PHYSICAL REVIEW B

VOLUME 47, NUMBER 21

1 JUNE 1993-1

Brief Reports

Brief Reports are accounts of completed research which, while meeting the usual Physical Review standards of scientific quality, do
not warrant regular articles. A Brief Report may be no longer than four printed pages and must be accompanied by an abstract. The
same publication schedule as for regular articles is followed, and page proofs are sent to authors.

Order-disorder transition in Cu;Au: A combined molecular-dynamics
and cluster-variation-method approach
Fabrizio Cleri, Giorgio Mazzone, and Vittorio Rosato
Ente Nazionale per le Nuove Tecnologie, L’Energia e L’Ambiente,

Divisione Scienza dei Materiali, Centro Ricerche Energia Casaccia, CP2400, 00100 Roma A.D., Italy
(Received 24 February 1993)

The order-disorder transition in Cu;Au has been investigated using a combined molecular-dynamics
and cluster-variation-method approach. These techniques allow an accurate estimate of, respectively,
the configuration-dependent enthalpy and the configurational entropy. Vibrational entropy has also
been included in the calculations. The transition temperature is accurately reproduced. The behavior of
long-range and short-range order parameters is consistent with the hypothesis that the disordering pro-

cess occurs via the creation of out-of-step domains.

Several alloys exhibit an order-disorder transition at
temperatures 7, well below the melting temperatures T, .
The low-temperature phase is characterized by an or-
dered arrangement of the atomic species on the lattice
sites, while the high-temperature state is characterized by
a random arrangement of atoms. While the phase with
the lowest enthalpy is stable at 7 =0 K, the competition
between enthalpy and entropy determines the occurrence
of structural transitions at higher temperatures.

This class of systems has been extensively studied by
means of thermodynamic models' 3 and in the frame of
the calculation of phase diagrams.* The relation between
these two approaches has been carefully investigated by
Sanchez, de Fontaine, and Teitler.’

The task of building the free-energy functional re-
quired for the theoretical description of structural phase
transitions is accomplished via the development of a
model of atomic interactions together with accurate ap-
proximation schemes for the configurational as well as for
the other contributions to the system entropy. The clus-
ter variation method [CVM (Refs. 6 and 7)] is a very
efficient way to compute the configurational entropy of
an atomic system in terms of probability distribution
variables assigned to each configuration of a cluster: for
a given structure, different levels of approximations can
be obtained varying the size of the largest cluster includ-
ed in the calculation. The free-energy models based on
CVM have concentrated, so far, only on the calculation
of the ordering energy contribution, either using simple
Ising Hamiltonians,” pair potential schemes,® or the
coherent-potential approximation.® Recently, a theoreti-
cal approach based on ab initio calculations has been in-
troduced to derive an empirical potential for the expres-
sion of the ordering energy.!°

The purpose of this work is to integrate the CVM
prescription with a formulation of the system enthalpy
which allows for a proper treatment of the local volume
and elastic relaxation (neglected by simpler models’ or in-
cluded in global form®*). This is accomplished using
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molecular-dynamics (MD) simulations with a many-
body-potential scheme. In the same framework, thus we
have also accounted for vibrational contributions to
internal energy (through temperature dependence) and
entropy. The only experimental input to this procedure
derives from a fit of our potential to the system properties
at T=0K.

The present study is focused on Cu;Au which exhibits
a first-order disordering transition with a measured latent
heat of transition AH(T,)=12 meV/atom.!! Cu;Au,
when chemically ordered, has the cubic L1, structure
(Au atoms on the cell corners and Cu atoms at the center
of the faces) which, at high temperature, transforms to an
fcc structure with Au and Cu atoms randomly distributed
over the cell sites. The L1, structure naturally defines
four sublattices: three of them, containing Cu atoms, are
equivalent, while the fourth contains Au atoms. We label
1, 2, and 3 the Cu sublattices and 4 the Au sublattice.

Starting from a cubic lattice with N sites occupied ac-
cording to the L1, structure with the stoichiometry
cAu=0.25 and ¢, =0.75, the equilibrium behavior of the
system at constant temperature and pressure is defined by
the minimum value of the Gibbs free energy G =H — TS,
where H is the system enthalpy and S the total entropy,
including'? a configurational part S, a vibrational contri-
bution S, and an electronic term S .

We have attempted to express these terms as a function
of a suitable set of independent variables. The CVM al-
lows us to write the configurational entropy S, in terms
of the probability of arranging the different atomic
species on a set of lattice point clusters. It has been
shown’ that, for the fcc lattice, the CVM tetrahedron ap-
proximation (i.e., where short-range order is character-
ized by the probability distribution of tetrahedra) pro-
vides an accurate description of the L 1, ordering process-
es in binary alloys. In this approximation, S, can be writ-
ten as

14 541 ©1993 The American Physical Society



14 542

BRIEF REPORTS 47

Sc /N = _kB [ %Zijk [,L(p, )+"£(pj )+’C(Pk )+.,£(q[ )] -Eijk,[.L(y;j )+.L(y,k )+¢£(ka )+.L(x,-, )+,£(le )+°£(xkl )]

+22ijkl"£( Wijki ),

where L(x)=(x1Inx —x), p, is the concentration of
atomic species a (a¢=1 for Cu and 2 for Au) in one of the
three equivalent sublattices (1-3), g, is the concentration
of a in sublattice 4, x5 is the concentration of a-f pairs
between sublattices 14, 24, and 34, y ,; is the concentra-
tion of a-f3 pairs between the equivalent sublattices 12,
13, and 23 and wy, is the concentration of tetrahedra
having the configuration ijk/ (in this case ijkl refers to
the sublattices 1234 in this order). These variables are
linked by a series of consistency relationships
(¥ij =ZpWips P =2,y etc.) which, together with the
normalization condition Eijk,w,;/-kl =1, define the w;;,’s as
the only independent variables.

The main aim of the present approach is to write an ex-
plicit expression for the enthalpy and the vibrational en-
tropy of the system as functions of the CVM variables
without making recourse to any Ising-like Hamiltonians,
as those proposed by Sanchez and co-workers*!° for pair
potentials. To this purpose the enthalpy of our Cu;Au
model system has been calculated, by means of MD simu-
lations, in a large number of thermodynamic states taking
advantage of the most recent many-body potentials
developed for the modeling of metallic systems.!>»!* Each
state is characterized by the system temperature T and by
the values of the long-range 7 (Bragg-Williams) and
short-range o (Bethe) order parameters which, in turn,
are  defined as  =(g,—ca,)/(1—cpy) and
0 =(nycy —9)/ 3, where g, is the probability of finding
an Au atom on sublattice 4 and n,,c, is the average
number of Au—Cu bonds per Au atom.

From the set {H;,n;,0;,T;} resulting from MD simu-
lations, a phenomenological thermodynamic expression
for the system enthalpy has been written as

H(n,0,T)= H0+cpT
+Bo(1+B,7*+B,0+B;nT +B,0T) . (2

This expression takes the desired form writing n and o in
terms of the CVM variables appearing in Eq. (1):

n:%Eijleijklwijkl > (3)

0= 12K Wi )
where

Hijk,=hij+h,~k+hil+hjk+hﬂ+hk, (5)

and h,p=(—1 if B=i,j,k or hog=(—1F*"! if p=1.
Furthermore,

Kijkl:kij+kik+kil+kjk +kj1+kk1 > (6)

where k3 =5—88,4 (8 is the Kronecker delta).

An approximate procedure for writing the vibrational
entropy per atom S, using the same CVM variables is as
follows. In the quasi-harmonic approximation S, can be
written as'®
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where g(w) is the phonon spectrum of the system in a
given phase. Using the matrix of force constants derived
from the same potential used for MD simulations,'>* the
g (o) of the fully ordered L1, phase (at n=0 =1) can be
calculated. Concerning phases at different 1 and o, the
fully disordered system (=0 =0) can be described by
means of the “virtual crystal method,”'® which replaces
the disordered system with an equivalent monoatomic
system with masses and force constants resulting from
stoichiometric averages. We have arbitrarily chosen to
describe the dependence of .S, on 77 by means of a simple
power law of the type

S,(n, T)=8,(1, T)+AS,(1—n™), (8)
with m =0, 1,2 which interpolates the calculated values,
S,(1,7)=0.22 meV/K+T5.82X107* meV /K? ,

and AS,=—0.0103 meV/K, independent of tempera-
ture.

In addition to configurational and vibrational terms,
one should also include the contribution S, due to elec-
tronic excitations. In the low-temperature approxima-
tion, the electronic contribution to the system entropy is
proportional to the density of states (DOS) at the Fermi
level n(ep) as Sy =1k3m*Tn (). The difference of elec-
tronic entropy between the fully ordered and the fully
disordered state, evaluated from the DOS as described
above, contributes to the difference of free energy in the
two states at T=700 K an amount TAS,=4X10"*
eV/atom (Ref. 17) in agreement with the value deduced
from the measured electronic specific heat.!! This value
is about two orders of magnitude smaller than the other
entropic contributions to the free energy and as such has
been neglected in the calculations which follow. There-
fore, the final form of our free-energy functional is

G (wyj ) =H (wyjp )= T[S (wip) +S, (we)) - 9)

where in the right-hand side of Eq. (9) we have inserted
the enthalpy and the entropy as functions of the CVM
variables according to Egs. (3) and (4).

The model system used for enthalpy MD simulations
and for setting up the system dynamical matrix, is an as-
sembly of N =500 atoms (125 Au and 375 Cu) arranged
in the L1, structure. Usual periodic boundary conditions
have been imposed to minimize size effects. The cohesive
energy E, of the system is derived from a many-body po-
tential derived from a second moment approximation of a
tight-binding model'>!%:
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where 3 is the nearest-neighbor distance in the pure
metals if a=p or in the alloy if a7 B. 4,3, £,p P.p> and
q.p are adjustable parameters whose values (listed in
Table I) have been determined to reproduce, at T =0 K,
the experimental values of cohesive energy and elastic
constants, and the structural stability of the ordered
phase.!* The potential has been truncated up to and in-
cluding fifth neighbors. Simulations have been carried
out in the Nosé-Parrinello-Rahman (constants N, P, and
T) ensemble, making use of a fifth-order predictor-
corrector algorithm to integrate the equations of motion,
with a time step of 1071 s,

To check the model capability to reproduce the system
properties, isobaric heating of the disordered phase has
been performed and the melting temperature of the simu-
lated Cu;Au system has been located at 7T,,=1420 K
which has to be compared with the experimental value of
1233 K (Ref. 11) shown in Fig. 1. It is to be noted that
melting temperature as deduced by MD simulations
defines the system mechanical instability temperature,
which is the upper limit of the thermodynamical melt-
ing.!® Several thermodynamic quantities have then been
calculated and successfully compared with the experi-
mental data (from Ref. 11, in parentheses), as the latent
heat of melting AH(T,,)=0.09 eV/atom (0.12+0.01),
the thermal dilation coefficient a=5.4X10° K™!
(4.9X107°%), and the low-temperature specific heat
c,=2.57X10"*eVK 'atom™' (2.5X 107 ).

Evaluation of the enthalpy values from MD simula-
tions is as follows. Starting from the ordered phase at a
given temperature, a suitable number of antisite defects
corresponding to a given value of 7 is introduced in the
system, which is then left free to relax for 5X10° time
steps at constant pressure (P.,=0) and temperature.
This procedure is repeated several times using different
antisite configurations (i.e., with the same value of 7 but
with different values of o) at a number of temperatures
ranging from 300 to 1000 K, for a total of about 100
points. The fit to the MD data has been performed using
several functional forms until the best agreement was ob-
tained with the use of Eq. (2), with the following parame-
ters (Hy=E.=3.6345 eV and c, fixed at the calculated
value): B(=21.795 meV, B;=0.5014, B,=—1.46,
B;=1.28X10"* K7}, and B,=2.15X10"* K~!. The
precision of the fit is in the range 1-3 % on the whole set
of MD data.

TABLE I. Potential parameters used in the calculations.

A (eV) & (eV) P q ro (A)
Au-Au 0.2061 1.790 10.229 4.036 2.884
Cu-Cu 0.0855 1.224 10.960 2.278 2.556
Au-Cu 0.1539 1.5605 11.05 3.0475 2.642
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FIG. 1. Enthalpy as a function of temperature for Cu;Au.
Arrows mark the order-disorder transition (7, =635 K) and the
melting temperature (7, = 1420 K) of our model system.

The equilibrium value of the free energy is obtained
from a minimization of Eq. (9) with respect to the
configurational variables w;j, using the natural iteration
scheme (NI), first proposed by Kikuchi.” Equation (9) is
minimized with two constraints arising from the normali-
zation of the w;;;’s and from the requirement of a fixed
concentration. For each value of T and for the correct
stoichiometry of the system the equilibrium values of 7
and o have been evaluated from Egs. (3) and (4) inserting
the values of the w;;,’s deduced according to the above
procedure. The dependence of 1 on temperature is
shown in Fig. 2, where the experimental points'® have
been reported for comparison. In this figure, we show the
calculated equilibrium value of 1 as a function of T for
different 7 dependences of the vibrational entropy. One
observes that if the contribution of S, is neglected alto-
gether [m =0 in Eq. (8)] the transition occurs at a tem-
perature lower than experimentally observed, while, if
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FIG. 2. Equilibrium values of the long-range order parame-
ter n calculated for three values of m in Eq. (9). Full dots: ex-
perimental points (Ref. 19); dotted line: m =0; dash-dotted line:
m =1; full line: m =2.



14 544

one chooses m =1, the transition is markedly rounded
off, thus losing a typical signature of the first-order char-
acter of the transformation. The best agreement with ex-
periment is obtained with the choice m =2, which is able
to reproduce accurately both the sharpness and the scale
of the transition temperature. Precursor effects concern-
ing the behavior of n for T'< T,, are also evident. With
increasing temperature, 17 decreases slowly from 1 to 0.85
before going abruptly to 0. This feature, typical of first-
order transitions, is in quantitative agreement with the
experiment where the same phenomenon occurs at
7~0.80. The estimated transition temperature is
T,.=635 K (T;*=663 K). The latent heat of the transi-
tion has been evaluated as AH (T,)=10 meV/atom.

The dependence of S, on the short-range order param-
eter o is not taken into account by the present calcula-
tions. This could be one of the main limits of our ap-
proach considering that the behavior of o with tempera-
ture reveals some interesting features of the transition, as
shown in Fig. 3. Before the transition, o is close to the
value given by the formula 0 =%? (random distribution of
defective regions) while, after the transition—that is, at
7=0—0 first takes a value of about 0.45 and then decays
very slowly. This behavior agrees with theoretical and
phenomenological models?>?! which are based on the re-
lation of the short-range order parameter with bond ener-
gy, lattice dilation, and composition. The meaning of
this feature is extremely interesting as far as the disorder-
ing mechanism is concerned. Actually, a value of o
definitely larger than 7? reveals a tendency of the system
to keep the highest possible number of Au—Cu bonds. It
is then presumable that the transition proceeds with the
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FIG. 3. Equilibrium values of the short-range order parame-
ter o calculated with m =2.

creation of out-of-step domains which, although destroy-
ing the long-range sequences, preserve to a large extent
the short-range order. If the disorder were established
through a random occupation of sites, the value of o
should have been vanishingly small. Only at very high
temperatures (much higher than the system melting tem-
perature) does the model predict vanishing values for the
short-range order parameter.
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