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Lower critical field of a superconductor with uniaxial anisotropy
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Exact transformation of the Ginzburg-Landau free energy with uniaxial anisotropy and a variational
procedure are used to calculate accurately the line energy of a single magnetic vortex for arbitrary
stiffness K~ and anisotropy y. The lower critical field H, &(OH ) can exhibit a discontinuity, a kink, or be
monotonic. Comparisons with experiment are made, and materials likely to exhibit such anomalies are
suggested. The effective core cross section in the anisotropic London model is found.

The two most commonly studied phenomenological
models of anisotropic superconductors are the anisotrop-
ic London and Ginzburg-Landau (GL) models. The an-
isotropic GL model contains the anisotropy of the order
parameter as well as of the local magnetic induction b,
but has been solved previously only in certain simplified
situations. Letting 0 and 00 be the angles the macro-
scopic magnetic induction B and the external magnetic
field H make with the c axis, these cases are: at the upper
critical field' H, z(0), where 0=0H, and at the lower
critical field H, &

when H is along a crystal symmetry
direction, ' i.e., 00=0 or m/2. Very few results for the
intermediate state have been obtained, except for 0H =0
or m/2. '

The anisotropic London model is much simpler to use
than the anisotropic GL model in calculations relevant to
the intermediate state. However, because it neglects vari-
ations of the order parameter, it is inapplicable near to
H, 2. In addition, some of the intermediate state aniso-
tropic London results are questionable, since in calculat-
ing the vortex line energy, cutoffs at the vortex cores
must be introduced. Treatments in the literature have
generally ignored the precise form of such cutoffs.

In this paper, we report on results of an accurate GL
calculation of the line energy of a single vortex at an arbi-
trary direction and H„(0~) in a superconductor with
uniaxial anisotropy, the details of which will be published
elsewhere. Depending upon the material parameters, as
0H is increased, H, &(0 )Hcan exhibit a discontinuity, a
kink, or be monotonic. Fits to existing data are present-
ed, and materials likely to exhibit such behaviors are sug-
gested. In addition, the exact form of the core cross sec-
tion appropriate for the London model is found, leading
to essentially identical results for H, &(0H).

We use the standard dimensionless units, in which
m=(m, m2m3)'~, g =iri /(2mlaot(T) ), A, =mc /
( 16m'e

I Po I ) are the geometric-mean effective mass,
coherence length squared, and penetration depth
squared, and measure lengths in units of A, , magnetic
fields in units of v'2H, =No/(2ngk), vector potential in
units of 40/(2m/ ), and energy density in units of
H, /(4~), where @0= bc/(2e) is the fiux quantum and H,
is the bulk thermodynamic critical field. We assume uni-
axial anisotropy m

&
=m2 & m3. Letting the order param-

eter g =
I go If exp(i y), and making the standard choice of

gauge, the Gibbs free energy difference between the su-

perconducting and normal states is

3 2 1 4Q=fd r f + f—+ g—
2

p i m p

1 df
Bxp

+o +22

+(b —h)

+(b —h).K (b —h)

where %=a/a(0) =Iri/A(0), iri=k~~/g~~ is the GL param-
eter for Bllc, b=VXa, and the symmetric matrix K is
given for unaxial anisotropy by K&& =y A (0),
Kzz=y cos 0+y sin 0, Kz3=(y —y ')sin0cos0,
E33 1 and K

& 2
=K

& 3
=0. Klemm and Clem inadver-

tendly omitted all of the K; except %33 1. Neverthe-
less, (2) is exact for arbitrary B, and is valid in the critical
as well as mean-field regions. Recently, ' only the aniso-
tropic scale transformation was used. Below H, 2, K/3
leads to 0%0H, modifies the 0 dependence of the vortex
lattice, and yields the magnetic torque first predicted in
the anisotropic London model. In Ref. 8, it was as-
sumed that b=h, which is only true at the mean-field
upper critical field H, 2(0). This assumption inherently
neglects %23 and the resulting magnetic torque, and is
therefore questionable for H & H, 2.

Minimization of (2) with respect to f and a gives the
transformed GL (mean-field) equations. Using b=VX K,

a may be eliminated, leading to

where m„=m„/m, I~=A, /g is the geometric-mean GL
parameter, and b=curl a. We write the components of B
as B,=B sin0 cosP, Bz =B sin0 sing, and B3=B cos0.

We then employ the Klemm-Clem transformations,
which consist of an anisotropic scale transformation
Iscaling the x„, the b„, and the h„by (m„) ' ], a rota-
tion of the axes to the scale-transformed magnetic induc-
tion direction B, and an isotropic scale transformation of
the lengths by a(0) =y ~ A(0), where y =(m3/m

&

)' is
the uniaxial anisotropy factor and A (0)= cos 0
+y sin 0 is the square of the angular anisotropy factor
present in H, 2(0).'

With these transformations, the transformed Gibbs
free energy difference becomes '

(0a) f d r f + f +—(Vf) +a—f
K
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—(1/I( )V J2f+(1/f )(V XIC b) =f3 2 — (1 f2)

b+V X [(1/gf )V XK.b]=e3(2n. /I( 5 F (4)

1.2

1.0

uced a straight, sing y q1 uantized
h. "-.-, -n-

d rb3=2m/R. u si

h b, d buation is linear in t e(4) The resulting equa i
' ' ' t e

rmation y

energy is g =b- e3. h F ner

(5)

readily found to be

C 8 )k'],gk =2~[1+C(gk )kgk= ~ k ]/1([1+2(gk)k~+C gk

k =kstngk, A(gk) 1+A+w ere k~ y

A+ =(I(.„+k

has an isotropic core cr~2~/(k I(), so that g(p, P has an is
section, i P o

1 hL obine ener y e, per uni
h H 1 oholt frence between t e etaine

e Meissner state (wit
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+E12, W eFrom (2)—and 8 —277/ K.

q~&g k dk

e=A. (8)[ lnR (ql(rr/j)+(ge + 1)/4]

—
I cosgI ln

R rII(rr/g)[A(g)+ I cosgI]
D ( gl(~/g, 8 )

D z, g)=S(z, g)+ cosgIR(z,
=z +A (8).
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FIG. 3. Plots of H i(~a ) /Hci(0) for y = 10 and ~~= 1/&2, 2,
10, 100. Top inset: Jump in the re~=1/+2 curve. Lower inset:
Kink in the ~&=2 curve.

have plotted H„(8~) for y =100 and xi values between
1/i 2 and 100. The region 15 ~8II +90' shown in the
inset is innocuous, as 0 &0=90. For 0~ 0~ ~ 15', there
can be three H„values at fixed 0~. The actual H„ is the
minimum of these. Hence, the dashed curves are spuri-
ous, and the actual H„(8~) (solid) curves each exhibit a
kink at a small 0~ value. These kinks arise as the vortex
direction 0 jumps from one side of 0 to the other. Note
that as ~i increases, the height of the (spurious) max-
imum decreases, but the (real) change in slope at the kink
increases. Hence such kinks should be observable in the
most anisotropic cuprates such as Bi~SrzCaCu208+& and
T12Ba2CaCu20, as well as in the organic layered super-
conductors s-(ET)zCu(NCS)2 and ~-(ET)zCu[N(CN)2]Br,
for which y 100 from torque measurements.

In Fig. 1, we have plotted H, &(8~) for y =5 and lri
values ranging from I/&2 to 100, along with the experi-
mental data of Senoussi and Aguillon' for YBazCu307
(Y 1:2:3) at T((T,. In addition, the dashed curve is
evaluated for y=8 and K~=55, as obtained by Farrell
et al. from Torque measurements on a different crystal
of Y 1:2:3. For these low y values, H„(8~) decreases
monotonically as 0~ increases. The experimental data
are mostly consistent with y =5 and K~ between 10 and
100, dropping below the theoretical curves for 0~ near to
90'. This latter deviation may be due to dimensional
crossover effects' in H„, not present in the anisotropic
GL model.

In Fig. 3, H, i(8~ ) is shown for y =10 and vi values be-

tween I/V2 and 100. For xi= 1/&2, H, &(8~) is S
shaped, with the minimum value exhibiting a jump, as
shown in detail in the top inset. For K~=2, 10 a kink in
H, &(8~) is found, detailed in the lower inset for xi=2.
For K~=100, the behavior is monotonic. Some of the
graphite intercalation compounds, e.g. , C8K and C4KHg,
have y and Kz values' appropriate for experimental in-
vestigations of the jump, as well as the kink. Other ma-
terials that could exhibit the kink are the transition metal
dichalcogenides and their intercalates. Such behavior
may have been observed' in NbSe2, although the param-
eters for that material are such that a kink is not predict-
ed. However, in the intercalated material
KQ 33(H20)o 66TaS2, the apparent observation' of such a
kink is consistent with this theory.

A calculation of H, &
in the anisotropic London model

was made by Balatskii et al. ' However, those authors'
implicity assumed lnK~~)) lny, neglecting the term pro-
portional to

~
cos8~, and used an isotropic core cutoff.

The correct core cutoff can be derived rigorously from
the isotropic (p=const) vortex core cross section in the
transformed GL frame. Then inverting the Klemm-Clem
transformations to the laboratory frame, and rotating c
to B in the anisotropic London frame, we obtain

k +k A(8) ~g

When the integral analogous to (6) in the anisotropic
London calculation' with the core cutoff (9) is performed
exactly, the correct anisotropic London line energy can
be precisely obtained from (8) by setting q=g=l [and
dropping the A(8)(g +1)/4 term arising from f%1].
Hence the anisotropic GL and London models are essen-
tially equiualent for arbitrary K~ and y.

Inclusion of the elliptical core cutoff (9) modifies many
of the anisotropic London calculations of the intermedi-
ate state for 0 & 0 & ~/2. Such corrections will be
presented elsewhere. In two London calculations, the
correct elliptical cutoff was used. ' In these papers, the
(correct) cutoff cross section was assumed to be concen-
tric to the streamlines of constant current, and the
lnKg ))1 limit of the vortex line energy was correctly ob-
tained. We have thus proven that such a cutoff is
rigorous for arbitrary K~.
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