shown T2 data as functions
of ~ for several tissues which have taken up the particles.
We have scaled and replotted their data with 1/T2 vs r,
finding dependence roughly as &r or even &r except for
the plot for liver, which shows initial linear ~ depen-
dence. This suggests that in the liver most water mole-
cules cannot come very close to the magnetic grains;
thus, the field experienced by the spins is limited. Indeed,
the magnetic particles have been observed in phagosomes
and secondary lysosomes of Kupffer cells, but not in any
other cell type in the liver.

Bendel has made T2 measurements for two ~ values
on samples with much larger pores than fit the assump-
tions of the present work. With the large pores the fast
diffusion regime applies to the T, data, but the slow
diffusion applies to the T2 data, because T2 is greatly
shortened by the effect of differences in susceptibility.

This gives a significantly non-single exponential behavior
for T2.

CONCLUSIONS

Fluids in several kinds of porous systems have shown
nearly linear ~ dependence at small ~ values for CPMG
multiecho measurements of 1/T2. The arctangent func-
tion has provided a good fit to a number of sets of CPMG
data over the entire available measurement ranges, and
the asymptotes of the arctangent function have agreed
satisfactorily with the values of 1/Tz from Hahn single-
echo measurements. These features appear to be compa-
tible with the existence of a limited range of local preces-
sion frequencies due to susceptibility differences between
components of the system and the existence of a
significant range of correlation times associated with the
diffusion of molecules through various values of local
field. Precautions are needed in the data taking and data
processing of CPMG T2 data to ensure that the same
time ranges are adequately covered for different ~ values.
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