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A comparative study is performed of the ordering dynamics and spinodal decomposition processes in
two-dimensional two-state and three-state ferromagnetic Potts models with conserved order parameter.
The models are investigated by Monte Carlo quenching simulations on both square and triangular lat-
tices and the evolving order is studied via the excess energy, the domain-size distribution function, and
the density of isolated diffusing particles, which facilitate the coarsening process. The growth law that
describes the time-evolution of the linear length scale, R(t), of the ordered domains is found at late
stages to be algebraic, R (t) —t", with the Lifshitz-Slyozov value of the exponent, n = 3, for both two-

and three-component order parameters. The domain-size distribution function is found to obey dynami-
cal scaling. The results suggest that, similar to the case of nonconserved order parameter, there is a sin-

gle universality class describing the cases of conserved order parameter independent of the number of
components of the order parameter. In the asymptotic regime, the topological difference in the domain-
boundary network between the vertex-free two-state model and the vertex-generating three-state model
does not affect the growth exponents but only the nonuniversal amplitudes. Details are revealed of the
ordering mechanism controlled by diffusional processes involving broken Potts bonds and isolated Potts
spins. A transient regime can be identified as one where broken Potts bonds in the two-state model and
broken Potts bonds (isolated Potts) spins in the three-state model diffuse along the domain boundaries
and an asymptotic late-stage regime where isolated Potts spins perform a long-range diffusive process
within and across the domains.

I. INTRODUCTION

Spinodal decomposition' is the process displayed by
a system that phase separates after having been quenched
into an unstable state by a sudden change in thermo-
dynamic variables, such as temperature or chemical po-
tential. After the quench, the system is unstable to long-
wavelength fluctuations, there is no nucleation barrier,
and the system coarsens at late stages by an evaporation-
condensation process, as described by the classical theory
due to Lifshitz and Slyozov. ' During the spinodal-
decomposition process, the system develops order in
different domains corresponding to the various com-
ponents of the order parameter. The domains are
separated by a domain-boundary network carrying the
nonequilibrium excess free energy, which provides the
driving forces for the separation process. It is the curva-
ture of the boundaries which controls the growth of the
domains. The late stage of the growth is governed by
long-range diffusion of material across the domains. Ac-
cording to the Lifshitz-Slyozov theory, the time-
dependent linear length scale of the growing domains ex-
hibits an algebraic growth law

R(t)-t'

i.e., with a growth exponent of value n =
—,'.

Spinodal decomposition and the applicability of the

Lifshitz-Slyozov growth mechanism are usually associat-
ed with cases where the order parameter of the system is
a conserved quantity. This need not be the case, howev-
er, since the only requirement is that long-range
diffusional processes control the asymptotic coarsening
process. For many systems, e.g. , Quid mixtures, this re-
quirement automatically implies that the order parameter
is conserved. However, in systems where the domains
have a superstructure and separate into phases of
different density, long-range diffusion is needed to fa-
cilitate the ordering process, and the Lifshitz-Slyozov
growth law should apply even though the order parame-
ter is not conserved. More complicated cases arise when
nonconserved order parameters are coupled to conserved
modes. ' In the present work, we shall consider spino-
dal decomposition processes for a conserved order pa-
rameter which is not coupled to other modes.

The standard case of spinodal decomposition consid-
ers a system with two order-parameter components
(p =2), e.g. , a binary fiuid mixture or a binary alloy. In
this case, by simple topological arguments, the domain
boundaries are (d —I)-dimensional surfaces and no ver-
tices can form. The question arises as to the effect of ver-
tex formation on the growth dynamics in the case of
p )2, e.g. , for a ternary alloy. We shall address the ques-
tion in the present paper by performing a comparative
study of two-dimensional model systems undergoing spi-
nodal decomposition and phase separation in the cases of
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both a two- and a three-component conserved order pa-
rameter. %'e provide evidence from computer-simulation
calculations on the two-dimensional two-state (p =2) and
the two-dimensional three-state (p =3 ) ferromagnetic
Potts models with conserved order parameter that the
number of components is irrelevant for determining the
asymptotic growth exponent.

The question of the inAuence of the number of com-
ponents is of fundamental interest in relation to a possible
universal classification of systems undergoing nonequili-
brium ordering processes. It is now well established in
the case of a nonconserved order parameter, ' "where the
domain growth is controlled by short-range diffusion pro-
cesses, that the late-stage ordering process is described by
the classical Lifshitz-Allen-Cahn growth law

R (t)-t' (2)

with a rather low growth exponent n =—'. In the present
paper, we are also going to investigate this transient
behavior, which turns out to be more dominant the more
order-parameter components are involved in the ordering
process. By studying the formation of kinks at the
domain boundaries and the density of material diffusing
inside the domains, respectively, we provide some insight
into the microscopic phenomena controlling the growth.

Recent theoretical work on the dynamics of spinodal
decomposition has mainly focused on systems with two
components. A number of field-theoretical, analytical
calculations ' ' ' including renormalization-group cal-
culations ' have been presented. The numerical work
is based either on numerical solutions to phenomenologi-
cal models, such as the Langevin and Cahn-Hilliard equa-
tions, ' ' ' ' ' ' nonlinear coupled-map equa-
tions, ' Monte Carlo renormalization-group calcula-
tions, ' or conventional Monte Carlo simulations on ki-
netic lattice models. ' ' ' Some of the problems in-
volved in dynamics of ordering in conserved multicom-

i.e., with a growth exponent of value n =
—,', independent

of spatial dimension, material parameters, details of the
interactions, and the number of components of the order
parameter. Hence the universality class for noncon-
served order parameters is very large. The case of con-
served order parameters is much more controversial, al-
though it now appears from both experiment, '
theory, ' ' ' and numerical work ' ' that the
growth law in Eq. (1) applies independent of spatial di-
mension, material parameters, and details of the interac-
tion potentials. It still remains to be investigated what
the effect of the number of order-parameter components
may be.

One reason why the case of conserved order parameter
is more difBcult to resolve as far as the late-stage ordering
dynamics is concerned is that the growth is hampered by
intermediate-stage transient effects which slow down the
ordering process. A dominant transient effect is caused
by growth via diffusion along the domain-boundary net-
work which can be shown to lead to another algebraic
growth law ' '

(3)

II. MODEL AND METHOD

A. Potts model

The ferromagnetic Potts model is defined by the Ham-
iltonian

&= —J+5 (4)

with J & 0, and the summation is extended over nearest-
neighbor pairs on either a square or a triangular lattice.
The Potts spin variable o; takes on the values 1,2 for the
two-state model (the Ising model) and 1,2,3 for the three-
state model. The lattices are subject to periodic bound-
ary conditions, and two different lattice sizes X =L XL
have been considered corresponding to L =200 and 400.
The bulk of the statistical analysis has been performed on
simulation data obtained from the lattice with 200X200
sites. The critical temperatures are J/kz T, =0.881 373 6
and 0.549 300 8 for the two-state model on the square and
triangular lattices, respectively, and J/k& T, = 1.005 05
and 0.6309447 for the three-state Potts model on the
square and triangular lattices, respectively.

B. Quenching simulations and measures of growth

For both the two- and three-state models, simulations
have been performed corresponding to quenches from
infinite temperature and completely disordered states to a
temperature T=T, /2 well within the ordered phase.
The microscopic dynamics is that of Kawasaki nearest-
neighbor pair exchange, which assures that the order pa-
rameter is conserved both locally as well as globally. It is
important for the spinodal-decomposition problem that
the order parameter be conserved locally. All quenches
are done at critical conditions in the sense that the order
parameter is zero; i.e., the different Potts states are equal-
ly populated. In order to obtain ensemble averages, a
large number of independent quenches (typically 30—100)
have been performed and used to derive averages.

The nonequilibrium growth phenomena following the
thermal quenches are monitored as a function of time by
a number of measures. First, we have recorded typical

ponent systems were addressed in an early computer-
simulation study by Grest and Sahni, " who found very
low growth exponents n =0.2 in the p =3 and p =6 state
conserved Potts model. As we shall discuss in the present
paper, these findings are related to transient effects.

In Sec. II we describe the simulation methods that we
have applied to investigate the spinodal decomposition
processes in the two- and three-state Potts models. This
section also includes a brief discussion of choices of time
parameters in stochastic models of ordering dynamics.
The results for the ordering dynamics are described in
Sec. III in terms of microstructure evolution, growth
laws, and dynamical scaling. A brief account of some of
this work was published in Ref. 51. This section also
contains some detailed results related to the microscopic
growth mechanism. The results obtained are summa-
rized and discussed in the context of universality in Sec.
IV.
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microconfigurations to reveal how the domain-boundary
network is formed and how it coarsens. Second, we have
calculated the total nonequilibrium excess internal energy
bound in the entire boundary network and from this
quantity derived, via the Binder-Stauffer scaling as-
sumption, a linear length scale

10'

10~ =

MCS/S
104—

103;

The equilibrium energies & && T needed to calculate
Rz(t) have been obtained from exact analytical expres-
sions in the case of the two-state model ' and have been
derived by accurate equilibrium simulations in the case of
the three-state model.

Third, for the three-state model we have calculated the
time-dependent domain-size (area) distribution P(A, t),
where 2 is the area of a domain of the same Potts order.
From P( A, t) another time-dependent length scale can be
determined,

R„(t)=[A (t)]'"

f A(t)P(A, t)dA

which is a measure of the average linear extension of a
domain. In Eq. (6) we have introduced a lower cutoff,
which we shall return to later. We have not used R„(t)
as a length-scale measure for the two-state model since in
that case it is less reliable because of the very convoluted
and percolative structure of the growing domains. Even
in the case of the three-state model, we find that the
domain pattern is somewhat convoluted and R„(t) is a
less reliable length-scale measure than RF ( t)

C. Relations between time scales
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FIG. 1. Log-log plot of the relation between the two time
scales MCS/S and MCBB/S involved in simulation of the two-
state (&&) and three-state (+ ) Potts models on the square lattice
after a quench from infinite temperature to a temperature
T=

~ T, below the equilibrium ordering temperature T, .

10

smooth with a slight but systematic deviation from a
power-law relation. A similar relationship between
different time scales was recently discussed in a simula-
tion study of vacancy-mediated continuous ordering in
Ising models with nonconserved order parameter. The
relationship in Fig. 1 is not expected to be algebraic be-
cause the number of broken bonds is not simply propor-
tional to the total length of the domain boundary [which
is inversely proportional to the length scale RE(t) for
sharp domain walls], but also contains a term from the
isolated Potts spins diffusing within he domains. We
shall return to this point in Sec. III D.

The microscopic dynamics underlying the ordering
process is Kawasaki pair-exchange dynamics. The natu-
ral time scale for the associated master equation is that
corresponding to attempted pair exchanges per lattice
site [Monte Carlo steps per site (MCS/S)]. Since only ex-
changes of pairs on sites occupied by Potts spins in
different states can alter the configuration, we have de-
vised an algorithm which selectively excites these broken
bonds. The time scale corresponding to selective excita-
tion of broken bonds (MCBB/S) is different from that of
MCS/S and is a function of MCS/S, which reflects the
ordering dynamics. Obviously, the number of broken
bonds decreases as the ordering process evolves. The re-
lation between the two different time scales is determined
in the simulation, and it is used to express the measures
of growth in terms of the natural time scale MCS/S. Pro-
vided that the list of broken bonds is efFectively con-
structed and updated during the simulation, it is possible
to speed up the simulation in a way which is competitive
with both the continuous-time method (n-fold way),
which has been used to study domain growth in noncon-
served multistate Potts models and with the use of vec-
torized dynamics.

In Fig. 1 is shown the relation between the two time
scales MCS/S and MCBB/S for the two- and three-state
models on the square lattice. The relation is extremely

III. RESULTS

A. Evolving domain structures

In Figs. 2 and 3 are shown time series of typical
rnicroconfigurations for both the two- and three-state
models on the square as well as the triangular lattice.
For the three-state model, only the domain-boundary net-
work is shown. From these snapshots the following qual-
itative observations can be made. First, the domain pat-
tern is very convoluted for the two-state model on both
lattices. For the three-state model, the domains are con-
siderably more compact and the domain-boundary net-
work is characterized by vertices where domains of three
different types meet. Second, an increasing number of
isolated Potts spins within the domains is observed for
the two-state model at late stages. For the three-state
model, isolated Potts spins appear both along the domain
boundaries and within the domains. We shall in Sec.
III D return to these observations.

B. Growth laws and growth exponents

The data for the time dependence of the two length
scales RF(t) and R&(t) in Eqs. (5) and (6) for the two
models are shown in Figs. 4—6. For reasons described in
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FIG. 2. Time evolution of the
domain-boundary network for
the (a) two-state and the (b)
three-state Potts models on a
square lattice after a quench
from infinite temperature to a
temperature T=

2 T, below the

equilibrium ordering tempera-
ture T, . The time t is given in
units of MCS/S. The simula-
tions have been carried out on
lattices with 400X400 sites for
the two-state model and
200X200 sites for the three-state
model.

Sec. II, data for R„(t) have only been recorded for the
three-state model. In accordance with the evolving mi-
crostructures displayed in Figs. 2 and 3, the growth data
in Figs. 4—6 show that the overall growth rate is much
slower in the three-state model than in the two-state
model and that the growth for either model is faster on
the square than on the triangular lattice. For calculation
of R„(t) in Fig. 6, the lower cutoff in domain size [cf.
Eq. (6)] has been chosen to be Ho=6 Potts spins. The
choice of the cutoff is immaterial for the late-stage
behavior.

For all the data presented in Figs. 4—6, it appears that
in none of these cases is the growth described by a simple
power law in any extended time range. All of the curves
display a distinct curvature, indicating an increasing
value of the effective exponent

d[lnR(t)]
d[lnt]

Huse ' has suggested a simple procedure for extracting
the asymptotic value of the growth exponent n from
finite-time data for spinodal-decomposition processes.
This procedure is built on the assumption that the finite-
time effective exponent is an implicit function of time via
the time-dependent length scale and is given by

a
n, ff(t) =n— +O[R '(t)],

R '(t)

where we have extended Huse's formula to second or-
der. ' The first correction term in Eq. (8) takes account
of the effects of diffusion along the domain-boundary net-
work. It has been pointed out by Yeung that the Huse
formula should be considered as only an empirical rela-
tion and that at present there is no known physical
justification for its form. However, Yeung points out
that as an empirical relation it is very powerful and that
it gives results in good agreement with theoretical predic-
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FIG. 3. Time evolution of the domain-boundary network for the (a) two-state and the (b) three-state Potts models on a triangular
lattice after a quench from infinite temperature to a temperature T= —T, below the equilibrium ordering temperature T, . The time t
is given in units of MCS/S. The simulations have been carried out on lattices with 400X400 sites for the two-state model and
200X 200 sites for the three-state model.
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FIG. 4. Log-log plot of the time dependence of the inverse
excess energy, Rz(t) in Eq. (5), for the two-state (Q') and the
three-state (+) Potts models on the square lattice after a
quench from infinite temperature to a temperature T=

2 T,
below the equilibrium ordering temperature T, . The time is in
units of Monte Carlo steps per site.

FIG. 6. Log-log plot of the time dependence of the average
linear domain size, R&(t) in Eq. (6), for the three-state Potts
model on (a) the square lattice and (b) the triangular lattice after
a quench from infinite temperature to a temperature T=

2 T,
below the equilibrium ordering temperature T, . The time is in
units of Monte Carlo steps per site.

tions for spinodal-decomposition processes in two-
component systems. In fact, the first very strong numeri-
cal evidence for the validity of the Lifshitz-Slyozov law in
the spinodal-decomposition process in the conserved Is-
ing model ' was based on Huse's formula with b =0.
Subsequent numerical work on other models with con-
served under parameter ' ' ' ' also made successful use
of the formula.

In the present work, we have applied the extended
Huse formula to analyze the growth data in Figs. 4—6 in
an attempt to extract the asymptotic growth exponent.
The results of this analysis are given in Figs. 7—9.

First, we discuss the results obtained on the basis of the
length scale RF(t). It appears that, in the case of the

two-state model on the square lattice, the data for n, ff is
consistent with Eq. (8) with b =0. A fit to Eq. (8) with
b =0 leads to n =0.328+0.005 (a = 1.082), which is con-
sistent with the result obtained by Amar, Sullivan, and
Mountain, n =0.330+0.005, for the Ising model, on the
square lattice. In the case of the three-state model on the
square lattice, the data for n, ff in Fig. 7 exhibit a consid-
erable degree of curvature and the second-order term in
Eq. (8) has to be taken into account. A fit to the data in-
cluding both the first- and second-order terms leads to a
value n =0.344+0.010 (a =1.18 and b =1.36). We then
turn to the data for the triangular lattice (Fig. 8), which
appears to approach the asymptotic limit much more
slowly than for the square lattice. Similar to the square
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FIG. 5. Log-log plot of the time dependence of the inverse
excess energy, Rz(t) in Eq. (5), for the two-state (0) and the
three-state (+) Potts models on the triangular lattice after a
quench from infinite temperature to a temperature T=

2 T,
below the equilibrium ordering temperature T, ~ The time is in
units of Monte Carlo steps per site.

FIG. 7. Effective exponent n, & in Eq. (7) as a function of in-
verse length scale, R (t) =RE(t), as shown in Fig. 4 for the two-
state (Q') and three-state (+ ) Potts models on the square lattice.
The extrapolations (solid lines) to the large-length-scale limit
are obtained by fitting the data to the extended Huse formula in
Eq. (8).
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FIG. 8. Effective exponent n, ff in Eq. (7) as a function of in-
verse length scale, R(t) =RE(t), as shown in Fig. 5 for the two-
state (Q) and three-state (+ ) Potts models on the triangular lat-
tice. The extrapolations (solid lines) to the large-length-scale
limit are obtained by fitting the data to the extended Huse for-
mula in Eq. (8).

lattice, it is found that the three-state model approaches
the asymptotic growth behavior slower than the two-state
model. An analysis based on the extended Huse formula
[Eq. (8)] for the growth data for the triangular lattice
leads to n =0.30+00.01 (a =0.94 and b =0.79) for the
two-state model and n =0.28+0.01 (a =0.53 and
b =0.003) for the three-state model.

To determine the asymptotic value of the growth ex-
ponent using the growth data for the length scale R„(t)
in Fig. 6 is not so straightforward. The reason for this is
that in the finite-time regime, which we can access in our
simulations, the properties derived from the domain-size
distribution function depend on the value chosen for the
lower cutoff, Ao in Eq. (6). There are two reasons why it
is necessary to introduce such a cutoff in the analysis of

C. Dynamical scaling

We shall now analyze the spinodal decomposition pro-
cesses in the three-state model in terms of dynamical scal-
ing. We use the data for the time-dependent domain-size
(area) distribution function P(A, t) Dyna. mical scaling
of the domain-size distribution function implies the ex-
istence of a scaling function

P(x)= A (r)P(A, r), (9)

where the scaling variable is x = A (t)/A (t). In Figs. 10

the data of finite lattices at finite times. First, the isolated
Potts spins (A =1) have to be excluded. These isolated
spins cannot be considered as domains. Second, domains
of an area smaller or equal to the area covered by a con-
nected string of Potts spins adsorbed in a typical interface
between two domains should be excluded. This area is
proportional to R ~ (t). It is clear from the
microconfigurations in Figs. 2(b) and 3(b) that such
"domains" occur and that they cannot be considered as
ordered domains. Since this latter cutoff itself is a func-
tion of the cutoff, we have decided to choose somewhat
arbitrarily a value of 20=6, which assures that the
smallest "nondomains" are excluded from the averaging
procedure. Figure 9 presents the data for n, ff as a func-
tion of R„(t) for this value of the cutoff. From a fit to
the data of the Huse formula in Eq. (8) (where we have
fixed b =0 because of the large scatter in the data), we
find for the three-state model n =0.28+0.01 (a =0.94)
for the square lattice and n =0.27+0.01 (a =0.86) for
the triangular lattice. For larger values of the cutoff, the
extrapolated values of the asymptotic exponents will be
larger. Because of the particular difficulties mentioned in
Sec. II B in using R z (t) as a length-scale measure for sys-
tems with very convoluted domain structures and be-
cause of the large scatter in the data in Fig. 9, we attach
less confidence to the growth-exponent values quoted
above for R~(t). They are likely not to be the true
asymptotic values.

0.26

0, 18
0.4-

0.14
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0 0.04 0.08 0.12 0.16 0.20
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FIG. 9. Effective exponent n, ff in Eq. (7) as a function of in-
verse length scale, R ( t) =R & ( t), as shown in Fig. 6 for the
three-state Potts model on (a) the square lattice and (b) the tri-
angular lattice. The extrapolations (solid lines) to the large-
length-scale limit are obtained by fitting the data to the Huse
formula in Eq. (8).

1n (z)
FIG. 10. Scaling function P(x) in Eq. (9) for the domain-size

distribution function of the three-state Potts model on the
square lattice, where the scaling variable is x = 3 (t)/A(t).
The data cover the time range t = 10000—200000 MCS/S.
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FIG. 11. Scaling function P(x) in Eq. (9) for the domain-size
distribution function of the three-state Potts model on the tri-
angular lattice, where the scaling variable is x = A ( t) / A ( t).
The data cover the time range t = 10000—200000 MCS/S.

D. Details of the growth mechanism

and 11, the data for I' (R, t) are plotted using Eq. (9). It is
seen that for both lattices the data for P(R, t) at late
times can be collapsed into a single function. Hence the
spinodal-decomposition process for the three-component
systems obeys dynamical scaling at late stages. It is not-
ed that scaling seems to be obeyed by our data despite the
fact that the asymptotic growth regime has not been at-
tained in terms of the simple algebraic growth law [Eq.
(1)]. In Fig. 12 the scaling functions for the two lattices
are compared. The data used in this figure are obtained
from Figs. 10 and 11 by averaging over the entire data set
in the scaling regime. It appears that there is only little,
if any, difference between the scaling functions for the
two lattices.

tions, e.g. , the Langevin formalism, computer-simulation
calculations on kinetic lattice models such as the Potts
models provide insight into the microscopic mechanism
of the growth and interface dynamics. The conventional
picture of the spinodal-decomposition process involves an
evaporation-condensation mechanism. %'e have investi-
gated this mechanism by calculating the time dependence
of isolated Potts spins which are the carriers of the
growth process. These isolated Potts spins can be
identified on the microconfigurations in Figs. 2 and 3. It
is clear from a simple topological reasoning that the two-
and three-state Potts models have very different proper-
ties as far as these isolated Potts spins are concerned. In
both models the isolated Potts spins are generated at the
domain interfaces as a consequence of the conservation
law. However, in the two-state model isolated Potts spins
can only be identified within the domains, whereas in the
three-state model isolated Potts spins occur both within
the domains as well as in the very domain boundary
where Potts spins different from those of the adjacent
domains are interfacially adsorbed in the domain bound-
ary. We have conducted a detailed study of the dynamics
of isolated Potts spins in the case of the square lattice.
As a definition of an isolated Potts spin within a domain
on the square lattice, we require that all eight nearest-
and next-nearest-neighbor spins to the spin under con-
sideration have to be in the same Potts state and different
from that of the spin considered. The distinction be-
tween the two different types of isolated Potts spins is, of
course, somewhat meaningless at very early times and
during the nucleation period.

In Figs. 13 and 14 are shown the results for the number
of isolated Potts spins, p, (t), in the two- and three-state
models on the square lattice. The data for the number
for the three-state model are separated into its two con-

the two-state model. It appears from these figures that

Contrary to the approach to spinodal-decomposition
processes which is based on phenomenogical field equa-
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FIG. 12. Comparison of the dynamical scaling functions
P (x) in Eq. (9) for the domain-size distribution function of the
three-state Potts model on the square (solid curve) and the tri-
angular (dashed curve) lattice. The scaling variable is
x = A (t)/A (t).

FIG. 13. Time dependence of the number of isolated Potts
spins, p„within the domains of the two-state Potts model on a
square lattice. The equilibrium value of the number of isolated
Potts spins in a macroscopic Potts-ordered domain is indicated
by an arrow.
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FIG. 14. Time dependence of the number of isolated Potts
spins within the domains, pl' "",and in the domain boundaries,
p'I"'""', of the three-state Potts model on a square lattice. The
equilibrium value of the number of isolated Potts spins in a
macroscopic Potts-ordered domain is indicated by an arrow.

pI' "" for both models decreases at early times, goes
through a minimum, and then increases again. For the
three-state mode1, p'I""'"' decreases for all times. The
behavior of p,

' "" reAects that at early stages after the
nucleation period, broken Potts bonds mostly occur at
the interfaces; i.e., most defects are 1ocalized and ad-
sorbed in the domain boundaries. At this stage the inside
of the domains is not fully equilibrated and the domain
order parameter is larger than the equilibrium bulk Potts
order parameter. Hence there is a kind of "overshooting
effect" in the order parameter in the intermediate time re-
gime after the quench. At later times the growing
domains start equilibrating, which requires solution of
"wrong" Potts spins within the domains. These spins are
launched from the interface. The isolated Potts spins
within the domains are carriers of the late-stage growth
process which is only facilitated by long-range diffusion
of the isolated Potts spins across the domains. These ob-
servations can be used to clarify aspects of the transient
growth behavior.

E. Transient growth behavior

The data presented in Figs. 13 and 14 for the number
of isolated Potts spins within the ordered domains pro-
vide some insight into the transient growth behavior of
spinodal decomposition processes in two- and three-
component systems.

The transient regime is caused by short-range
diffusional processes along the domain-boundary network
contrary to the asymptotic growth which is controlled by
long-range diffusion of isolated Potts spins across the
domains. From the growth data and the analysis of this
data in Figs. 4—9, for both the two- and three-state mod-
els on both lattices, it is found that at intermediate times
the growth behavior is effectively described by an alge-
braic growth law, Eq. (3) with an exponent n -0.25. A

simple argument due to Mullins in fact gives n =
—,
' for

interface diffusion. An early simulation study of the or-
dering dynamics in conserved multistate Potts models
systems also found low exponent values, which can be re-
lated to the transient regime. The higher the number of
Potts states, the lower the value of the effective exponent.

It is obvious for topological reasons that this transient
regime should be more dominant in the three-component
system. In a domain boundary between two domains, the
third component can conveniently be adsorbed. The
presence of the third component in the boundary
enhances the probability for kink formation in the bound-
ary, which in turn facilitates boundary migration mediat-
ed by short-range diffusion. This is borne out by direct
inspection of microconfigurations such as those in Figs. 2
and 3 and by the time dependence of the density of isolat-
ed Potts spins which are the carriers for the growth pro-
cess (cf. Figs. 13 and 14). In the two-state model, isolated
Potts spins are generated at the boundary, but can only
exist when the domains where they effectively facilitate
transport across the domains. In the three-state model,
isolated Potts spins can be present both within the
domains and at the domain boundary. The simulations
show that the number of isolated Potts spins in the
domains only rise to their bulk equilibrium value at a
much later time in the three-state model than in the two-
state model. This provides a microscopic explanation of
the marked difference between the approach to the
asymptotic growth behavior of the two- and three-state
models, as shown in Figs. 4—9. The transient regime is
much more extended in the three-state model. The tran-
sient regime also depends on details of the model, in par-
ticular the lattice structure. The crossover to asymptotic
growth behavior is found to be slower on the triangular
lattice than on the square lattice.

IV. DISCUSSION AND SUMMARY:
UNIVERSALITY OF ORDERING DYNAMICS

IN CONSERVED TWO- AND THREE-COMPONENT
SYSTEMS

The results presented in this paper for the ordering dy-
namics and spinodal-decomposition processes in two- and
three-state Potts models with conserved order parameter
suggest that the asymptotic late-state growth law is given
by the classical Lifshitz-Slyozov law [Eq. (I)] with ex-
ponent value n =

—,'. The result is independent of the
number of components of the order parameter and details
such as the underlying lattice structure. Hence the pres-
ence of vertices in the domain boundary does not
inAuence the asymptotic growth exponent, although it
slows down the overall growth rate. However, the
intermediate-stage growth behavior is strongly influenced
by transient effects due to diffusion along the interfaces,
which leads to lower effective growth exponents as in Eq.
(3). The crossover from transient behavior to asymptotic
growth is slower the higher the number of conserved
order-parameter components, and it is slower on the tri-
angular lattice than on the square lattice.

Our results for the two-state model are consistent with
earlier computer-simulation work on the two-component
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Ising model, as well as with theoretical work on phe-
nomenological field-theoretical models (e.g. , the Langevin
and Cahn-Hilliard models) (Refs. 29, 31, 32, 34, and 37)
and nonlinear coupled-map models. ' All these studies
on rather different models in both two and three spatial
dimensions which are subject to the same conservation
law for the order parameter lead to the same growth ex-
ponent, which suggests a remarkable degree of universali-
ty. Our finding in the present work of the same growth
law with the same exponent value for the two- and three-
state conserved Potts models provides numerical evidence
for the existence of a single large universality class which
describes ordering dynamics in systems with conserved
order parameter, independent of the number of com-
ponents of the order parameter.

An important characteristic of the universality class is
the dynamical scaling functions describing the various
properties of the system. In earlier numerical studies of
spinodal-decomposition processes in two-component sys-
tems, the dynamical scaling properties of the ordering
process were established via calculations of the time-
dependent static structure function ' ' and pair-
correlation function. ' In the present work, we cal(cu-

lated the domain-size distribution function for the three-
state model on two dift'erent lattices and found (cf. Fig.
12) that the ordering process obeys dynamical scaling at
late stages and that the scaling function for the domain-
size distribution function, within the numerical accuracy,
is independent of lattice structure. This result gives fur-
ther testimony to universality.

The available experimental data for spinodal decompo-
sition processes, e.g., in alloys, polymer blends, Quid mix-

tures, and ceramics (for a review, see, e.g., Binder ), pro-
vides further evidence for the Lifshitz-Slyozov growth
law, although under many practical circumstances for
spinodal decomposition, e.g. , in metallic alloys, the tran-
sient behavior is prevailing and the asymptotic regime is
not reached within the time available. Quite often the
finding of a transient growth law as in Eq. (2) is taken as
evidence for spinodal decomposition. Transient behavior
becomes more severe when more components are in-
volved; e.g. , in experimental studies of spinodal decompo-
sition in ternary alloys it is found that the efFective
growth exponent is often lower than for binary alloys. '

These findings are consistent with the results of the
present model study.

The suggestion of the existence of a single large univer-
sality class for conserved systems undergoing spinodal
decomposition, together with the well-accepted theory
for a large universality class for ordering dynamics in sys-
tems with nonconserved order parameter, '" implies that
universality in ordering dynamics is a much more general
phenomenon than in static and dynamic critical phenom-
ena where both spatial dimensionality and the number
of components of the order parameter are relevant vari-
ables.
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