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The nuclear spin—lattice relaxation in LazCuOy is reexamined in connection with the recent mea-
surements of the NQR relaxation rate for temperatures up to 900 K [T. Imai, C.P. Slichter, K.
Yoshimura, and K. Kosuge, Phys. Rev. Lett. 70, 1002 (1993)]. We use an approach based on the
exact diagonalization for the Heisenberg model to calculate the short-wavelength contribution to the
relaxation rate in the high-temperature region, T 2 J/2. It is shown that the spin diffusion accounts
for approximately 10% of the total relaxation rate at 900 K and would become dominant for 7> J.
The calculated 1/73 is in good agreement with the experiment both in terms of the absolute value

and temperature dependence.

The fact that the spin dynamics of the parent insu-
lating compound LapCuQy is described by the S =1/2
Heisenberg model with J~1500 K is now very well estab-
lished (for reviews, see Refs. 1 and 2). Recently, Imai et
al.® have measured the copper nuclear-spin—lattice relax-
ation rate, 1/7T; in the undoped and Sr-doped Lap;CuOy4
for temperatures up to 900 K. They found a plateau in
1/T; as a function of temperature for 700 <7< 900 K. In
this temperature region, the relaxation rate is insensitive
to doping, a result which suggests that at high tempera-
tures the dominant relaxation mechanism is the same in
both metallic and insulating samples.?

As is known, for localized spins, the relaxation rate
is determined by the so-called “exchange narrowing”
mechanism.? The “exchange narrowing” here refers to
the relaxation process governed by the spin-spin ex-
change interaction. An approach based on the Gaus-
sian approximation for the dynamic structure factor has
been developed in Ref. 4 in order to calculate the relax-
ation rate for T'> J. In Refs. 5 and 6, this approach
has been combined with a high-temperature expansion
method and thus extended to finite temperatures of the
order of J. For temperatures larger than J, 1/T7 has
been shown to increase as the temperature increases.
On the other hand, in the low-temperature limit the
dominant contribution to the copper relaxation rate is
due to critical fluctuations around ¢ = (7/a,n/a), and
it increases exponentially as the temperature decreases,
1/T; o< T3/? exp(2np,/T).” For T < J, the spin stiffness
is ps ~ 0.18J. The interpolation from low to high tem-
peratures shows that 1/7; as a function of temperature
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has a minimum. In Ref. 7, its position has been predicted
at T ~ 700 K, a result which seems to be in contradiction
with the experimental data of Ref. 3.

Therefore, the purpose of this work is to understand
whether or not this experimental result can be gquan-
titatively understood in the framework of the nearest-
neighbor Heisenberg model. The analysis of the NMR
data in Lag_;Sr;CuOy4 has led to the conclusion that
the hyperfine constants in this material approximately
coincide with those of YBayCuzO..2 We take advantage
of this and use the values of the hyperfine couplings ob-
tained in Ref. 8 for the yttrium-based compounds. Along
with the use of J~1500 K for the exchange constant, this
eliminates all adjustable parameters in our calculation.

The copper spin-lattice relaxation rate measured in the
NQR experiment is

1 _ 2T m Xng(w) (1)
Ty g?p% wo0 w
where
d*q
" 2 "
= —_—_— 2
th(w) (271’/0,)2A (Q) X (Qa w) ( )

(for simplicity, we use the units where kg = =1). In
the NQR experiment, the hyperfine form factor A(q) is
given by®

A(q) = Agy + 2B cos(gza) + 2B cos(gya), (3)
where Az, and B are the in-plane local and isotropic
transferred hyperfine couplings, respectively. In what fol-
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lows, we use Azy/B = 0.84, B = 40.8kOe/up.8

The relaxation rate of the Heisenberg antiferromag-
net has been discussed in several publications. However,
the low-temperature calculation based on the dynami-
cal scaling theory” is not valid for T ~ J /2 = 750 K,
where also the contribution from wave vectors other than
g=(r/a, 7 /a) becomes important. On the other hand, it
has been mentioned in Ref. 5 that the high-temperature
expansion results based on the Gaussian approximation
do not show the low-temperature increase of 1/77, appar-
ently because of the particular functional form assumed
in this calculation for the dynamical structure factor.
As it has been shown in Ref. 10 using the scaling con-
siderations, 1/77 is nearly temperature independent for
T ~ J/2. Unlike our calculation, the 1/N approach em-
ployed in this paper to calculate the prefactor does not
start from the S = 1/2 lattice model and so the abso-
lute value of 1/T} is evaluated in Ref. 10 using the low-
temperature fit of the same data and not the hyperfine
couplings A.y, B.

For T' « J, the spin diffusion (¢ — 0) contribution
to the relaxation rate, (1/7%)4is, is negligible because
the spin diffusion constant, D, is exponentially large.”:11
However, D rapidly decreases as the temperature in-
creases, that is, the ¢ — 0 component may be impor-
tant for higher temperatures. In a pure two-dimensional
(2D) model, the conservation of spin leads to the diver-
gence of (1/T1)4isr; that is, the relaxation would be faster
than exponential. However, in a real system (1/7})aqig
remains finite and its magnitude is determined by the
length scale L, set either by spin-nonconserving forces
or three-dimensional effects. Since in any cluster calcu-
lation (exact diagonalization or Monte Carlo) the cutoff
is set by the lattice size, we have taken into account the
g — 0 contribution separately.

Our approach for the calculation of the short-
wavelength contribution to the relaxation rate is based on
the exact diagonalization of the Hamiltonian for the 4x4
cluster. Since the nuclear spin-lattice relaxation rate is
determined by short-range spin correlations, our results
are relevant to the real system as long as the correlation
length is not large compared to the cluster size. The
spectral representation for xj; can be written in terms of
the Hamiltonian eigensystem as follows:

XHeW) NS B T ex(—
3 =7 %: [exp(—Ea/T) — exp(—Es/T)]

x6(Eq— Ep+w) %
x  A%(q) [(alSZ D)7, (4)

q7#0

where E,; are the eigenvalues of the Hamiltonian and
Z =Y ,exp(—E,/T) is the partition function. In the
thermodynamic limit (N — 00), Xj; is a continuous func-
tion of frequency, while for finite size it is a superposition
of § functions.

For a finite cluster, the limit w —0 in Eq. (1) is not de-
fined, but we argue that the thermodynamic xj;(w) can
be calculated using the following procedure. Consider
the auxiliary function In(w) given, for a cluster of size

RAPID COMMUNICATIONS

14 647
N, by

1 w "
gmymw=§/ de X(9), 5)

From this equation, xj(w)/w = g2u%(dIn/dw). For a
finite cluster, In(w) can easily be calculated from the
eigenstates of the Hamiltonian:

IN(Ww) =Y I [0(Ea— Ey+w) —0(E,— Ey—w)] (6)
ab

where 6(z) is the Heaviside function and

m_exp(—Eq/T) — exp(—=Ep/T)
2Z Ey,-E,

x= 3 A%(q)|{alS; |8} ? (7)
g#0

(for a = b we take the limit E, — E;). The auxiliary
function In(w) is quite smooth as long as the tempera-
ture is not much smaller than the gap between the ground
state and the rest of the spectrum, which for the 16-site
cluster is of order J/2. For temperatures T'> 1.5—2J,
we find no appreciable size dependence: I1g ~ I16. In
the study of static properties of the Heisenberg model,?
no discrepancy was found between the 4x 4 cluster and
Monte Carlo results for larger systems at T'> J. Both
the discrepancy and the error bars in the fitting of I;6 by
a smooth function increase up to approximately 10% for
T ~J/2. Thus, we will assume that our calculation of the
short-wavelength contribution to 1/T; has 10% accuracy.

Now we turn to the calculation of the ¢ — 0 contribu-
tion to 1/Ty. For L;! < ¢ < max(¢,a)™! and wr < 1,
the dynamical spin susceptibility x(q,w) has the follow-
ing form:

Iop =

Dg?
—_— 8
Dg? —iw’ ()
where D is the diffusion constant and 7 a characteristic
relaxation time. Substituting this expression into Eq.
(1), we obtain

x(q,w) = x(a)

( 1 ) _ Txo0a?A?%(¢=0) L, (9)
T1 ) qig 7792//'2BD L.’
where we take Lg s > € to be equal to the size of our clus-
ter. For T' > J, the diffusion constant is D ~ 0.43Jq2,13
so that (1/71)aig ~ 7400 x log(L,/Lss.) sec™? is at least
several times larger than the measured rate at the maxi-
mal accessible temperature 900 K.2 This contribution is
larger than the calculated short wavelength contribution
at the same temperature. Therefore, the relaxation rate
of the 2D Heisenberg model for 7' > J is a poorly de-
fined gquantity, since it strongly depends on the way the
cutoff is taken into account. In this temperature region,
an accurate calculation of 1/77 would have to involve
the actual mechanism destroying the diffusion. However,
since temperatures larger than the exchange constant are
not experimentally accessible in LasCuQOy4, we will exam-
ine now whether or not the spin diffusion substantially
contributes to the relaxation rate at 600—900 K.

In order to address this issue, we have to determine

log
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both the diffusion constant D and the length scale L, for
T~ J/2. The diffusion constant is estimated as'%1%

D = lim g3/ (w37 /2, (10)

where (wf(")q are the frequency moments of the dynami-
cal response function,

<w2n> _ fw2n—1X//(q,w) dw
x /9 fw'lx”(q,w)dw ’

and « is a numerical factor which depends on the assumed
short-time relaxational behavior.l6 Taking v = 1/7/2 =~
1.25 (Ref. 15) yields Dr—o = 0.40Ja?, which is quite
close to the value 0.43Ja? (Ref. 13) obtained through an
evaluation of the memory function. In Ref. 17, general
expressions for the series in 8 = J/T for (wf(")q have
been derived. Using these results, we calculate first two
terms of the high-temperature expansion for the diffusion
constant:

D _ v
Ja2 ~ 25

(11)

2173
405

+0(8?) = 0.40+0.428+0(B%).
(12)

Two leading terms in the high-temperature expansion
series are not sufficient for the accurate estimate of D at
T ~ J/2. However, we know that the diffusion constant
should scale approximately as D « £ in the quantum
critical region, p; < T < J. Using Monte Carlo data
of Ref. 18 for the correlation length, £(T"), we estimate
D ~ 3Ja? at T =900 K, which when substituted into Eq.
(9) gives (1/T1)aig ~ (200—300) x log(Ls/Lss.) sec™?.

Now we turn to the evaluation of the logarithm in Eq.
(9). Since the hyperfine splitting ~ 1.5 x 107 eV is very
small and above the tetragonal-to-orthorhombic transi-
tion temperature, TT_o =~ 525 K, the Dzyaloshinskii-
Moriya interaction vanishes, the cutoff is determined ei-
ther by the three-dimensional effects or by the noncon-
servation of spin. Consider first the cutoff due to the
three-dimensional effects, L3P, which is set by the inter-
planar diffusion constant, D;. For estimation purposes,
we express D in terms of the characteristic damping of
spin waves for small wave vectors, 7.1° With omission of
all factors of the order of unity, we get D, /D) ~ J'/J,
which yields L3P ~ 300a, a quite large value.

Given the size of LgD, we consider an alternative phys-
ical origin for the cutoff, the presence of disorder in CuO,
planes. For temperatures above 700 K, the oxygen con-
tent changes after the heating cycle by approximately
0.004 per unit cell;3 that is, the average distance be-
tween nonstoichiometric oxygen atoms, which we iden-
tify with L,, is 10—20a. The oxygen defects limit spin
diffusion by introducing strong local perturbation. Al-
though the value of L, cannot be determined quite ac-
curately, the ¢ — 0 contribution to 1/7} depends on L,
only weakly. In what follows, we plot the results for
L, =10a and L, = 20a. Substituting the above values
of L, into Eq. (9), one obtains that the spin diffusion
contribution accounts for approximately 10% of the total
spin lattice relaxation rate for 7’=900 K, but rapidly de-
creases as the temperature decreases. This explains why
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FIG. 1. The calculated 1/7} as a function of temperature

without (solid line) and with the spin diffusion contribution
for L, = 10 (dashed line), and for L, = 20 (dotted line).
Dots are the experimental result of Ref. 3. The error bars due
to the calculation inaccuracy (less than 10%, not shown) are
smaller than the ambiguity in the definition of 1/T} related to
the ¢— 0 cutoff. Inset: the spin diffusion (g— 0) contribution
to the relaxation rate.

the tetragonal-to-orthorhombic transition at T_o = 525
K does not have any observable effect on the spin-lattice
relaxation although it affects L,.

The total relaxation rate for Ly =10 and L; =20 and
the short-wavelength contribution alone are plotted in
Fig. 1 together with the experimental result of Ref. 3.
The theoretical result is in 15% agreement with the ex-
periment (for Ly =10). The agreement can be improved
by either taking smaller L,, or changing the hyperfine
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FIG. 2. Same as Fig. 1, but in the temperature range

J/2<T <3J for a hypothetical heat-resistant sample.
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constants by 7% (actually, Az, B are known only with 5-
10% accuracy®). It is important to emphasize, however,
that the ambiguity in the definition of 1/T} as a function
of the cutoff L, exceeds our estimate of the systematic er-
ror of the finite cluster calculation; moreover, the cutoff
itself cannot be determined quite accurately. The spin
diffusion (¢ — 0) contribution rapidly increases as the
temperature increases (Fig. 1, inset) and becomes domi-
nant for T'>1.5J, as is shown on Fig. 2. Although this
temperature range is beyond the limit of chemical stabil-
ity for LagCuQy, it may be of interest for other materials
described by the Heisenberg model but with smaller J,
such as Cu(HCO3);-4H,0 and Cu(pyrazine)(ClO4),.2°

To summarize, we have calculated the copper spin-
lattice relaxation rate for LapCuQ4 without introducing
any adjustable parameters. The spin diffusion (¢ — 0)
contribution is shown to account for 10% of the relax-
ation for the maximal temperature achieved in the ex-
periment, 900 K, although it would become dominant for
larger temperatures, thereby explaining the discrepancy
between different calculations of the relaxation rate at
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high temperatures. The measured 1/7; (Ref. 3) turned
out to be quantitatively consistent with the nearest-
neighbor Heisenberg model description of the spin dy-
namics in LapCuOy.
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