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Thermodynamics of phase transitions in current-carrying conductors
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This work studies the thermodynamics of phase transitions of the first kind in current-carrying con-
ductors when these transitions are accompanied by a sharp change of the electrical conductivity. It is
shown that the critical current in the normal conductor, i.e., the current that generates the critical pres-
sure, may be considerably lower than is generally believed. The reason for the lower value of the critical
current is the shift of the whole curve of phase equilibrium in the presence of a strong electric current.
This shift arises due to the additional work performed against ponderomotive forces, which prevents the
formation of the nucleus of a phase with the lower value of electric conductivity. In case of the van der
Waals model of the critical state the value of the critical current calculated taking into account the shift
of the phase equilibrium curve is 2—3 times less than the critical current determined when this shift is
neglected. It is shown that under these conditions there occurs a splitting of the phase-equilibrium curve
into two separate curves for direct and inverse phase transitions. Depending upon the mutual location
of both curves two opposite situations may occur. The first case is that of regular hysteresis when there
exists a domain of stability of both phases and the realization of a particular phase is determined by the
initial conditions and the direction of the process. In the second case there exists a region where both
phases are unstable. This region is considered as a domain of the fragmentation of material into small
particles. This work determines various thermodynamic parameters: latent heat of the phase transition,
shift of the phase-equilibrium curve, and the size of the critical nucleus. It is shown that the value of the
shift of the phase-equilibrium curve under the current densities employed in the experiments with ex-

ploding wires is of order 1 ~ A mechanism for the formation of small particles is suggested and theoreti-
cal results are compared with experimental data.

I. INTRODUCTION

An eKcient method for conversion of electric energy
into other kinds of energy is the fast discharge of power-
ful electric currents through the conductors. One of the
widely used methods in technology is the electric explo-
sion of conductors. ' In an electric explosion the conduc-
tor passes through various phase states during relatively
short-time intervals and its physical parameters vary over
a very wide range. Naturally such dynamics cause vari-
ous physical phenomena, which were investigated in a
number of works. Nevertheless, until recently the
main efforts were directed towards the analysis of various
types of thermal and hydrodynamic instabilities initiated
in the vicinity of the conductor's surface and the calcula-
tions of the characteristic times of the development of
these instabilities. One of the most comprehensive inves-
tigations of these problems was reported in Ref. 5.

In the present investigation we analyze the thermo-
dynamics of phase transitions in a high-density current-
carrying conductor far from its surface. The importance
of this problem is associated with the significant contri-
bution of the related phenomena into the processes ac-
companying the regular electric explosion of conductors
and with the feasibility to create special conditions when
these phenomena play the dominant role, e.g. , enhanced
cooling of the conductor's surface.

The results of the present investigation can be summa-

rized as follows. Denote by the index "2" the phase with
higher conductivity o.

2 and by index "1"the phase with
lower conductivity 0, It is shown that the phase equilib-
rium curve for phase transition from phase 2 to phase 1

(2~1) does not coincide with the phase equilibrium
curve for the phase transition 1 —+2.

This effect arises due to the different value and sign of
the work performed by the ponderomotive forces in the
case of formation of the nucleus with the lower value of
electric conductivity in the medium with the higher value
of e1ectric conductivity (i.e., 2 —+1 phase transition) and
the work performed by the pondermotive forces in the
case of inverse phase transition. It is shown that both
phase equilibrium curves for the 2~1 and 1~2 phase
transitions are shifted with respect to the phase equilibri-
um curve in case of current free conductor towards the
spinodal line of the phase with higher conductivity.
Hereafter the spinodal line is defined as a boundary of
thermodynamic stability of the phase and the phase "2"
is assumed to be a high-pressure and a low-temperature
phase.

Thus, if one neglects the Joule heating, the electric
currents in the conductor stabilize the phase with a
higher value of electric conductivity. It is shown that the
spinodal lines of phases 1 and 2 coincide with the spino-
dal line of the current free system. Therefore, the phase
equilibrium curve for the 2~1 phase transition intersects
with the spinodal line of phase 2 at pressure p, (I) &p,
and temperature T,(I) & T, , where p, and T, are the crit-
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ical pressure and temperature of a given material (see Fig.
1). En case when the temperature T ) T, (I), the system
can be "stretched" up to the boundary of its thermo-
dynamic stability. Similarly when p )p, (I), the phase
equilibrium curve is located beyond the spinodal line of
phase 2 at all temperatures and inside this pressure range
the system can be overheated up to its spinodal line.

Pressure in the conductor depends upon the value of
electric current and in the magnetostatic approximation
can be determined from the expression

I2 r2
p(I)=JP + 1—

k ro ro

where po is the pressure at the surface of a conductor, r is
the distance from the center, k is the coefficient depen-
dent upon the system of units, and ro is the radius of the
conductor. The above arguments were employed to re-
normalize the value of the critical current. Instead of the
regular definition of the critical current,

the critical current must be determined as a root of the
equation

I=ro+kp, (I) .

Denote by I, the electric current defined by expression
(2) and the electric current defined by expression (3) by
I, . Then it is shown that, in case of the van der Waals
model of the critical state (see Ref. 6, Chap. 14, Sec. 152),
the critical current I, may be considerably lower than the
critical current I, .

The next result is associated with splitting of the phase
equilibrium curve of the current free system into the two
separate curves for the 2—+1 and 1~2 phase transitions.
It is shown that, depending upon the mutual location of
both curves, two opposite situations may occur. The first
case is when the phase equilibrium curve for the 2~1
phase transition is located at a higher-temperature region
than the phase equilibrium curve of the phase transition
1~2 at the same pressure. This is the case of a regular
hysteresis when there exists a domain of stability of both

phases which is located between the phase equilibrium
curves for the phase transitions 2—+1 and 1~2. The
realization of a particular phase is determined by the ini-
tial conditions and the direction of the process.

In the second case, when the phase equilibrium curve
for the 2~1 phase transition is located at a lower-
temperature region than the phase equilibrium curve of
the phase transition 1~2 at the same pressure, there ex-
ists a region between these two curves where both phases
are unstable. This region is considered as a domain of the
fragmentation of the material into small particles. The
peculiar feature of this domain is that within it there exist
critical nuclei of finite size for the phase transitions from
phase 2 to phase 1 and from phase 1 to phase 2 simul-
taneously. Therefore, the stable growth of the nuclei in
this domain is possible only until the growing nucleus
remains less than the critical nucleus for the inverse
phase transition. At some temperature the sizes of the
critical nuclei for the phase transitions from phase 2 to
phase 1 and from phase 1 to phase 2 coincide. In this
work we calculate this temperature and determine the
size of the critical nucleus at this temperature.

The determined size of the critical nucleus is compared
with the size of small particles formed in the experi-
ments with exploding wires. In this work, on the basis
of experiments we determine the value of the effect of
the shift of the fusion temperature and the width of the
domain of fragmentation of the material into small parti-
cles. It is shown that the value of the shift of phase equi-
librium curve under the current densities employed in the
experiments is of order I.

The paper is organized as follows. In Sec. II, we derive
the conditions for adiabatic formation of a nucleus when
the analysis can be performed with the aid of a thermo-
dynamic approach and determine the equations of the
phase equilibrium curves in current-carrying conductors.
In Sec. III, we calculate critical currents in normal con-
ductors. In Sec. IV, we analyze the peculiarities of the
phase transitions associated with the existence of the two
phase equilibrium curves.

II. EQUILIBRIUM OF PHASES
WITH DIFFERENT CONDUCTIVITY CARRYING

HIGH-DENSITY CURRENTS

p ii
Consider an infinitely long cylindrical conductor of ra-

dius ro carrying an electrical current of density j. As-
sume that the conductor is suSciently thin and that its
radius satisfies the condition

2c voro(
27TO

(4)

p, (I)

B S (

FIG. 1. Bo is the phase equilibrium curve p& =p~ in the ab-
sence of' electric current. B is the phase equilibrium curve
pz=p&+Pv& for the phase transition 2~1 in the presence of
electric current and 5 is the spinodal line (Bp/Bv ), , =0.'2

where c is the velocity of light, o. is the electric conduc-
tivity, and ~0 is the duration of current impulse.

Condition (4) allows one to neglect the skin e6'ect and
to assume the homogeneous current distribution along
the cross section of the conductor. Assume also that the
nucleus of the new phase with conductivity o. , is formed
far from the conductor surface and that the characteristic
time ~, of the formation of the nucleus of size a satisfies
the condition
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js 1 BAE=———,H=VX A,o. c Bt
' (6)

where E is the electric field, H is the magnetic field, j, is
the "adiabatic" part of the total current density j=o.E
which satisfies the equations

jSVX —=0, 7 j,=O
0

(7)

and does not depend upon time explicitly, i.e.,
i,=i,[r,a (r)].

The condition for adiabatic behavior of the system is
that the value of nucleus growth rate is small and it is
possible to neglect all the quantities proportional to this
value in the solution of the electrodynamic problem.
Substituting (6) into the electrodynamic equations we ar-
rive at the following conditions for the validity of the adi-
abatic regime of nucleation

0.2aa «c, a «0.2a,
which are satisfied in the wide range of the parameters.
When the latter conditions are satisfied the configuration
of the electric field is determined from Eq. (7) and

VXH= j, .
c

In the conditions of the adiabatic regime, which is as-
sumed in this investigation, the work of the formation of
the new phase can be determined as a difference between
the free energy of the system before and after formation
of the nucleus.

Consider a simple isotropic thermodynamic system
with the free energy per unit volume in the absence of the
electromagnetic field f(p, T) where p is density and T is
temperature. In the regime when the value of the electri-
cal current is fixed, the free energy per unit volume is
determined by the following expression (see Ref. 8, Chap.
14, Sec. 33):

f=f(P T) 8—H

Then the work of the formation of the nucleus of the new
phase 8'can be found from the equation

Hp —H„
+(nu. I uo)—

(10)

where E, is the contribution of the density gradient at the

a 2~oa
7g )) y 'T~ && ip

a c

We also neglect the mass cruxes through the surface of
the nucleus that allows one to neglect the effect of elec-
trodynamic induction. The relative magnetic permeabili-
ty of the media p is assumed p= I. Under these assump-
tions we may seek for the solution of the electrodynamic
problem in the form

interphase boundary to the free energy, Ho and H„are
magnetic fields before and after formation of the nucleus,

po,p„and po, p„are the thermodynamic pressure and
chemical potential before and after formation of the nu-
cleus which are related with the function f(p, T) as fol-
lows:

1
V,q =X„

Pn Po

where N„ is the number of molecules of the nucleus of
the new phase, p„and pp are the densities of the "new"
and "old" phases averaged over the volume of the nu-
cleus.

Using the expression for V,z and substituting the ex-
pansion p„(p„)=AMO(po)+Uo(po —p„) into expression
(10), we arrive at the following formulas for the work of
the formation of the nucleus of a new phase:

r

H() —H„
W=aS+N„(p, „—po)+ Wr, Wr = f dr .

According to the derived expression there exist two
mechanisms through which the electric current affects
the phase transition. The first mechanism is associated
with the pressure change as given by expression (1). This
mechanism does not alter the phase equilibrium curve
but changes only the temperature of the phase transition
due to the pressure change.

The second mechanism is associated with the addition-
al term JY& in expression (11) and causes the shift of the
phase equilibrium curve. It is the contribution of this
term that results in all the effects described in this work.
Generally the nucleus formation work S'& depends upon
its geometry and the distance between the nucleus and
the conductor surface.

Consider the case when the longitudinal and transver-
sal dimensions of the conductor are approximately equal
and the nucleus is formed at a distance d from the center
of the conductor. Assuming that d «ro and a «ro,

f(p, T)=pp(p, T) p(p—, T) .

To simplify the problem we adopt the "disperse" mod-
el of the formation of a new phase ' when the change of
the initial state of the system occurs in the nucleus of the
new phase and in the additional volume V,~ occupied or
vacated by external phase due to the difference between
the specific volumes of the external and the new phases.
In the remaining volume of the system the thermodynam-
ic parameters p and p do not change. The variation of
the thermodynamic parameters inside the nucleus is
neglected, i.e., the nucleus is characterized by the
volume-averaged value of the thermodynamic parame-
ters. The contribution of the density gradient at the in-
terphase boundary to the free energy F, according to the
"disperse" model can be represented as F, =o.S, where o,'

is a coefficient of surface tension and S is the surface area
of the nucleus. The additional volume occupied by the
new phase V,& is determined by the expression
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~o ~n
o.„+2oo

(13)

where cro is the conductivity of the medium where the nu-
cleus was formed, and o.„ is the conductivity of the nu-
cleus.

If the length of the conductor L ))ro, then in expres-
sion (12) there appears the term proportional to
1 (nL/r )o. The expression (12) for IVf is still valid but
with the logarithmic accuracy the coefficient g is given by
the formula

where a is the characteristic size of a nucleus, it can be
shown (see the Appendix) that, with an accuracy of order
(d /ro ) and (a /ro ), the nucleus formation work W& is
given by the expression

IVr =4p gV,
where V is the volume of the nucleus, p =I /k ro is the
pressure in the center of a conductor in a magnetostatic
approximation when the pressure at its surface po =0 [see
(1)]. The value g is determined by the expression

Similarly, assuming the spherical shape of the critical nu-
cleus in order to ensure its maximum metastability, for an
inverse phase transition 1~2 the critical size of this nu-
cleus and the phase equilibrium curve are determined
from the following expressions:

2(x V2
Ql2=

Pl P2 P V2

Pl P2+P V2 ~

where p'=4p giz and

(18)

(19)

where a l is a transversal size of a nucleus which ensures
its growth in the transversal direction, a2 is the same size
of the nucleus which ensures its growth in the direction
of the electric current, p =4p $2, and $2, is given by ex-
pression (15).

It can be seen from expressions (16) that the phase
equilibrium curve for the phase transition 2 —+1 is deter-
mined by the following relation:

P2=Pl+PV l .

~o ~n=2 lno.„+2oo ro
(14)

~2 L
g', ~=2 ln

o.2+ 20.
l "o

It is readily seen from expressions (12)—(14) that for
phase transition from the phase with higher conductivity
to the phase with lower conductivity the work 8 f is pos-
itive. The ponderomotive forces prevent the formation of
the nucleus because of the reduction of the inductance of
the system. In the case of the inverse phase transition,
the inductance of the system increases and the work 8'f
is negative.

As before, we denote by the index "2" the phase with
higher conductivity and by the index "1"the phase with
lower conductivity. We wi11 consider such geometry of
the nucleus of phase "1"when the absolute value of 8'f
is a minimum and such geometry of the nucleus of phase
"2" when the absolute value of 8'f is a maximum since,
for such nuclei, the metastable phase is most unstable.

In long conductors the minimum of the absolute value
of the nucleus formation work is attained for thin long
nuclei of length b ))ro oriented in the direction of the
conductor axis. Assume that the shape of these nuclei is
close to cylindrical and that they are formed at a distance
d (&ro from the axis of a conductor. Then their forma-
tion work is given by expression (12), where g can be
found from the expression

It can be readily seen from formulas (17) and (19) that
the electric current in a conductor stabilizes the phase
with higher conductivity and causes shift of the phase
equilibrium curve towards the spinodal line of this phase.
The condition for thermodynamic stability in a current-
carrying conductor reads

f&o
Bp

and, as can be seen from formula (9), the boundaries of
the stability domain coincide with the spinodal line of the
current-free system. Taking into account this fact deter-
mines the values of the critical currents for which the
high-temperature phase can be overheated up to the
boundary of its thermodynamic stability provided that aH

the alternative phases have significantly lower conductivi-
ty.

III. CRITICAL CURRENTS IN CONDUCTORS

The values of critical currents can be determined from
expression (17) which we rewrite for this purpose as fol-
lows:

4g
j [p P(p', T)]dp'—

PI P Pl
(20)

Ql=, Q2=
P2 P1 PV1 P2 Pl PVl

(16)

The critical dimensions of such a nucleus can be deter-
mined from the conditions BWf/db =0 and BR'&/BQ =0,
where a is transversal size of a nucleus. The latter condi-
tions and formulas (11) and (12) yield the critical dimen-
sions of the nucleus:

p =P, (&), (21)

Expression (20) determines the phase equilibrium curve
in the current-carrying conductor p =p2, (I, T) for the
phase transition 2~1 provided that the equation of state
P(p, T) is known. Here pi and pz are equilibrium densi-

ties of phases 1 and 2 which are the roots of equation

p =P(p, &).
If the equation of the spinodal line of phase 2 is known,



14 782 YU. DOLINSKY AND T. ELPERIN

then pressure can be eliminated from Eqs. (20) and (21)
and the critical temperature as a function of electric
current T, = T,(I) can be found. At temperatures
T~ T, (I) a high-temperature phase can be "stretched"
up to its spinodal line. Similarly eliminating temperature
from Eqs. (20) and (21) yields critical pressure p, =p, (l)

Equating relation (1) which determines pressure in a
conductor in the magnetostatic approximation to the
critical pressure p, (I), we arrive at definition (3) of the
critical current I, for a conductor with a free surface
(p0=0). The critical current I, does not depend upon
temperature and is a property of a given conductor. It is
shown below that the critical current I, is considerably
less than the critical current I, determined by expression
(2).

Determine the parameter y =I, /I, in case of the van
der Waals model of the critical state (see Ref. 6, Chap.
14, Sec. 152). The equation of state is given by

~(rl, r) = —A r 2Brrl+4C—rl (22)

3/2
m= —A~- B 4

C1/2 3 61/2 (24)

Taking into account that, at the spinodal temperature
r =r, (~), which is determined by expression (24),
g2(r)=(Br/6C)' and g, = —2qz(r), and using expres-
sions (23) and (24) we arrive at the following expression
for the critical temperature as a function of the electric
current:

where m.(rj, r) =p/p, —1, i)=p/p, —1, r= 1 —T/T, and
coefFicients A, 8, and C are the parameters of the model.
Hereafter we consider the case g «1, i.e., the vicinity of
the critical point. The equation of the binodal line (20)
can be written as follows:

'92

J [nm. (g', r)].d—g'= —m. , (23)
~1

where 5.=p/p, . The equation of the spinodal line for
this model reads

values of the parameters of the problem: o 2)&o.„A =4,
B =2, C =—', (the values of parameters A, B, and C are
adopted equal to those of the van der Waals gas). As dis-
cussed above, the necessary value gz, is given by expres-
sion (15) since we deal with the phase transition from the
high conductivity phase into the low conductivity phase.
Then /=0. 25 and solution of Eq. (26) in this case is

q =0.45.
Therefore, the value of the critical current I„deter-

mined by taking into account the shift of the phase equi-
librium curve, is significantly less than the value of the
critical current I, determined by the relation for the criti-
cal pressure (2). In this connection it is of interest to
study this effect using the equation of state of real metals.

IV. PECUI.IARITIKS OF PHASE DYNAMICS

PU1 0
~»(p) = T,(p)

0
(27)

where v, 0 and v20 are the specific volumes of phases at
the phase equilibrium curve To(p); A,o is the specific latent
heat of the phase transition from phase 2 to phase 1;
Ao= To(S i

—S2 ); S i and S2 are specific entropies of
phases 1 and 2 at temperature To(p).

Similarly, using expression (19) for the phase equilibri-
um curve 1 —+2, we find that

Consider now effects which are caused by the oc-
currence of the two-phase equilibrium curves determined
by expressions (17) and (19) depending upon their mutual
location. The location of these curves can be character-
ized by the temperature shift at a given pressure p with
respect to the phase equilibrium curve of the current free
system To(p):

ii'2, (p) = T2, (p) —To(p) .

In the linear approximation formula (17) yields the fol-
lowing expression for 1~&,(p):

C 1/2

1/23

PV2, 0
~,z(p) = —To(p)

0
(2g)

or

C 1/2
T (I)=T 1—c c 31/2 B IO

c

Expressions (27) and (28) show that both phase equilibri-
um curves are located at the same side of the binodal line
p1=p2. The following relation is valid for values K,2 and
K21'.

Formula (25) provides the value of temperature at which
the phase equilibrium curve (23) intersects with the spi-
nodal line at a given electric current. Substituting (25)
into (24) yields the value of the corresponding pressure.
Equating thus determined pressure p, (I) to the pressure
in a conductor given by expression (1), we arrive at the
equation which determines the parameter y =I, /I, :

4 AC'" 4
9/4

31/2B21 3
/++ C /g/~ /2 1 ~221

Equation (26) shows that y(g) is a monotonically decreas-
ing function of g. In order to demonstrate the magnitude
of the effect, determine the value y at the following

ki2U2, 0
K12 — K21

2iVi 0

The behavior of the system depends essentially upon the
value of the parameter

ki2" 2, o

421U i, o

Taking into account that phase "2" is a low-temperature
phase and phase "1"is a high-temperature phase, it can
be readily established that the condition 0 & 1 implies a
regular hysteresis when the phase transition from phase
"2"to phase "1"occurs at a higher temperature than the
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both phases (a low-temperature phase and high-
temperature phase) are stable. The existence in this
domain of one of the two phases depends upon the initial
conditions and the direction of the process.

In the opposite case when 0 & 1, the system is overheat-
ed with respect to the low-temperature phase but may
remain overcooled with respect to the high-temperature
phase. In this case, in the temperature range T, which is
determined by the relation

T —Tp(p)1« 0,

there occurs a peculiar situation when both phases are
simultaneously unstable.

The dynamics of the system is determined by the size
of the critical nucleus a2i —=a2 for a transition from phase
2 to phase 1 and by the size of the critical nucleus a &2 for
the transition from phase 1 to phase 2. From relations
(16) and (18) it can be established that

a»(p)=
2a(u, /u, )

p(8 —1)—2a/a~,
(29)

As can be seen from the formula (29), the coexistence of
the critical nuclei of both phases (a,2) 0 and a2, )0
simultaneously) is possible only if 8) 1.

From the general dynamic theory of nucleation (see
Ref. 11, Chap. 12, Sec. 99) it follows that the stable
growth of a nucleus of a new phase can occur only until
its size remains smaller than the size of the critical nu-
cleus of the alternative phase.

In order to study the dynamics of nucleation in the sit-
uation when both phases are metastable, it is necessary to
take into consideration that the size of the critical nu-
cleus formed inside a metastable phase depends upon the
size of the domain occupied by this phase. However, the
above analysis is valid only if the external phase occupies
almost all the wire and under the fixed value of electric
current. Therefore, the consistent dynamic theory of nu-
cleation under these conditions is a challenging problem
which is beyond the scope of present research which em-
ploys only general thermodynamic relations.

The distance between two phase equilibrium curves for
the inverse and direct phase transition b, (p)=a&z —~z,
can be determined from the following formula:

PU1, 0&(p)=T ' (8—1) .

If 6 is sufficiently high to provide the existence of the
domain with the small size of the critical nuclei aI2 and
a2, and to support therefore the high nucleation rates, it
may be anticipated that this domain has a profound
inhuence upon the dynamics of phase transition. Besides,
the above phenomenon may constitute the separate

inverse phase transition. Under these circumstances in
the temperature range T, which is determined by the rela-
tion

T —TG(p)0« 1,

mechanism of the fragmentation of the system into small
particles.

The temperature range where a, 2 =a2, is of particular
interest. Consider the fusion process when U, = v 2.

0 0

Then expression (29) yields

4(za0=a, 2=a2i =
p(8 —1)

(3o)

Note that at temperature ~2„az, = ~ and

a,2=2a/p(8 —1); similarly, at temperature a, 2, a,2= ~
and a2, =2a/P(8 —1).

The above-discussed mechanism changes not only the
condition for phase equilibrium but also alters
significantly the energy balance in the system. The latent
heat of phase transition from phase "2" to phase "1"
q(2~1) is determined by the expression

q(2~1) = W, —W'~,

where 8'is a specific enthalpy 8'=@+TS. Taking into
account expression (17), we arrive at

q(2 —+1)= —pu, +(Tp+~2j )

X I SI ( Tp + lC2I ) S2 ( Tp +K2I ) ]

Expanding the latter expression into the series of the pa-
rameter ~, we find that

Tp
q(2~1)=kp+(c& I c& 2)pu~ p

0
(31)

where c is a specific isobaric heat capacity. Similarly,
for the inverse. phase transition we determine that

~0
q(1~2) = AG+(cp, 2 cp 1)pu1, p ~

0

As can be seen from these expressions, the latent heat of
the phase transition in both cases changes in the same
direction depending upon the relation between the
specific heat of both phases. The absolute value of the la-
tent heat of the phase transition decreases if c i & c 2 and
increases if c 2) c

In order to obtain the numerical values of the above-
determined parameters we used the data presented in
Ref. 7 where the size of particles obtained in exploding
aluminum, copper, and tungsten wires was measured.
The maximum value of the electric current employed in
these experiments was I0 =20 kA, the cross-section area
of the wires was S =0.14 mm, and its length was I =4
cm. Since the maximum value of the current is attained
in the vicinity of the melting point, it is legitimate to use
this value for the calculations of the parameters given by
the above derived expressions. Then employing these
data and assuming that crz»ul, so that formula (17)
yields g'2, =0.25, we obtain that p=2. 85 Kbar. The

The temperature a, (reckoned from the temperature Tp),
at which the sizes of the critical nuclei of both phases are
equal, can be derived from the above formulas:

1+0
Ks =@2'
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TABLE I. The characteristic values for relative shift of the fusion temperature ~»/To determined from Eq. (27) and the size of the
critical nucleus ao calcu1ated from Eq. (30).

Al
CU
W

p (kg/m )

density in
solid
phase

2.70x10'
8.93 x10'
5.96x10'

A, (KJ/mole)
latent heat
of phase
transstion

10.70
13.01
35.20

a (erg/cm )

coe%cient
of surface

tension

914
1351
1750

I
(at.

weight)

26.980
63.546

183.85

~2, /To
relative shift

of fusion
temperature

0.265
0.150
0.250

a, (A)
radius of
critical
nuc1eus

2.74
4.05
5.25

Measured
characteristic

radius of
formed

particles (Ref. 7)
(A)

200
200
100

characteristic values for relative shift of the fusion tem-
perature ~2, /To determined from expression (27) and the
size of the critical nucleus ao calculated from expression
(30) are presented in Table I. Note that the magnitudes
of the parameters presented in Table I demonstrate the
significance of the above-considered effects.

V. CONCLUSIONS

The above-presented analysis demonstrated the oc-
currence of several peculiar effects which accompany
phase transitions in current-carrying conductors:
significant reduction of the magnitude of critical
currents, splitting of the phase equilibrium curve into two
curves for the direct and inverse phase transitions, forma-
tion of the domain of instability of both phases, and re-
normalization of the latent heat of phase transition. The
above phenomena are essential for understanding the
processes occurring in the conductors in the presence of
high electric currents and, in particular, for understand-
ing the mechanism of the formation of ultrafine particles
in exploding wires. It is we11 known that the previously
suggested mechanisms of small-particle formation in ex-
ploding wires cannot explain the formation of ultrafine
particles which was observed in the experiments. Thus,
the sizes of small particles formed during condensation of
an expanding metal cloud are of order 10 m (see Ref.
13, Chap. 8, Secs. 12 and 13). The characteristic lengths
of various magnetohydrodynamic instabilities which
occur in exploding wires and may, in principle, cause for-
mation of small particles, are even higher. ' Hence, it is
of particular interest to study the dynamics of fusion and
to study this process numerically taking into account the
above-considered effects.

The theoretical value of the above-presented analysis
stems from the fact that the obtained results are fairly
general. Even though in every specific case the developed
approach requires additional modifications for its adapta-
tion, it is conceivable to indicate the fields where there
exists similarity with the above-performed analysis.
Many of the aspects of the above-considered problems
have direct similarity with the problem of phase transi-
tion of the first kind accompanied by change of dielectric
constant in strong electric fields. ' These problems in-
clude melting (crystallization) and evaporation (conden-
sation) of liquids with high dielectric constant in strong
electric fields, chemical reactions in the presence of elec-

tric fields, and polymerization in a weakly ionized medi-
um.
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APPENDIX: CALCULATION
OF NUCLEUS FORMATION WORK

Taking into account expression (8), the expression for
nucleus formation work (11)can be represented as

jo(r) jo(r') —j„(r) j„(r')
2 '

I

—'I
drdr', (Al)

j„(r)=j&(r)g(a r)+j 2(r)g—(r —a),
where

3On
ji(r) =

+2 jo0 n+20o

(A2)

Q
jz(r) = jo 1 —g (3 cos 0—1)

r 3

Q—3(egosinO cos0

g is determined by exPression (13), coso=r jo/rjo,

1 if x+0
0 ifx(0'

r is the distance from the center of the nucleus, e~ is a
vector in the plane perpendicular to the direction of elec-
tric current jo. Note that electric current jo before for-
mation of the nucleus remains constant due to the ab-

where jo(r) and j„(r) are current density distribution

j,(r) before and after formation of the nucleus, respec-
tively, which are determined from Eq. (7).

Consider the spherical nucleus of radius a «ro. As-
sume also that this nucleus is formed at distance d «ro
from the axis of a conductor. Under these conditions, in
the calculations of current density distribution, the medi-
um can be assumed to be infinite and the solution of Eq.
(7) for j„(r) is as follows:



47 THERMODYNAMICS OF PHASE TRANSITIONS IN CURRENT-. . .

sence of the skin effect.
Consider a case when the longitudinal and transversal

dimensions of the conductor are approximately equal.
Assume for simplicity that the conductor is of a spherical
shape and that a spherical nucleus is formed far from the
surface of the conductor, i.e., d «ro. Then, in the zero-
order approximation in parameter d/ro and with the ac-
curacy 0(a /ro ), expressions (A 1) and (A2) yield formulas
(12) and (13). In the case of a long conductor in the same
order approximation in the parameters d/ro, a/ro, and

with the logarithmic accuracy in L/ro, expressions (Al)
and (A2) yield formulas (12) and (14).

Formation work of a thin and long nucleus when its
length b »ro is calculated directly from Eq. (8) and ex-
pression (11) for 8'r. Assume that the nucleus is of a cy-
lindrical shape. In the zero-order approximation in the
parameters a /6 and d/ro we can neglect edge effects and
consider that the nucleus is formed at the axis of a con-
ductor. Then with the accuracy 0(a/ro), we arrive at
expressions (12) and (15).
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