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Multiple Andreew scattering in superconductor —normal metal —superconductor
junctions as a test for anisotropic electron pairing
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Current-voltage characteristics of superconductor —normal metal —superconductor junctions due to
multiple Andreev reflections at the interfaces are investigated for anisotropic superconductors. Using
nonequilibrium time-dependent Bogoliubov —de Gennes equations, it is shown that the presence of
gap nodes perpendicular to the interface greatly smear subharmonic gap structures corresponding
to voltages V & 26(k)/en for n = 1, 2, 3, . . . for n Andreev reflections as seen in s-wave supercon-
ductors, while the overall current due to Andreev reflections is reduced. Further, asymmetric line
shapes for dI/dV are predicted. It is suggested that these features could be used to distinguish
between superconductors with or without nodes.

Organic, heavy-fermion, and cuprate superconductors
aj.l possess features which question the applicability of
BCS theory to these materials. It is highly expected
that these materials differ from BCS superconductors in
regard to the nature of the pairing ground state of the
electrons. Power-law temperature dependences of var-
ious transport and thermodynamic quantities have led
many authors to suggest that the superconducting state
of these materials can be described by different pair states
other than a BCS s-wave singlet state. While power-law
behavior is indicative of additional mechanisms in op-
eration not included in BCS theory, power laws do not
in themselves indicate the type of pairing of the ground
state due to their sensitivity to the effects of impurity
scattering. The problem is that there are very few ex-
periments which directly couple to the superconducting
order parameter to allow a precise determination of its
structure. However, it has recently been suggested that
Andreev scattering in point contacts, i.e. , scattering of
low energy quasiparticles due to a spatially varying or-
der parameter, could in principle be used to identify the
symmetry of an anisotropic superconductor. However,
such an experiment requires a k-dependent current mea-
surement, and problems with electron collimation make
an accurate determination of the gap unlikely at present.

However, a somewhat different situation is encoun-
tered in superconducting weak links. It has been known
for some time that BCS superconductor —normal metal—
BCS superconductor junctions provide many sharp fea-
tures in current-voltage characteristics. 5 These features
are mainly due to the bound Andreev states which gen-
erate supercurrents at voltages eV = 2A/(n —1) due
to n repeated reflections at the superconducting inter-
faces. An electron (hole) with energy below the gap
edge starts its motion in the normal region and is ac-
celerated towards an interface by the applied field. At
the interface, electrons (holes) are retroflected (reflected
with reversed momentum vector, as opposed to normal
reHection where only the momentum component perpen-
dicular to the interface is reversed) into holes (electrons),
creating an electron (hole)-like Cooper pair in the con-
densate which carries away the excess current. The hole
(electron) then gets reaccelerated towards the other in-

terface and creates another Cooper pair by retroflect-
ing. This process continues until either the particle suf-
fers an inelastic collision in the normal metal or until it
gains enough energy to climb out of the potential well.
The sharp features in the I-V characteristic produced by
multiple Andreev reflections have recently been observed
in Y-Ba-Cu-0 break junctions. Previous theories con-
cerning this experimental situation have been confined to
the case of BCS s-wave gaps, where a gap exists around
the entire Fermi surface. However, in superconductors
which possess gap nodes along the Fermi surface, An-
dreev reflection will not be allowed for those momentum
directions corresponding to the position of the gap nodes.
Therefore, the peaks in the I-V curves corresponding to
multiple Andreev reflections will only occur for a sub-
set of k, reducing the overall signal and broadening the
sharp structure seen for the s-wave case. The differences
in the signal could in principle distinguish between the
two cases superconductors with or without gap nodes.
This is the subject of the present paper.

The purpose of the paper is to report calculations
based on a microscopic theory for Andreev scattering
in superconductor —normal metal —superconductor (SNS)
junctions of anisotropic superconductors. Specifically, we
obtain an expression for the time and spatially averaged
current density in a relaxation time approximation using
nonequilibrium Bogoliubov —de Gennes equations, gener-
alized from the BCS-type theory of Kummel et ct. to
anisotropic superconductors. It is shown for a particular
choice of d-wave gap that the current-voltage character-
istics for superconductors with gap nodes differ dramat-
ically compared to BCS ones. Namely, the subharmonic
gap structure is greatly smeared and the overall signal is
reduced. It is suggested that this setup could be used to
determine the existence or nonexistence of gap nodes.

The formalism used here is similar to the formalism
of Kummel, Gunsenheimer, and Nicolsky7 adapted to
the case of anisotropic superconductivity. Details can
be found in this reference and we therefore will be brief.
The theory is applied to the physical situation of two
long superconducting banks of length D separated by a
normal metal region which exists in the z direction for
Iz! ( a, where a (( D. An externally applied bias volt-
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0
ih —v„(x, t) = —hp (x, t)v„(x, t)

+ dx'6'(x, x') u„(x', t), (2)

age exists across the normal metal region only, and is
defined by a time-dependent vector potential A(x, t) =
e 0(a —Izf)Vct/2a, where a gauge is chosen so that the
pair potential is real and the Josephson equations are
obeyed.

Our starting point to describe this setup is the
Bogoliubov —de Gennes equations for inhomogeneous
anisotropic superconductors in the presence of a time-
dependent vector potential:

ih, —u„(x, t) = hp (x, t)u„(x, t)+ dx'A(x, x') v„(x', t),Bt

where A(k, x) = J dr e '" "A(r, x) is the Fourier trans-
form of A(r, x) with respect to the relative coordinate,

—ik~k xh+ ikp k.x 8
0 —e 0

For an exact solution of Eqs. (3)—(6), one must take
into account the normal reflection and transmission prop-
erties of the interface, the proximity induced coupling
in the normal region, and the effec of the interface on
the gap parameter. The wave functions are first calcu-
lated and then a new potential is obtained, which in turn
gives new wave functions. The iteration process is contin-
ued until self-consistency is fulfilled. Such a program has
been carried out in Refs. 4 and 9. It was found that both
effects will tend to reduce the current generated by mul-
tiple Andreev reflections. Taking an oversimplified route,
we will ignore the effects of self-consistency and replace
the barrier by a perfectly reflecting step function, i.e. ,

along with the self-consistency requirement, A(k, x) = 0( zf —a)A(k). (6)

A(x, x') = V(x, x') ) u„(x)v„*(x')f(E„)
n

—v„*(x)u„(x')f (—E„).
Here u„, v„are the electron, hole-like quasiparticle wave
functions and hp (x, t) =

[
—ibad' + eA(x, t)/c] /2m —p

with chemical potential p, . We now rewrite the gap
parameter in terms of center of mass R = (x+ x')/2
and relative coordinate r = x —x'. Dividing out
the fast oscillations of the wave functions by defining
(u, 8„) = e '"~ '"(u~, v ) and retaining lowest-order
terms in (kp(p), with (p the coherence length, we ob-
tain the time-dependent Andreev equations,

ih, —u„(x, t) = hp+(x, t)u„(x, t) + A(k, x)v„(x, t),Bt

ih —v„(x, t) = —hp (x, t)v„(x, t) + 6'(k, x)u„(x, t),
Ot

For gaps which have a component perpendicular to the
interface the interface is pairbreaking and the gap will
become suppressed under self-consistency. However, the
interface has little efFect on a gap which has no compo-
nent perpendicular to the interface and thus the approx-
imation of replacing the potential by a step function is
not bad in this ease.

The solutions to the Andreev equations are given by
spinor wave functions in both the normal layer and su-
perconducting banks. Neglecting Fermi wave-vector mis-
match. , electrons and holes with momentum in the same
direction are coupled together by Andreev reflection and
are decoupled from electrons and holes with opposite mo-
mentum. We refer the reader to technical details con-
tained in Refs. 7 and 4. The result gives the following
expression for the average supercurrent density produced
by multiple Andreev reflections in a relaxation time ap-
proximation:

dAI,

4m
dE ) g(E, Ag) [fp(E)k~ —fp( E)kh]e—

x + kE+eV 2 — A kE —eV 2

which represents the current generated by accelerated
electrons and holes which climb up the potential well mi-
nus the current generated in the opposite direction by the
decelerated electrons and holes. At T = 0 the only con-
tribution to the supercurrent is due to the initial holes.
Here l is the inelastic mean free path, which is taken
to be a constant independent of energy and temperature,
k, h, = kp, +E/hv~, with k~, = k~ —(k +k„)/2k@, and
fp is a Fermi function. The probabilities for n repeated
Andreev reflections

I A„(k, E) I
limit the energy inter-

val in Eq. (6) to mostly those states below the gap edge.
The angular-dependent Andreev reHection probability is
given by

which is unity for
I
E f(f A(k) I

and falls off sharply
for higher energies. Ignoring over-the-barrier quantum
reflections, we simply approximate the probabilities as a
product of step functions, i.e. ,

I
A„+(k, E)

I

= 0(
I

Zs. (k) I

—
I
E + eV/2

I )
xO(

I E(k)
f

—
f
E+ neV / eV/2

I ).
(9)

g(E, Ag) is the angular-dependent quasiparticle density
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of states for an SNS junction, which for thick supercon-
ducting banks consists of the spatially quantized bound
Andreev states for energies below the gap and those of
the anisotropic supercondueting density of states for en-
ergies above the gap. For thick superconducting banks
((o (& a (( D) one has just the bound Andreev states
and scattering states and g can be represented by the
sum of two independent contributions. The two-di-
mensional quasiparticle density of states g(E, AA, ) rises
slowly from zero to a sharp peak corresponding to E(kF),
where the dispersion curve of the spectrum of bound An-
dreev states flattens out (see Fig. 2 of Ref. 7). While the
density of states develops additional features for thin su-

perconducting banks, for very thick banks it can be rea-
sonably approximated by a contribution from the lowest
quasiparticle subband

2mQ
g(E, AA, ) =

I &(k) I' —E'
0(E „—E), (10)

for energies below the gap, where E „= min[(1 +
x) &, I

A(k) I]. With these approximations, the ex-
pression for the supercurrent for T = 0 reduces to the
simple expression

2akp e
(&~R) = ez

( ~),
dA„. "=~™",„./, & 2

I A(AA; )

x I«V —
I &(~„.) I

lneV 1+
V

+
I
&(~,~) I' »c»n2IA(AA, ) I 2 . neV

neV kF

where nm« —— v . The sum over n is limited by
2 max&(Ag~ )

the field voltage eV. A term in the series is lost whenever

eV = „ i~ . This is the basic reason for the subhar-2I&(&I ~)I

monic gap structure and the associated negative differ-
ential conductivity. For isotropic gaps, A(AA, ~) =const,
the current-voltage characteristic shows jumps at these
voltages, as can be seen in Fig. 1 (see also Fig. 4 in Ref.
7) for two inelastic scattering lengths. The inelastic scat-
tering effects only the "foot" structure and has no effect
on the jumps. The foot structure can be attributed to
a balance between the number of Andreev reflections at
the interfaces and the probability for an electron or hole
to undergo an inelastic collision.

We now consider gaps which are zero on a portion of
the Fermi surface. For an example we will consider a
two-dimensional (2D) hexagonal representation for a d-

wave gap, i.e. , 6(QI,~) = Ao (k k„), which has nodes that
are perpendicular to the interface. However, the results
are not sensitive to the actual angular dependence of the
gap parallel to the interface, only to the presence of gap
nodes. The nodes of the gap function restrict the region
of energy space where Andreev reflection occurs, lead-
ing to a reduction of the supercurrent generated. This
can be seen in Fig. 1, which is a comparison between the

current generated by multiple Andreev reflections for s-
and d-wave superconduetors. The effect of inelastic scat-
tering is the same for this case, namely, the presence of
gap nodes does not effec the "foot" structure, which can
be seen clearly in Fig. 2. The most notable difference,
however, is that the sharp discontinuities are completely
smeared for a superconductor with gap nodes, and the
jumps turn into cusps. The cusps can be clearly seen in
Fig. 2. Therefore it is not possible to tell from the I-V
curves the rnaximurn value of the gap as it is in isotropic
s-wave superconductors, given that experimental resolu-
tion will smear the curves somewhat. The differences
can be better seen in the derivative of the I-V curve.
While the jumps in the I-V curves for the s-wave case
turn into symmetric delta function peaks for the deriva-
tive plot, for the d-wave ease, asymmetric peaks which
show a gradual rise from eV = 26O/n to a sharp peak
at eV = 26o/(n —1) are obtained, as can be noted in
Figs. 3 and 4. This asymmetry is not present in the
s-wave case and could therefore be a signature for the
presence of gap nodes in the superconductor. It can also
be noted that the second derivative can be used to test
for asymmetry as well.

We now mention the consequences of our approxima-
tions. Small superconducting banks relative to the nor-
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FIG. 1. Comparison between current generated with s-
wave superconductors and d-wave superconductors in clean
limit (a/t = 0.01). Here a =

FIG. 2. Results for d-wave case for clean and dirty cases
(a/l = 0.01, upper curve; a/l = 0.06667, lower curve).
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FIG. 3. Derivative of s-wave characteristic convoluted
with a Gaussian of fixed width I' = 0.005

mal metal region, large coherence length superconduc-
tors, and gaps which are not mutually aligned or have
a component perpendicular to the interface will all lead
to a net smearing of the I-V features and minimize the
signal seen in the dI/dV curves, making it difficult to
extract the Andreev contribution to the current. How-
ever, we note that the smearing in these situations will
be an overall one which would not obscure the inherent
asymmetry of the peaks around eV = 24e/(n —1).

There has been recent evidence for the presence of An-
dreev refIections in point contact spectroscopy experi-
ments in Y-Ba-Cu-0 (Refs. 6 and 10) and in the heavy
fermion superconductor URu2Si2. Also, recently super-
currents produced by multiple Andreev refIections in Y-
Ba-Cu-0 break junctions have been observed. The I-V
curves show a "foot" structure at low bias voltages, while
no steplike jumps were seen. Also, peaks at a few discrete
voltages are observed in the dI-dV characteristic which
do show some asymmetry. Both of these features are
consistent with findings here for anisotropic superconduc-
tors. It may be that there exists tunneling between differ-
ent grain-grain contacts inside the granular junction that
obscures the step features in the I-V curves. However,
this explanation seems unlikely since the "foot" structure
is clearly seen, and the large smearing necessary to ob-
scure jumps for the s-wave case would also obscure the
"foot." Likewise, the difhculty in observing peaks in the
dI-dV curves can be attributed to the reduction of the
steps to cusps for the anisotropic case. However, more
accurate tests will be needed to clearly identify whether
the line shapes are intrinsically asymmetric.

We close with a few remarks concerning the effects of
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FIG. 4. Derivative of d-wave characteristic convoluted
with a Gaussian of fixed width I = 0.005 A . Note the
asymmetric line shape.

conventional anisotropic gaps [with A(k) g 0 everywhere
on the Fermi surface] on the I Vcurv-es. It can be shown
that the I-V curves contain features reminiscent of the
isotropic s-wave case, but new "jumps" occur in the I-
V curves for eV = 2A;„/n and eV = 2A ~„/n. The
curves in this case will be clearly different than those
obtained from junctions made with superconductors with
gap nodes, and the two cases can be distinguished clearly
by the dI/dV signatures.

A lack of "jumps" is common to any superconductor
with gap nodes, but the absence of the steps cannot
uniquely identify the gap symmetry. We cannot show
this way whether A(k) including its zeros has the sym-
metry of the Fermi surface (conventional order parame-
ter) or whether it has a lower symmetry (unconventional
order parameter). If angular-dependent Andreev mea-
surements were achieved, i.e., if the position of the steps
in the I-V characteristic or the peaks in the derivative
curve could be tracked as a function of angle, one could
check the symmetry of the nodes on the Fermi surface.
The relative sign of A(k) on different parts of the Fermi
surface separated by nodal lines would still remain un-
known from the experiments. However, Andreev reHec-
tion measurements could in principle provide important
information on the angular dependence of the nodes on
the Fermi surface, an important step towards unraveling
the nature of the order parameter.
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