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The vortex glass transition in the presence of columnar defects is studied by Monte Carlo sim-
ulations of a vortex loop model, suggested by the analogy to the T' = 0 superconductor-insulator
transition for dirty bosons in (2+1) dimensions. From finite-size scaling analysis of the I-V char-

acteristic we find two dynamical exponents describing the nonequilibrium behavior.

We obtain

z1 = 6 £ 0.5 and z; = 4 &+ 0.5 when the current is applied perpendicular and parallel to the

columnar defects, respectively.

Strong thermal fluctuations and quenched disorder
give properties to high-temperature superconductors not
observed in conventional type-II superconductors. The
irreversibility line separates two regions in the mixed
state with distinct properties of the penetrating magnetic
field lines. Above the irreversibility line, vortex lines are
in a liquid state due to the strong thermal fluctuations.
M.P.A. Fisher! has suggested that in the presence of
quenched disorder there is a phase transition into a new
superconducting state at the irreversibility line, called
the vortex glass.? One signature of a vortex glass transi-
tion is universal scaling of the nonlinear current-voltage
(I-V) characteristic.! This has been verified in several
experiments,®7 and in Monte Carlo simulations.87!!

The original vortex glass model assumes pointlike im-
purities. In recent experiments several groups'? have
found a remarkable shift upwards in the irreversibility
line upon heavy-ion irradiation high-T, samples. The
damage tracks from the ions form permanent “columnar
defects” with linear dimension comparable to the sam-
ple size. These columnar defects strongly enhance flux
pinning in the superconductor.

Nelson and Vinokur!® and Lyuksyutov!4 have studied
the case of columnar defects, using an analogy to the Bose
glass.1%16 In this picture, the glass transition is analogous
to the zero-temperature superconductor-insulator transi-
tion of dirty bosons in two dimensions. The magnetic
flux lines through the three-dimensional (3D) bulk su-
perconductor correspond to world lines of bosons in the
(241)D path integral formula for the partition function.
Static disorder for the (2+1)D boson system corresponds
to columnar defects for the 3D superconductor. The su-
perconducting phase corresponds to the insulating local-
ized Bose glass phase for dirty bosons, and the resistive
vortex fluid phase corresponds to the superconducting
phase of the dirty bosons.

A question of principal interest is whether a stable glass
phase can actually exist in 3D. This issue was studied
by Monte Carlo (MC) simulations of gauge glass models
with point disorder.®:%17 These simulations found that
the lower critical dimension is somewhat smaller than
d = 3, but so close to d = 3 that it is hard to resolve
unambiguously. On the other hand, the existence of the
glass phase in the presence of columnar defects is clear
due to the analogy with the dirty boson problem which
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has a phase transition which is now well established.!8:19
Furthermore, in these calculations screening of the flux
lines, and the anisotropy due to the preferred direction
picked out by the applied magnetic field, were not con-
sidered.

In this paper we report MC results for the nonlin-
ear I-V characteristic at the glass transition of a model
3D high-temperature superconductor with columnar de-
fects. Screening of the flux lines is taken into account
by neglecting long-range vortex interactions altogether
and assuming only a short-range repulsion. Our model
effectively assumes that the magnetic field fluctuations
diffuse more rapidly than the vortices. The case of
long-range forces and columnar defects is being consid-
ered elsewhere.?’ Dong et al.?! have recently considered
the case of a single elastic string moving in a random
medium. Here we consider the more difficult case of an
interacting gas of such strings.

Let us briefly discuss scaling of the nonlinear I-V char-
acteristics at the glass transition.!’!3 Any configuration
of wiggling vortex lines may be described as a constant
background of straight lines plus closed loops. The char-
acteristic size of the loops defines the correlation length
&, which diverges as £ ~ |T —T,4|™". The correlation time
is assumed to obey standard dynamical scaling: 7 ~ &7,
where z is the dynamical exponent which will be com-
puted below. Columnar defects make the system strongly
anisotropic, and this is reflected in the divergence of the
correlation length. From the analogy to the dirty boson
problem we infer that the correlation length in the direc-
tion of the columns scales as & ~ €%, where zg = 2 is
the quantum “dynamical exponent” of the dirty bosons
at T =0 in 2D.19

Consider voltage fluctuations across a correlation vol-
ume of size {1 X&) x§) ~ §i+zq. The linear response elec-
tric field E, the current density I, and the resistivity p are
related by E = pI. From the Josephson and Nyquist rela-
tions the resistance R across the correlation volume scales
as R ~ £7%. In the case of a transverse current applied in
the direction perpendicular to the columnar defects, the
linear resistivity becomes p = RE,&/€L ~ £1°77, and
E ~ &;°771. We also consider the case of an applied lon-
gitudinal current. Here we find p = R¢2 /¢ ~ g2z,

and E ~ §i_zQ_ZI.
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We now have to find the nonlinear I-V characteris-
tics. At finite current density I, vortex lines fall out of
equilibrium due to the Lorentz force. The work against
the Lorentz force to create a closed loop costs energy
E ~ £ AI, where * is the orientation and A the area of
the loop. For large enough loops the energy shift reaches
kpT. This defines a characteristic “current length” &r
beyond which correlations are destroyed.! In an isotropic
system we would define ¢2] = 1 (dropping a factor of
kgT). With columnar defects and a transverse current
we instead take (€1.&)rf ~ §}+ZQI = 1. The non-
linear I-V characteristic is now expected to have the
form V ~ IY+ with exponent y; = (1 + 2)/(1 + zq),
and, in general, the electric field is expected to scale
like E ~ {I(]'J"z)Fi(I{i“Q), where F, and F_ are uni-
versal scaling functions valid for T > Ty and T < Ty,
respectively.!® In the case of a longitudinal current we
instead have (£2);I ~ €21 = 1, and following the same
derivation gives V' ~ I¥l with y; = (2 + 2)/2, and
E ~ e "ot R (162).

For a finite system at T' = T the diverging correla-
tion length is cut off by the system size L. With trans-
verse I we therefore expect E ~ L~(+2)F(IL1+2q),
Thus a plot of EL'*? versus IL'*t?Q is expected to
give a universal, system size independent curve. Notice
that the meaning of the scaled quantities is very nat-
ural. We have EL'*? ~ V/(Vz)ééz, where V = EL,
(V2)¥2 is the rms equilibrium voltage fluctuation, and
IL'*2@ ~ (L€)' 2.

For our simulation we want a minimal model that de-
scribes the collective behavior of interacting vortex lines
in the presence of thermal fluctuations and columnar de-
fects. We choose the dirty boson action!®

pH =Y (370 — e LO}), ()

where 8 = 1/kgT, J = (J3, Jy,J;) are integer variables
defined on the links of the lattice, taking values from
—00 to co. These integer variables represent the vortex
lines, for example, J,(r) = +1 means that one vortex
line with orientation +1 goes from r to r + X. The vor-
tex “current” is constrained to be divergenceless. The
first term in H acts as a string tension and as a short-
range repulsion. The second term in H describes the
columnar defects. v(r_) is a random site energy with uni-
form probability distribution on the interval [0, 1]. Notice
that we do not model the disorder as a set of columns of
fixed strength and random location. The spacing of such
defects would introduce an additional length scale and
worsen our finite-size scaling results. Instead we choose
a random-strength (columnar) potential v(r,) on each
site. In the absence of any commensuration with the
density of vortices this model will be in the same univer-
sality class and so have no effect on the critical behavior.

Due to the anisotropy from the columnar defects, the
correlation length in the direction of the columns diverges
at Ty as & ~ &]° with zg = 2. To enable finite-size
scaling we must use lattice sizes that scale correspond-
ingly. We use lattices of size L x L x L?/4 with periodic
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boundary conditions in all directions. We use an ap-
plied magnetic field such that there is a fixed density of
f = 1/2 of vortex lines in the direction of the columnar
defects, corresponding to half filling in the dirty boson
problem. The transition point T, = 0.248 £ 0.002 for
this model is already known from our previous work on
the superconductor-insulator transition.®

Our MC algorithm consists of attempts to insert closed
loops of vortex lines with random sign on the plaquettes
of the lattice. The algorithm is ergodic in the sense that
all possible configurations of closed loops are accessible.
Nonequilibrium effects due to the Lorentz force from the
finite current are included by biasing the acceptance of
plaquette moves. The energy change of a move includes
a term of the form Ae = (V x J) - I, where the discrete
curl gives the orientation of the plaquette loop.

We do a thermal average over vortex loops for each
realization of the columnar disorder, followed by a
(quenched) average over the random disorder potential.
As an estimate of the required number of MC update
sweeps in the thermal averages we use the time to re-
turn to steady state after a reversal of the current. The
voltage is measured over up to 107 sweeps, with up to
106 initial sweeps discarded to reach steady state. For
large currents a smaller number of sweeps is sufficient.
Also the number of disorder realizations necessary to get
small statistical error depends on the size of the applied
current. At large enough current, so that £ < L, the
system will self-average and a small number of disorder
realizations is enough. At small I we use up to 20 real-
izations of the disorder.

The voltage is given by the rate of phase slip across
the system. This is measured by keeping track of the
number of plaquette moves in the plane perpendicular to
the applied current. The electric field is proportional to

Bo g [(F0n-10)] (2)

where Q@ = LyL,L, is the volume of the system, N
is the number of accepted plaquette moves with posi-
tive/negative orientation in the plane perpendicular to
the applied current, and the time derivative stands for
the change per sweep. The bracket ( ) denotes ther-
mal average, and [ ] denotes quenched disorder average.
Equation (2) implicitly assumes heavily overdamped dy-
namics so that MC time can be equated with real time.
The update order in a sweep through the lattice is ran-
dom rather than sequential, in order to avoid possible
systematic error at high current where the acceptance
rates are high.

Monte Carlo results for the nonlinear I-V characteris-
tic at the glass transition are shown in Fig. 1. In 1(a)
the current density I is transverse to the columns, and
in 1(b) I is longitudinal.?? The dynamical exponent 2
was adjusted until all data for different lattice sizes col-
lapse on the same curve. Surprisingly, this happens for
different values of z for a transverse and a longitudinal
current. In 1(a) z has been set to z; = 6, and in 1(b)
z has been set to z; = 4. The MC data have three dif-
ferent regimes: (1) For small current, where £ > L, the
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MC data points approach the dashed line, whose slope is
1. This is a finite size effect: when the current length is
cut off by the system size L the response becomes ohmic.
(2) In the nonlinear I-V scaling regime, 1 < §{; < L, the
MC data nearly coincide with the solid line, whose slope
is given by the scaling prediction for the exponent y in
V~IVY.In(a)y, =(1+21)/(1+29)="7/3, and in (b)
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FIG. 1. Log-log plot of Monte Carlo results for the non-
linear I-V characteristic at the vortex glass transition with
columnar defects. Plotted in (a) are MC data for EL*** vs
IL***2 where E is the electric field, and the applied current
density I is perpendicular to the columnar defects. Plotted in
(b) is EL??** vs IL?, where the current density I is parallel
to the columns. The dynamical exponent z has been adjusted
until all data for different system sizes collapse on the same
curve. In (a) z has been set to z, = 6, and in (b) z; = 4.
For other values of z scaling quickly breaks down. The solid
straight line in (a) has slope y1. = (1 +2.)/(1 + zq) = 7/3
given by scaling (see text). The solid straight line in (b) has
slope y; = (2q + 2z)/2 = 3. The dashed straight lines in (a)
and (b) both have slope 1, and indicate the ohmic region at
small current.
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Y = (2 +2)/2 = 3. (3) At higher current, with £; < 1,
scaling breaks down as expected (data not shown). Error
bars on the MC points represent the standard deviation
of the voltage fluctuations between different disorder re-
alizations.

What is the significance of the scaling plots in
Fig. 1?7 The critical temperature T, was determined
independently,!’® and is not an adjustable parameter.
The figure shows that by adjusting only a single parame-
ter, the dynamical exponent z, we simultaneously get two
things: (1) all MC data collapse on the same universal
curve, and (2) the curve is a remarkably good power law
over six decades with an exponent which is consistent
with the predictions of the scaling analysis. For other
choices of 2z both these properties quickly break down.
From the rate at which the data collapse breaks down,
we estimate z; = 6 0.5 and 2 = 4 £0.5. One would
have expected, at least in equilibrium, that a single dy-
namical exponent would suffice, but our simulation shows
that in this nonequilibrium case we need two.?? Attempts
to use a single exponent z = 5 give a distinctly poorer
fit to the data. As a test of universality we changed the
aspect ratio of the lattices from L, = L2 /4 to both L2/8
and L2. We also varied the applied magnetic field from
f=1/2to f = 1/4. These did not change the values of
the dynamical exponents. We have not yet tested lattice
structures other than simple cubic.

The following simple argument suggests how the two
different dynamical exponents z; = 6 and z; = 4 might
arise. First consider an isotropic system, and study the
motion of a blob of vortex lines of diameter £. As a crude
approximation we view the blob as a polymer containing
N ~ &2 segments. The time it takes each segment to ran-
dom walk a distance & scales as t; ~ £2. The diffusion
coefficient for the center of mass (CM) is down by a fac-
tor of N. Hence the time for the CM to move a distance
¢ scales as t ~ &4, and thus z = 4. This argument ne-
glects correlations in the motion of the segments of the
vortex lines. The result coincides with the mean field
result.? When a finite current is applied, the role of the
diverging correlation length £ is taken over by the finite
current length &;. By analogy with the above results,
we make the simple ansatz for the anisotropic case that
the characteristic time is proportional to the square of the
cross-sectional area of the correlation volume as v1ewed in
the direction of current flow. This yields t; ~ E 14z Q)

and z; = 2(1+ zg) = 6 for current perpendicular to the

columns. For the parallel case, we have t) ~ 52(1+1), so

that z) = 2(1 4 1) = 4. Clearly a more detailed analysis
is needed to justify this ansatz.

How do our results compare with experiments on sys-
tems without deliberately introduced columnar defects?
Experiments?® on single crystals of Y-Ba-Cu-O give z =
4.54+1.5 and v = 2.0+1, by fitting data to point-disorder
vortex glass scaling laws. In these experiments correlated
disorder might be present in the form of dislocations, twin
boundaries, etc. If, following Nelson and Vinokur,'3 we
instead fit to the Bose glass scaling laws used in this paper
for columnar defects, we find 2 = 7£2 and v = 1.3+0.5.
These are roughly consistent with our values z; = 640.5
and v = 1.0 & 0.1, where v was calculated in previous
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equilibrium simulations of dirty bosons.!® Simulations of
point and twin-boundary disorder are underway.

In summary, we report Monte Carlo simulations of the
nonlinear I-V characteristic of a model high-temperature
superconductor with columnar defects. We find two dy-
namical exponents describing the nonequilibrium behav-
jor, z; = 6+ 0.5 and 2 = 4 £ 0.5 in the case of an
applied transverse and longitudinal current, respectively.
Experimental measurements in systems with deliberately
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introduced columnar defects would be highly desirable.
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