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Electrical transport properties of a two-dimensional electron gas are studied in the presence of
a perpendicular magnetic field B modulated weakly and periodically along one direction, B =
(B+Bp COSKX)z, with Bp « B, K = 2vr/a, and a being the period of the modulation. Bp is taken
constant or proportional to B. The Landau levels broaden into bands and their width, proportional to
the modulation strength Bo, oscillates with B and gives rise to oscillations in the magnetoresistance
at low B. These oscillations reAect the commensurability between the cyclotron diameter at the
Fermi level and the period a and consequently they are distinctly diAerent from the Shubnikov —de
Haas ones, at higher B, in period and temperature dependence. The bandwidth at the Fermi energy
can be one order of magnitude larger, at low B, than that of the electric case for equal modulation
strengths. The resulting magnetoresistance oscillations have a much higher amplitude than those of
the electric case with which they are out of phase. Explicit asymptotic expressions are derived for
the temperature dependence of the transport coefBcients. The case when both electric and magnetic
modulations are present is also considered. The position of the resulting oscillations depends on the
ratio 6 between the two modulation strengths. When the modulations are out of phase there is no
shift in the position of the oscillations when 6 varies and for a particular value of 6 the oscillations
are suppressed.

I. INTRODUCTION

The magnetoresistance oscillations of a two-dimen-
sional electron gas (2DEG) subject to periodic electric
(or potential) weak modulations, along one or two di-
rections, also called lVeiss oscillations, are now well es-
tablished both experimentally, and theoretically. s The
situation is mostly clear in the case of one-dimensional
(1D) modulations where the oscillations reflect the com-
mensurability between two length scales: the cyclotron
diameter at the Fermi level, 2R, = 2i/2~n, I (where

n, is the electron density and l = i/h/eB the magnetic
length) and the period a of the modulation.

In this paper we consider electrical magnetotransport
of a 2DEG in the presence of a weak 1D periodic mod-
ulation (of strength Bp) of the magnetic field. A par-
tial and brief account of transport, for Bo constant, has
been reported in Refs. 4 and 5 while Ref. 6 treated
the elementary excitations of such a system. Experi-
mentally this magnetic modulation of the 2DEG could
be achieved by covering the heterostructure with stripes
of magnetic materials. If the latter are replaced by su-
perconducting materials the modulation is strong. The
feasibility of the latter technique was demonstrated re-
cently by Heym et oL" who were able to cover a het-
erostructure with a type-II superconducting film. Here
we treat only the weak modulation and take Bo to be
constant or proportional to B. The first choice is made

for a clearer comparison of the results with those of the
electric modulation of constant strength but the second
one is expected to be more realistic for both methods
of magnetic modulation mentioned above. Moreover, we
present asymptotic expressions for the conductivity ten-
sor, missing from Refs. 4 and 5, that show explicitly both
the Weiss and Shubnikov —de Haas (SdH) oscillations. In
addition, we consider the case where both electric and
magnetic modulations are present. Experimentally from
the above-mentioned methods of magnetic modulation
one expects that the magnetic or superconducting stripes
act like electrical gates and induce an electric modulation
of the 2DEG. To our knowledge this case has not been
treated. A corresponding nontrivial result is that the
%"eiss oscillations are suppressed when the modulations
are out of phase and the ratio of their strengths has a
particular value.

In the next section we present the energy spectrum cor-
responding to the one-electron Hamiltonian, when only
the magnetic modulation is present, and discuss some of
its consequences. In Sec. III we give the results for the
magnetoresistance tensor and in Sec. IU those for the
case when both electric and magnetic modulations are
present. Concluding remarks follow in the last section.

II. ENERGY' SPECTRUM

We consider a 2DEG, in the (x, y) plane, subject to the
magnetic field B = (B+ Bp cos Kx)z, where K = 2x/a,
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and a is the modulation period. Here we will consider
only the case of a weak modulation, i.e. , Bo « B; this
will allow us to make a direct analogy with the case
of weak electric modulation and thus exploit the previ-
ous experience. 4 In the Landau gauge the vector po-
tential A that describes this periodic magnetic field is
A = [O, Bx + (Bo/K)sin(Kx), 0] with Bo « B. In
the efFective-mass (m') approximation the corresponding
one-electron Hamiltonian is given by H = (p+ eA)/2m"
and can be written as

11 = [p'+ (p„+ eBx)']/2m"
+(~o/K)(py + eBx) sin K2:

+(tn'iso/4K ) (1 —cos 2Kx);

E i,„= (n+ 1/2) hu, + huoG (u) cos Kxo

+(m'ceo/4K ) [1 —e "L„(4u)cos 2Kxo], (2)

here p„(p = x, y) is the momentum operator, uo
eBo/m' « cu, = eB/nz*, and u, is the cyclotron fre-
quency. The first line on the right-hand side (RHS) of
Eq. (1) is the Hamiltonian of a free electron in a mag-
netic field. The corresponding normalized eigenvectors
are @~A,.„=e'"~"P„(x+xo)/gL„, where zo = E2k„=—

hk&/eB —is the center coordinate of the cyclotron orbit,
L„ is the width of the sample in the y direction, and
where n is the Landau-level index. P„(x) is the well-
known harmonic-oscillator wave function and the corre-
sponding eigenvalues are E„I,„= (n + 1/2)hw, and are
degenerate with respect to the wave vector k„along the
y direction.

Because of the inequality Bo « B we can consider the
last two terms on the RHS of Eq. (1) as perturbation
and evaluate the energy correction to E„k„given above
by first-order perturbation theory using the unperturbed
eigenstates @„A,,„.The result is

whereas now Vo is replaced by hwo and F„(u) by G„(u).
The resulting bandwidth for large n is

2&~o
~

G (tj) ~= 2h~o(ak~/2vr)(2/~KR, )'~2

x
~
sin(KR, —~/4) ~; (4b)

0.3

here R, = (nz + 1/2)i~ E is the cyclotron orbit at the
Fermi energy and nF is defined as the largest integer
contained in (EF —1/2)/h~, . From Eq. (4b) we obtain
the flat-band condition as 2R, /o, = i + 4, the maximum
bandwidth occurs for 2R, /a = i + 4, with i = 0, 1, 2, . . . .

Equations (4a) and (4b) were obtained using the
asymptotic expressions for the Laguerre polynomials and
are valid in the low magnetic-field limit, typically B & 1
T, in which case n )) 1. Comparing Eq. (4a) with
Eq. (4b) we see that (1) the bandwidths are out of
phase, and (2) the amplitude in the magnetic modulation
case is larger by a factor uk~/2vr = gn, az/2vr (8.6 for

n, = 3x10ii/cmz and a = 3820 A.) than the correspond-
ing amplitude in the electric case for equal modulation
strengths. This is illustrated in Fig. 1 for the width of the
Landau level at the Fermi energy. For the magnetic mod-
ulation we show the result 2~G„(u)

~
(solid curve) as well

as the asymptotic expression Eq. (4b) (dotted curve).
The jumps in the solid curve are due to the fact that the
integer n~ changes discontinuously with B. The band-
width for the electric modulation, when Vo = hero, is
shown as the short-dashed curve.

It is instructive to give a classical derivation of the en-
ergy correction due to the modulation since the magnetic
field is weak and the quantum number n large. In clas-
sical mechanics the electron motion along the x and y
directions is described by x(t) = xo+R, sin(w, t+ &p) and

where u = K / /2, L„(z) is a Laguerre polynomial, and

G (u) = e "~ L„(u)/2+ L„',(u) .
0.25

0.20

ne=3.2 x 10"cm

a=3oook

Bp=0.02T

Since zo = —Pk&, the k„degeneracy of the energy lev-
els is lifted and the energy levels broaden into bands as in
the case of a 1D potential modulation. In the following
we will retain only terms of order coo in the energy spec-
trum and neglect terms of higher order. The correspon-
dence with the electric cases for a modulation strength
Vo is as follows: G„(u) = BF (u)/Bu ~ —F (u)
exp( —u/2)L„(u) . In a typical experiment the magnetic
field B is weak and many Landau levels are occupied. It
then turns out that it is a good approximation to take the
large n limit of the Laguerre polynomials that appear in

G„(u) and F„(u). For the electric modulation the width
of the Landau level at the Fermi energy is given by3

2vo
~
F„(u) ]= 2vo(2/7rKR, ) ~

~
cos(KR, —7r/4) ~,

(4a)
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FIG. 1. The width of the Landau level at the Fermi energy
as a function of the magnetic field. The solid curve is the
exact numerical result for a constant modulation of strength
Bp ——0.02 T. The dotted and long-dashed curves are the
corresponding asymptotic and classical results. The short-
dashed curve is the result for an electric modulation of equal
strength, Vp = Mp.
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y(t) = yp+R, cos(cu, t+ p), respectively, where xp, yp are
the center coordinates and p is a phase factor. With-
out loss of generality, y can be taken equal to zero. The
contribution to the potential energy U due to the mod-

ulation of the magnetic field is U = —eAp v where v is
the electron velocity and Ap = (eBp/K) sin(Kz)y. The
mean value (U) over the period t p of the cyclotron motion
1s

1
(U) =-

tp

Co 1
U(t)dt = eBp(u (R /K) cosKxp-

tp

fp

sin a, t sin(KR, sin cu, t)dt

= hup(R, /KE )Ji(KR,) cos Kxp,

where Ji(z) is the Bessel function of order l. In the limit
KR, )) 1, i.e. , for weak magnetic fields, (U) becomes
equal to the second term of Eq. (2) thus resulting in the
bandwidth given by Eq. (4b). The bandwidth resulting
from Eq. (5), prior to taking the limit KR, » 1, is shown
in Fig. 1 by the long-dashed curve and is indicated as
"classical. "

In the absence of modulation we have v~ = v„= 0
for all eigenstates. Because the modulation lifts the k„
degeneracy we find to order harp,

velocity: v~& = (( I v„ I I,"). If p g v the collisional
contribution vanishes identically.

The dc component oii„ is given by

2

~~. = '"fl ) 6(1 —
f& )(& I vi I

&')

(9)

1 ~En,i:„2~p
vy ——— "' " ——— uG„(u) sin Kxp

W

while v~ = 0. The fact that v& is no longer zero has im-
portant consequences for transport which will be detailed
in the next section.

III. THE RESISTIVITY TENSOR

A. Conductivities

For weak electrical fields, i.e. , for linear responses, and
weak scattering the conductivity tensor o» has been
evaluated, for the case of electric modulations, in Ref.
3. In general, we have vari (cu) + crii~(u), where w is the
frequency. The relevant quantity oi„(0) —= o» for dc
transport is, in general, the sum of a diffusive (dif) and
of a collisional (col) contribution given bys

and is independent of scattering in the limits taken.
A detailed evaluation of formulas (7)—(9) has been

carried out in Ref. 3(b) for scattering by randomly
distributed impurities of density NI and of interaction
strength, in Fourier space, U~ = (27rez/e)/gqz+ kz-
(2ae2/c)/k, = Up in the limit q (( k, ; here k, is
the inverse screening length and e the dielectric con-
stant. Then 1/r(Eq) = g&, Wqq gives approximately

r(Eq) = (noh /NIUz) ~

In the absence of modulation, we have v~ = v&
——0 and

the diffusion contribution vanishes. In its presence, we
have v~ = 0 but vv g 0, cf. Eq. (6). Thus o'~~(0) = 0,
whereas 0~„'~(0)—:o.d„'~ g 0. To order Bp we find

(10)

and

2
o„'„' = ) fg(l —fr)r(Eg)v~v~ where E„= (n+ 1/2)hu, . Comparing this result with

that for electric modulation of strength Up, Eq. (13) of
Ref. 3(b), we see that it has the same structure: UpF„(u)
is replaced by hcupG„(u). In either case this contribution
is proportional to the square of the bandwidth.

To evaluate the collisional contribution to order Bp2 we
must take into account the correction to the unperturbed
eigenstate

I
nk„)P due to the weak 1D modulation. Us-

ing first-order perturbation theory we find the perturbed
eigenstate

I nk„) as

respectively. Here, Wqq is the transition rate between
the unperturbed one-electron states

I () and
I
(') (I ()—:

Q~~ ) given by the golden rule, Eq is the corresponding
eigenvalue given by Eq. (2), r(Eq) is the relaxation time,
and fq the Fermi-Dirac function. Further, n&& ——(g I r~ I

() is the mean value of the p component of the position
operator r in the state

I g) and v~~ the corresponding

and from the sum over n' we consider only the nearest
Landau levels n' = n + 1 which give the dominant con-
tribution. We obtain
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+2(n+ l)e " [(1 —u)L„(u) —(1+u)L„+i(u)] sinKxo.,2Ktu (12)

for V„„ i we obtain the same expression multiplied first by —1 and followed by the change n+ 1 ~ n —1. The rest
of the relevant formulas and approximations as well as the procedure are similar to those of Ref. 3(b). The result is

o'" = — ' ' ) ((2n+1)I„+6„)

with

Cd
e " n F +(n+1) F+ —n(n+1)F F+ J„; (14)

I„and J„are given by Eqs. (24) and (27) of Ref. 3(b),
respectively, and

F~ = (1 + u)L„gi(u) —(1 ~ u)L„(u). (15)

Equation (13) has the same structure as Eq. (25) of
Ref. 3(b) for the electric modulation: the prefactor and
the first term in ( ) are the same and the essential
change in 6„ is that in its prefactor Vo/5 has been re-
placed by ~0, cf. Eq. (26) of Ref. 3(b).

The Hall conductivity cr»(0):—o» = —cr» is readily
evaluated using the expressions for the velocity matrix
elements between the states (11) together with those for
V„„yi as given by Eq. (12) and the matrix elements be-
tween the unperturbed states. Neglecting terms of order
Bc2 in the product (/~vs~( )(( ~v ~() the result is

~2 2/2o„=— ) (n+1)
a/E f,r„—f +i,~„"[1 + A'„cos(Kxo)]z '

(16)

where A„' = (~0/cu, ) exp( —u/2) [G„+i(u) —G~(u)]. The
correspondence with the electric case, s which involves

(Vo/her, )e "~ L„+i rather than A„, is that for
equal modulation strengths, i.e. , for Ve = huo, we have

A'„= A„/2+ (uo/u, )e "~ [L„(u) —L„ i(u)]. (17)

The main difference of Eq. (16) from the corre-
sponding result of Ref. 5, Eq. (18), is the absence
of corrections, in the numerator, linear in Bs. We
have verified that these corrections vanish identically as
they are proportional to the difference V„—V„* andV„= (n~V]m) is a real quantity for the perturbation
V = (ceo/K)(p„+ eBx) sin(Kx). The same holds for the
electric modulation. Consequently the result of Ref. 5 is
incorrect.

The resistivity tensor p = o i is evaluated from
the conductivity tensor using the standard expressions
p» ——o„„/S,p„„= o»/S, and p» ——o»/S with
S = o'iso' —o' ycry

B. Asymptotic expressions

For n )& 1, i.e. , when many Landau levels are occu-
pied, the results of See. IIIA can be cast into a form
that exhibits explicitly both the Weiss (at low B) and
the Shubnikov —de Haas (at higher B) oscillations. The
procedure has been detailed in Ref. 3(b) and consists
in using the asymptotic expressions for the Laguerre
polynomials, for n )) 1, and of the density of states
D(E) = De[1 —2 exp( —vr/cu, rf) cos(2vrE/hu, )] with the
prescription Q„—+ 2vrE f D(E)dE. The parameter vy
is the electron quantum lifetime. Following verbatim this
procedure and retaining only the leading terms we obtain
that Eq. (10) takes the form

k h h 2nEJ;~ . z 2~A, 7r~

where

G = [1 —A(T/T~)]/2+ A(T/T~) sin (2vrR, /a —vr/4).

(19)
Here oo = n, e r/m' is the conductivity at zero magnetic
field B and A(x) = x/sinh(x). The characteristic tem-
peratures T, for the Weiss oscillations, and T„ for the
SdH oscillations, are defined by k&T~ = (hu, /4m )ak~
and k&T, = hu, /2vrz, respectively, with k~ being the
Fermi wave vector. In typical experiments we have
T /T~ = ak~/2 &) 1; e.g. , for n, = 3 x 10ii/cm~

and a = 3500 A. , we have ak~ —24. As a result the
SdH oscillations disappear much faster with tempera-
ture than the Weiss oscillations. We further remark that
in comparison with the electric case, cf. Eq. (34) of
Ref. 3(b), the present result difFers essentially by a term
(ak~/2vr)2 —60 in the prefactor. Correspondingly the
amplitude will be larger in the magnetic case by this fac-
tor.

The asymptotic expression for the collisional conduc-
tivity can be obtained along the same lines. The result
1s
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~col ] 3 4)

0 p cd&'r ~2~ cd~ ALAN~

(20)

where F' is given by Eq. (19) after replacing sin () by
cos2( ). Equation (20) has the same structure as Eq. (37)
of Ref. 3(b) that pertains to an electric modulation.

C. Numerical results

A detailed numerical evaluation of the resistivity ten-
sor, using Eqs. (10), (13), and (16) for the component
of the conductivity tensor, can proceed as in Ref. 3(b).
However, as explained above the results of the tnagnetic
modulation scale with those of the electric one or have
the same structure. Therefore, the relevant calculation
will not be repeated. Moreover, as indicated by the good
agreement between the exact numerical and the classical
result for the bandwidth, cf. Fig. 1, a detailed numerical
evaluation will change the asymptotic results presented
below very little. In addition, It has been found (bl that
the collisional contribution to the conductivity is about
ten times smaller than the diffusive one. With that in
mind we will give the results for the correction to the
resistivity Ap»/po = b,p, due to the modulation includ-
ing only the diffusion contribution, i.e. , Eq. (18). The
quantity po is the resistivity at zero magnetic field. The
other component p» only has contributions from the col-
lisional term and as such the Weiss oscillations are much
weaker than in p». The same holds for p». Therefore
we will concentrate on the numerical results for p

In Fig. 2 we plot Ap as a function of the magnetic field

B for values of B such that only the Weiss oscillations
appear. The solid curve is for constant Bo = 0.02 T, the
dashed curve for Bo = 0.1B, and the dotted one (scaled
down by a factor of 10) for Bo = 0.2 T B. —The latter is
expected to occur in the case of type-I superconducting
strips with a critical field of about 0.2 T. The tempera-
ture is T = 4.2 K, the electron density n,, = 3 x 10ii/cm~,
and the period of the modulation a = 3000 A. As can be
seen (1) the position of the extrema depends very little
on the assumed form of Bo, (2) there is no qualitative
difference between the solid and dashed curves since in
either case the inequality Bo (& B guarantees the validity
of the perturbation treatment, and (3) the amplitude of
the dashed curve is about a factor of 3 smaller than that
of the solid one.

In Fig. 3 we plot 6p as a function of B for constant
Bo = 0.02 T for three different temperatures. The other
(indicated) parameters are the same as those in Fig. 2.
At very low B (B & 0.5 T) we have the Weiss oscillations
whereas at higher B the SdH ones appear clearly. We see
clearly that the latter disappear fast with the tempera-
ture whereas the former remain practically temperature
independent up to T = 10 K. This is related to the crit-
ical temperatures T and T, introduced earlier and has
been discussed extensively in Ref. 3(b) for electric mod-
ulations.

IV. ELECTRIC AND MAGNETIC
MODULATIONS

0.3

0.25

0.20)
0.15

CL

0.10

Bo=0.2T B

- x0.1""~

0 =3x10 crn

a=3000A
T=4.2K

Both of the possible methods of magnetic modulation
mentioned in the Introduction are expected to be accom-
panied by an electric one since gates are applied to the
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FIG. 2. The correction Ap /po =—bp to the resistivity

p due to the modulation, scaled by the B = 0 resistivity pp,
as function of' the magnetic field. The solid curve corresponds
to a constant Bo = 0.02 T, the dotted one (scaled down by
a factor of 10) to Bo ——0.2 T B, and the dashed —curve to
Bp ——0.1B. The electron density is n = 3 x 10 cm, the
modulation period a = 3000 A, and the temperature T = 4.2
K.

0.5 1.0

Magnetic field B(T}

FIG. 3. Ap as a function of the magnetic field for constant
Bp ——0.02 T and three different temperatures as indicated.
The other parameters are the same as those of Fig. 2.
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heterostructure. We are thus led to study how the results
of Sec. III are modified when an electric modulation with
the same period is present. Two cases are of interest:
that where the two modulations are in, phase and that
where they are out of phase.

A. In-phase modulations

where b = 2vrVO/akEhuc ——tan(p). Notice that the flat-
band condition now reads 2R, /a = i + 1/4 —P/~ and
depends on the relative strength of the two modulations.

The changes mentioned above will be reflected in the
transport coefficients as well. As an example the diffu-
sion contribution to the conductivity corresponding to
Eq. (10) now takes the form

If a weak electric modulation described by the periodic
potential Vocos(Kz), which is in phase with the mag
netic one, is present Eq. (2) will have an additional term
VoF„(u) cos(Kxo). As a result v„, given by Eq. (6), will
have an additional term —(2V&/hK)uF„(u) sin(Kzp).
The bandwidth will be the sum of the two bandwidths.
At the Fermi energy the latter is given by the sum of
those of Eqs. (4a) and (4b) and is equal to

od„'r = — —) [ FuuoG„(u) + VpF„(u)j

Bf(E))
) E=E„

(22)

2Vo+2/~KR, +1+b ~
~
sin(2~R, /a —m./4+ P) ~,

(21)
and its asymptotic expression, obtained in the manner
described earlier, reads

~dif
(1+ 6 ) 1 —A(T/T )+ A(T/T ) —2e ~ rA(T/Tc) cos

I

x sin ——+a 4 )

As can be seen the influence of the combined effect of
the two modulations is to introduce the phase factor P
in the Weiss oscillations.

In Fig. 4 we plot b p as a function of B (solid curve) for
Bo = 0.02 T and Vo ——0.2 meV. The other parameters
are the same with those of Fig. 2. For comparison we

show the results when only the magnetic (dotted curve)
or the electric (dashed curve) modulation is present. In
line with Eq. (23) that was used for the evaluation of Ap
the solid curve is shifted from the other curves due to
the phase factor P. We also remark about the vr/2 phase
difference between the dashed and dotted curves which
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FIG. 4. Ap as a function of the magnetic field (solid curve)
when a magnetic and an electric in-phase modulation are
present. The modulation strengths are Bp ——0.02 T and
Vp ——0.2 meV. The other parameters are the same as in Fig.
2. The dotted and dashed curves show Ap for the same mag-
netic and electric modulation alone, respectively.

FIG. 5. Ap as a function of the magnetic Geld when a
magnetic and an electric in-phase modulation are present.
Bp = 0.02 T is kept constant while Vp varies between neg-
ative and positive values. The value of Vp is indicated at
the begining of each curve that is shifted upwards from the
previous one by 0.5 as indicated by the arrows.
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refiects that of the corresponding bandwidths shown in
Fig. 1.

The dependence of Ap on B and the phase factor P is
shown in Fig. 5. Bp is again kept constant (Bp = 0.02 T)
but Vp is varied as indicated between positive and nega-
tive values; 6 and P change accordingly. We notice that
(1) the position of the peaks depends on the specific value
of b used and (2) there is a vr phase difference between
large positive and large negative values of b.

B. Out-of-phase modulations

and

v„= —(2u/hK) [ hwpG (u) cos(Kxp)
—VoE (u) sin(Kxo)], (25)

respectively. These apparently smooth changes can have
important consequences for transport. For instance, the
combined bandwidth at the Fermi energy now is equal to

2Vp+2/vrKBc 1 + (b 2 —1) sin (2mRc/a —n/4).

(26)

@„A,„——(n+ 1/2)bio, + hwoG„(u) sin(Kxo)
+VpF (u) cos(Kxp) (24)

If light is shined on top of a magnetically modulated
heterostructure the light pulses will ionize DX centers in
the A1~Gai ~As layer between the gates (e.g. , strips of
magnetic materials) where Bp = 0. This will create an
electric modulation vr/2 out of phase with the magnetic
one. Assuming that the electric modulation of the gates
is much smaller than that of the light, something that
can be achieved by contacting the gates, we are led to
consider transport in the presence of the two modulations
that are vr/2 out of phase

We take the same electric modulation Vp cos(Kx) and
assume a magnetic one given by B(x) = B+Bp sin(Kx).
To first order in Vp and Bp the eigenvalue E„g„and ve-
locity v„are given by

gs„" = — —) ([VoE„(u)]2+ [h~pG„(u)]~)

) E=E
(27)

There is no cross term involving the product MoVp in
Eq. (27), as expected from Eqs. (7) and (25), because the
integral over k„vanishes for this term if we neglect the
very weak A:„dependence of the argument of the Fermi
functions.

The asymptotic expression for a'„„' is

If b' = +1 the bandwidth no longer oscillates as a func-
tion of the magnetic field, i.e. , the Weiss oscillations are
washed out.

The result for the diffusion contribution reads

~dif
+ 8

Tlld c
(28)

where 3.5
n =

4 "cn '

a 4p
(29) 30

T=
2.5

Comparing Eq. (29) with Eq. (23) we see that chang-
ing 6 does not change the position of the extrema of Ap
as a function of B since the phase factor P is absent from
Eq. (29). This is illustrated in Fig. 6 where Ap is plot-
ted as a function of B for Bp = 0.02 T with variable Vp.
For the upper two curves we have 6 ) 1 whereas for the
lower two curves 6 is smaHer than 1. This results in an
antiphase between the two groups of curves and refiects
the corresponding behavior of the bandwidth as given by
Eq. (26).

V. CONCLUSIONS

1.0

0.5

0 01 02 03 04 05 06 07 08 09 1

Magnetic field B{T)

We calculated the magnetoconductivity tensor for a
2DEG in the presence of a weak modulation of the mag-
netic field. The magnetoresistivity tensor exhibits gneiss

FIG. 6. Dp as a function of the magnetic field when a
magnetic and an electric, m/2 out of phase modulation, -ar-e

present. The values of Vo in meV are indicated on each curve
and the other parameters are the same as in Fig. 5.
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oscillations which are different from those from an elec-
tric modulation: (1) there is a vr/2 phase shift between
the oscillations and (2) for equal modulation strengths
(i.e. , V, = hem, ) the oscillation amplitude in the magnetic
case is much larger than for the electric case.

In a real experimental system we expect that an elec-
tric modulation will inherently be present with each mag-
netic modulation. Therefore we have also studied the
case in which both types of modulations are present in a
2DEG. We found that if both modulations are in phase
the extremal positions of the Weiss oscillations are shifted
continuously with increasing strength of the electric os-
cillation. On the other hand, when the electric and mag-
netic modulation are n/2 out of phase a different behav-
ior is found in which with increasing electric modulation

strength the position of the Weiss oscillations are not in-
fluenced but the amplitude is. If Bo is kept constant for
a critical value of the strength of the electric modulation
the Weiss oscillations disappear and with a further in-
crease of the modulation strength the Weiss oscillations
reappear but now the maxima appear at the position of
the previous minima.
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