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Bethe-Salpeter eigenvalues and amplitudes for the half-filled two-dimensional Hubbard model
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Monte Carlo simulations are used to determine the eigenvalues and eigenfunctions of the particle-hole
and particle-particle Bethe-Salpeter equations for 8X8 half-filled Hubbard lattice with U/t =4 and
U/t =8. In the particle-hole channel, the dominant eigenvalue corresponds to the Q=(vr, ~) antiferro-
magnetic correlations. In the particle-particle channel the amplitude of the leading low-temperature ei-
genvalue is an even-frequency d 2 2 singlet. Odd-frequency p-wave-singlet and s-wave-triplet ampli-

x —y

tudes are also found.

The nature and interplay of the antiferromagnetic and
pairing correlations in the two-dimensional Hubbard
model near half-filling remain open questions. ' In the
Hubbard model, the electrons responsible for the antifer-
romagnetic fluctuations are also the electrons that pair.
Thus one would like to examine the particle-hole spin
fluctuation and the particle-particle pairing channels on
an equal footing. In order to do this we have carried out
Monte Carlo calculations of the two-fermion scattering
vertex on an SX8 half-filled two-dimensional Hubbard
lattice with

8= t g (c; c—I +cj c; )+ Ug(n;& —
—,')(n;& —

—,') .

Here c,~ creates an electron of spin a on site i, t is a
near-neighbor hopping amplitude, and U is the onsite
Coulomb repulsion. Equation (1) is written in a particle-
hole symmetric form appropriate for a half-filled band.
Viewed in the particle-hole channel with center-of-mass
momentum Q=(tr, vr), the two-fermion vertex provides
direct information on the antiferromagnetic correlations.
Viewed in the q=(0, 0) center-of-mass particle-particle
channel, it provides information on the nature of the
pairing correlations. Here, combining Monte Carlo re-
sults for the two-fermion vertex with Monte Carlo calcu-
lations of the single-fermion Green's function, we deter-
mine the eigenvalues and amplitudes for the Q=(sr, sr)
particle-hole and the q=(0, 0) particle-particle Bethe-

Salpeter equations. As the temperature is lowered, the
dominant eigenvalue, which approaches 1 as T goes to
zero, occurs in the particle-hole channel. This signals the
formation of the zero-temperature antiferromagnetic
phase of the half-filled system. In the particle-particle
channel, which describes intermediate states doped with
two additional fermions, the dominant eigenvalue at low
temperatures is associated with a singlet d & 2 even-

frequency amplitude. Additional eigenvalues with odd-
frequency pairing amplitudes are also found.

At half-filling, there are no fermion determinantal sign
problems, and it is straightforward to calculate the one-
and two-fermion propagators,

G(x2, x, )= —(T,c (x2)c (x, )) (2)

Gz(x4, x3,x2,x, )

= —(T,c (x4)c (x3)c" (x2)c" (x, )) . (3)

Here xt =(l, rt ) and T, is the usual r-ordering operator.
Fourier transforming on both the space- and imaginary-
time variables provides information in momentum p and
Matsubara frequency co„=(2n +1)rrT. From the single-
particle propagator, Eq. (2), one obtains G(p), and from
the two-particle propagator, Eq. (3), G2 (p4,p 3,p 2,p, ).
Here p stands for (p, i co„) and o.

Given the one- and two-fermion Green's functions, one
can obtain the two-fermion scattering vertex I from

T
G2(pq, p3,p~,pt)= —

5q~ p 5t t G(p) )G(pq)+ —
5t +t p +t G(pq)G(p3)I (p4,p3, p2, pt )G(p2)G(p)) .

With I and G one can solve the t-matrix equations
represented diagrammatically in Fig. 1 to obtain the ir-
reducible particle-hole vertex I „(p~p') for a center-of-
mass momentum Q=(sr, rr) and the irreducible particle-
particle vertex 1 „(p~p') for zero center-of-mass momen-

turn. Then, using these, one has the Bethe-Salpeter equa-
tions for the particle-hole channel,

T
Pgraph(pip ) G( t' pQ+)G)(p')g (p')=Adb (p)
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FIG. 1. The particle-hole and particle-particle t-matrix equa-
tions. Here the lines represent dressed single-particle propaga-
tors and Q= (n, vr). I is the two-fermion scattering vertex, and

I ph and I pp
are the irreducible particle-hole and particle-

particle vertices, respectively.
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and the particle-particle channel,

T——gl „(pip')G&(p')G&( —p')P (p')=A, P (p) .
p

0.8— 0
8 0

Here, as before, the sum on p' sums on both the momen-
tum p' and the Matsubara frequencies co„,=(2n'+1)wT.
The upper limit to the Matsubara frequencies that can be
obtained is set by the discrete time interval A~ used in the
Monte Carlo simulation. Here we used 5~=0.125 and a
corresponding frequency cutoff of order the bandwidth
8 t.

In Figs. 2(a) and 2(b) we have plotted the leading eigen-
values versus temperature for U=4t and U=8t, respec-
tively. These results were obtained for a half-filled 8X8
lattice. If an eigenvalue reaches 1, this implies an insta-
bility in the scattering response. At half-filling, the dom-
inant response, the solid circles in Fig. 2, occurs in the
particle-hole Q=(n, n) channel, refiecting the strong an-

tiferrornagnetic Auctuations. The open symbols show the
behavior of three of the leading particle-particle eigenval-
ues of Eq. (6). Comparing the results shown in Figs. 2(a)
and 2(b), one can see that increasing U from 4t to 8t has a
dramatic effect on the size of the particle-particle eigen-
values at higher temperatures. For example, at a temper-
ature T=0.25t, the d 2 2 wave eigenvalue increases byx
almost a factor of 3 when U is changed from 4t to St. In
addition, it changes from the second leading eigenvalue
to the leading one.

The momentum and frequency dependence of the lead-
ing antiferromagnetic eigenvalue, f, (p, iro„) are shown
in Figs. 3(a) and 3(b) for an 8 X 8 lattice with U=8t and
T =0.25t. We see that P, is essentially a constant func-
tion of the relative momentum, corresponding to a mag-
netization operator of the form

+
mQ ~—gg(P)cp+Qtcp

with g(p)=1. However, it has structure in co„ implying
that retardation plays a role in the antiferromagnetic
correlations. Including retardation, the magnetization
eigenoperator would have the form
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FIG. 2. Eigenvalues of the Bethe-Salpeter equations vs T for
(a) U =4t and (b) U =8t for an 8 X 8 half-filled lattice. The solid
points are for the Q=(m. , m) antiferromagnetic particle-hole ei-

genvalue of Eq. (3). The open symbols denote the eigenvalues
of the q=(0, 0) particle-particle Bethe-Salpeter Eq. (4) with (o )

corresponding to the singlet d» even-frequency amplitude,X

( A ) to a singlet, odd-frequency p-wave amplitude, and ( ) to a
triplet, s-wave odd-frequency amplitude.

t3 dr 1 l~„&
m Q (r) = —g e " g(p, iso„)—tI2 N p,.

X Tc +Qt (r+ r')cp l (r) .

As seen in Fig. 3(b), g(p, iso„) remains finite over the en-

tire bandwidth implying that the usual magnetization
operator (I/&N )g c +Qtc &

has a good overlap with
the eigenoperator. We also find additional eigenfunctions
with smaller eigenvalues. Some of these eigenfunctions
are odd in co„just as some of the particle-particle eigen-
functions discussed below. However, all of the other ei-
genvalues are small compared to the dominant antiferro-
rnagnetic one.

The momentum and frequency dependence of the lead-
ing particle-particle Bethe-Salpeter amplitudes

Pd(p, ice„), Pp(p, ice„), and P, (p, ice„) are shown in Figs.
4(a) and 4(b). At low temperatures, the leading pairing
eigenfunction has d 2 2 symmetry in momentum spacex —y
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and is even in frequency. The next leading eigenfunction
has p, (or p ) symmetry in momentum and is odd in fre-
quency, while the next one has s symmetry in momentum
and is also odd in frequency. The p„(p ) eigenfunctions
correspond to the singlet odd-frequency gap proposed by
Balatsky and Abrahams, while the s-state triplet corre-
sponds to the odd-frequency gap discussed by Brezin-
skii. At higher temperatures, the leading eigenvalue in
the particle-particle channel corresponds to an odd-
frequency s-wave triplet. Comparing Figs. 4(b) and 3(b),
one also observes that the pairing eigenvalues decay fas-
ter in frequency than the leading magnetic eigenvalue.
Thus, as expected, retardation plays a much more impor-
tant role in the pairing channel. In fact, the odd-
frequency amplitudes imply that the equal-time two-
fermion part of the corresponding pair-field operator van-
ishes. Thus retardation is essential for the odd-frequency
fluctuations. Note that the effective pair-field eigen-
operator has the form of Eq. (8) with g(p, iso„) replaced
by (t (p, ice„) and c&+&t (r+r')c t(r) replaced by

cz& (r+r')c
z& (r).

We interpret these results as evidence that two holes
(or electrons) added to a half-filled 8X8 Hubbard lattice

lead to a state with strong pairing correlations. The fact
that at low temperatures, the pair eigenfunction with the
largest eigenvalue has d 2 & symmetry is consistent withx —y
previous exact diagonalization and Monte Carlo stud-
ies' of 4X4 lattices. In these calculations the ground
state of the half-filled 4X4 Hubbard model was found to
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FIG. 3. Monte Carlo results for the leading magnetic eigen-
function g, (p, icy„) on an 8 X 8 lattice with U =gt and
T=0.25t. (a) Momentum structure of g, (p, i~T) Here p is.
taken along the path shown in the inset. (b) Frequency struc-
ture of g, (p, ice„) for p=(n, O).
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FIG. 4. Monte Carlo results for the leading eigenfunctions in

the pairing channel, Pz(p, ice„), P~(p, icy„), and P, (p, ice„), on an
8X8 lattice with U=8t and T=0.25t. (a) Momentum struc-
ture of the leading eigenfunction for co„=~T. Here p is taken
along the path shown in the inset of Fig. 3(a). (b) Frequency
structure of the leading eigenfunctions. Here Pd(p, ice„) and

P, (p, icy„) are shown for p=(n, O), and P (p, im„) is shown for

p = (m/2, ~/2).
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have s-wave symmetry, while for U ~ 3t, the ground state
of the system with two electrons removed (or added) was
found to have d & 2 symmetry. Thus the pair-field

operator connecting these two states must have d 2x —y
symmetry. In addition, previous Monte Carlo simula-
tions" in which pair-field susceptibility with and without
the two-particle vertex were calculated, showed that
there was an attractive interaction in the d 2 2 channel.

X —y
However, the results reported here differ from previous
Monte Carlo calculations in that by studying the Bethe-
Salpeter equations, we have allowed the system to select
the internal momentum, frequency, and spin structure of
the dominant pairing correlations rather than imposing
this structure by a particular choice for the pair-field
operator. Furthermore, by studying the case where two
fermions are added to a half-filled band, we have been

able to run the Monte Carlo simulations at significantly
lower temperatures and larger values of U than can be
achieved in simulations carried out away from half-filling.
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