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In superconductors, close to the transition temperature, a peak in the real part of the conductivity
0(T,w), can appear for several reasons. We show that even in the two-fluid model, a peak is present
when there is a distribution of T,’s in the sample. A parasitic inductance modifies the features of a peak
considerably, but in general does not generate a peak by itself. We illustrate this by four-contact-
impedance measurements on thin (3000-A) films of YBa,Cu;0,_5 in the kHz regime.

I. INTRODUCTION

There have recently been experimental investigations
of the behavior of the complex conductivity o =0, +io,
of the high-T, superconductors as a function of tempera-
ture in several frequency regimes. These experiments
have been performed with various motivations, as mea-
surements at different frequencies may probe different
physical phenomena. In Ref. 1, the conductivity was
determined in the 100-GHz range in order to investigate
the existence of a coherence peak, which is a prominent
feature of BCS superconductors,? but which is absent in
the NMR measurements on the high-T, superconductors.
Although a sharp enhancement of o,; was reported to
occur slightly below T, in these experiments, the inter-
pretation' in terms of a coherence effect is question-
able.> > Another observation of a peak in the same fre-
quency range® was interpreted’ in terms of a
temperature-dependent mixture of superconducting and
normal grains in the sample. Measurements at higher
frequencies [0.5-2 THz (Refs. 8 and 9) and 10 GHz (Ref.
15)] as a function of temperature, on the other hand,
showed a very broad peak below T,. This has been attri-
buted to a rapid increase in the transport relaxation time
below T,, which is a natural feature of the marginal
Fermi-liquid phenomenology or in fact any electronic
pairing mechanism. Furthermore, peak observations in
yet again other frequency ranges (1 kHz—20 MHz) have
been seen as evidence for a Berezinskii-Kosterlitz-
Thouless phase transition.'"!2  Finally, Olsson and
Koch!*# attributed their peak in the range 20-450 MHz
to a distribution to T,’s in the sample, which is an argu-
ment similar to the one given in Ref. 7. This idea was fol-
lowed by Lunkenheimer et al.'* and by Shibauchi et al.!’
to explain experiments in the range 10°-10® Hz and at 10
GHz, respectively. The latter actually reports two peaks,
an observation also made by Drotbohm er al.!®

In Sec. II, a general condition for the appearance of a
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peak in o, is given. We will concentrate on nonintrinsic
properties that generate or modify a peak. By ‘“nonin-
trinsic” we mean ‘‘not originating from the pure, single
phase compound.” Two special cases are discussed, one
of them being the distribution of T’s (caused by sample
inhomogeneity) that was also considered in the above-
mentioned Refs. 4, 7, and 13-15, the other being a
parasitic inductance. These general considerations were
motivated by peaks that we observed in four-contact ac
measurements on YBa,Cu;0,_5 (YBCO) films. We dis-
cuss the data in this paper. In Sec. III the experimental
procedure is outlined and we discuss how the data were
evaluated. In Sec. IV A the data above T, are analyzed
in terms of a Lawrence-Doniach model of fluctuations in
a layered superconductor. The value of T,=89.2 K ob-
tained in the fit to this model is used in Sec. IV B for the
analysis of the data below T,. As mentioned above, the
analysis illustrates how our data are influenced by the
presence of a parasitic inductance.

II. NONINTRINSIC PEAKS

The relation between the impedance Z and the conduc-
tivity o is given by

I
Z=R+iX=——, (1)
" bdo
with [ X b X d the effective dimensions of the sample. So
R
O X —— ()
' R*+x?
and
—X
O, X ———— . (3)
> RM+x?
A necessary condition for the presence of a peak in o, is
6,< —RR?>—2RXX+RX*=0, )
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where the dots represent a derivative with respect to tem-
perature. It is difficult to determine from Eq. (4) under
which general conditions a peak in o, will appear, but the
trends become clear by considering some special cases.

First, in a two-fluid model, the conductivity below T,
is given by!’

1—¢*

_ 5
oph(0)? ®

oo, T)=0,+ioc,=o, (0, T)t*—i

where t =T /T,, u, is the free-space magnetic permeabili-

ty, cf,,(co,T)t4 is the conductivity contribution from the

normal fraction_(extrapolated from the normal state), and
= V-t i

AMT)=A(0)/ is the penetration depth. The two-

fluid model exhibits no peak for T'<T,, if the normal-

100 T T T T T

R, X (Q)

2.5

~—~ 1.5}

c
N
<
10} .
o
0.5 F i
0.0 | g

FIG. 1. R and X in the two-fluid model, (a) without and (b)
with fluctuations in two and three dimensions (see the Appen-
dix). Parameters: T,=89.2 K, A,=3000 A, w/27=60 kHz,
R(100 K)=100 Q, and p(100 K)=3 puQm, o,(0,T)=T ",
E=5A.
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state conductivity o ,(w,T) is a slowly varying function
of T. The behavior of R and X is shown in Fig. 1(a) for
o,(0,T)x T~ !. Now let us consider what will happen if
there is a distribution of T',’s in the sample. For simplici-
ty, we take a linear chain of domains A; with critical
temperatures T,; and a distribution of T,.’s p(T,;). The
total conductivity o(w,T) is then equal to the inverse of
the sum of the impedances Z;(w,T). Each Z;(w,T) is in-
dividually determined by the two-fluid model. In this
case, a peak in o (7T) appears, due to the mixing of
superfluid response in one area with normal response in
another. In Fig. 2, we display o, vs T for a Gaussian dis-
tribution with a full width at half height of 1 K at three
frequencies. The height, position, and width of the peak
depend on the specifics of the distribution and on fre-
quency, the height varying as @ ~'. A clear o ! depen-
dence resulting from sample inhomogeneity was observed
by Lunkenheimer et al.'* in Zn-doped YBCO films. Al-
though the linear-chain two-fluid model is overly
simplified, presumably a two-dimensional (2D) or three-
dimensional (3D) effective medium or percolative model'®
will not change the trends qualitatively.

Second, we consider the influence of a parasitic L, and
C,. We will discuss this influence in terms of the
equivalent circuit of Fig. 3(a). Solving for X in Eq. (4), we
obtain (with R #0)

X=R[X/R+V1+(X*/R*>)]=A+B , (6)

with B >| 4|, which means that 4 —B is negative. The
sign of &, as a function of X and R is drawn in Table 1.
In the two-fluid model, 6,>0, R >0, and X >0 so that
we are in a region where X is larger than 4 +B. Now let
us consider the equivalent circuit with C,=0. The reac-
tance X, =wL, will move X further away from the point
A +B. Consequently no peak in o,; will be created by
L,. Adding a nonzero capacitance C, only affects o, and
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FIG. 2. Peak in the real part of the conductivity o, obtained
from the linear-chain, Gaussian broadened two-fluid model, at
frequencies of 30, 60, and 120 kHz. The Gaussian distribution
p(T,;) with a full width at half height of 1 K is displayed in the
figure also. Parameters are the same as in Fig. 1.
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(a) Z Lp

C P
FIG. 3. Two equivalent circuits that can be used to evaluate
impedance data, (a) is the circuit we used to evaluate our data.

At low frequencies, circuit (b) gives the same results as circuit
(a).

will not contribute to a peak either. So the circuit of Fig.
3(a) cannot generate a peak in o, starting from the pure
two-fluid model. However, if a peak is already present
(whatever its origin) and if R >0, L, will shift the peak to
a higher temperature (see Table I) and it will decrease its
height [see Eq. (2)]. In the case of the BCS peak shown in
the figure of Ref. 2, this effect is very drastic. A parasitic
Lp of less than 10 pH shifts, narrows, and diminishes the
peak substantially, whereas a larger value of L, removes

P
the peak structure completely. A parasitic X, will also

influence the frequency dependence of the hI;ight of a
peak, making it look like @ ~!. In case fluctuations in the
order parameter are added to the two-fluid model, R can
become smaller than zero [see Fig. 1(b)]. From Table I it
can be seen that then X, will shift the fluctuation induced
peak down in temperature.

By a similar line of reasoning, a residual R, also great-
ly modifies a peak. Instead of solving for X, it is then
better to solve Eq. (4) for R. We will not go into details,
for in our experiment we seem not to be troubled by a re-
sidual resistance.

So we have shown that there are at least two scenarios
in which a peak is either generated or greatly modified by

extrinsic causes.

III. EXPERIMENTAL

Our data were obtained on epitaxial YBa,Cu;0,_;
films in the kHz regime. Only data taken at 60 kHz are
presented in the figures. The films with dimensions
d =3000 A, b =8 um, and / =80 um were prepared by a
laser ablation technique on a SrTiO; substrate on the
(001) surface.!”” Four terminal measurements were per-

TABLE I. Sign scheme for ¢, as a function of X and R. The
solutions of Eq. (4) when solved for X are 4 —B and 4 +B.

X<A-—B A—B<X<A+B X>A+B
R>0 6,>0 6,<0 6,>0
R <0 g,<0 g,>0 o,<0
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formed with a PAR lock-in amplifier (model 5210) with
two-phase detection. No precautions were taken to expel
the earth magnetic field.

For the normal state, we estimate a skin depth of the
order of 1 mm at 10° Hz, much larger than the film thick-
ness of 3000 A. The voltage Vp g detected by the PAR
is therefore proportional to Z and not to the so-called
surface impedance Z, =(iwu,/0)'’%. For the supercon-
ducting state, we estimate that deviations from the pro-
portionality relation Vp,g < Z are at most 3% at 85 K,
becoming larger at lower temperatures as the penetration
depth decreases. For the present results, deviations from
the proportionality relation can be neglected. At higher
frequencies and lower temperatures, however, one should
take this deviation into account.?®

As shown in Fig. 4, where we present the raw data, the
resistance R (T) that we measure starts to increase at
around 88 K, becoming linear at high temperatures. The
nonzero impedance X (T) does not change with tempera-
ture from 80 K to just below 7. (89.2 K at the midpoint
of the transition). It rises to a maximum near T, while it
drops below zero above T,.. The constant X value below
T, is found to be linear with frequency, as expected for a
superconductor.

The drawn line through the data points is a fit to a
model, which is further explained in Sec. IVA. It is
based on the two-fluid model for the superconducting
state, a normal-state resistivity linear in T and a fluctua-
tion contribution. It also includes an evaluation of Z (T)
and its frequency dependence by means of the equivalent
circuit shown in Fig. 3(a), similar to the analysis of Lunk-
enheimer et al.,"* who used the circuit of Fig. 3(b). We
assume that above T, the intrinsic X without fluctuations
is zero, like in a normal metal at these low frequencies. A
parasitic capacitance C,~700 pF, arising from coaxial
cables, modifies Z above T,, where the intrinsic R is
large. When R becomes of the order of a few ohms, the
effect of the capacitance can be neglected. The equivalent
network then contains only an inductance L, of approxi-
mately 0.2 uH. This value, measured with the sample re-
placed by a thin (<<skin depth) copper wire, is tempera-
ture independent up to ambient temperature. It origi-
nates from the mutual inductance between the current
and voltage leads. Because of inevitable modifications in
the setup when replacing the sample, the inaccuracy in
Lp was about 20%. This low accuracy, together with the
large value of L,, made an experimental determination of
the film properties below T, impossible.

IV. ANALYSIS OF DATA

A. Analysis of the data above T,

Above T., fluctuations can alter the resistance in a
drastic manner. Lawrence and Doniach?! have derived
an expression for the fluctuation enhanced dc conductivi-
ty in a layered superconductor:

280,

d

2 172
_ Cléfide

eZ

(80)7! 1+ e! @)
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or 150 | ' ‘ l <1 s
2 21172
(80) 1= | | = ! : (®) 1 4
S0,p 8o ;3p S o
e 100 F 1 2 2
with C a constant of the order unity, d the interlayer dis- 9 §
tance, € the reduced temperature In(7/7,) (Ref. 22) g 1°2
[which reduces near T, to (T—T,)/T,], &, the zero- g 1., ™
temperature coherence length perpendicular to the layers e 50 - =
and 80 =1/p—1/p,. The temperature determines the 4-4
nature of the fluctuations. For 7T near 7., where
E(T)=E&, € /% is larger than d, the second term under 0 1-6

the square root in Egs. (7) and (8) dominates and three-
dimensional  behavior is  recovered [(80)7!
«(T—T,)"?]. Away from T, the two-dimensional fluc-
tuations are more important [(8c) !« (T —T,)].

The dc Lawrence-Doniach expression remains valid for
R(T,w) at nonzero but small frequencies if |T—Tc| is
sufficiently large. In our case, at frequencies of about 100
kHz, deviations from the limiting dc behavior can be ex-
pected at most within a few uK of T.. However, X(T,w)
is only defined for nonzero frequencies, and the
frequency-dependent expression should be used (see the
Appendix). We used the analog of Eq. (8) to obtain the
Lawrence-Doniach equivalent of 80, Above T,, the
modification of the intrinsic X due to fluctuations is very
small.

In the expression for 8o, the normal-state resistivity p,,
should be determined self-consistently, i.e., by taking
both @ and b in the empirical parametric formula
p,=aT +b as fit parameters. The procedure to extrapo-
late p, from the high-temperature region is not unambi-
guous, because fluctuations can have influence on the
resistivity up to very high temperatures.?>2* If we assume
that the Lawrence-Doniach expression remains valid up
to 200 K, the absolute deviation from an idealized
normal-state resistivity p, =aT caused by fluctuations is
even larger at 200 K than at 100 K. This means that the
slope obtained from a fit of a high-temperature part of
the total resistivity is smaller than that of the normal-
state resistivity a. For the analysis of our data, we deter-
mined the normal-state resistance by fitting the high-
temperature (> 200 K) part of the resistance with the ex-
pression R, = AT +B. We then adjusted A4 (with a few
%) and B (with a few ’s) so that the Lawrence-Doniach
expression gave a reasonable fit, see Fig. 4.

In Fig. 5 we plot R and X vs T near 7, and the best fit
with the Lawrence-Doniach formula. Note that the pres-
ence of the parasitic capacitance C, reflects the large R
fluctuations in the uncorrected X and masks the small
fluctuations in the intrinsic X.

In the fit with Eq. (7) a coherence length £, =2.1 A, a
CuO, interlayer distance d =11.7 A and T,=89.2 K are
used. This means that the 2D—3D crossover temperature
is at about 100 K. The optimal value of C is about twice
the theoretical value. A similar observation was made by
other groups.”> 27 A best fit with C=1 gave (keeping d
and T, fixed) §;, =5 A, close to the value found by Sem-
ba, Ishii, and Matsuda.?® The parameters are indeed
found to be frequency independent, as assumed above.

80 100 120 140 160
T (K)

FIG. 4. A typical result for the T dependence of the resis-
tance R at a frequency of 60 kHz. The three samples we mea-
sured gave essentially the same results. Drawn curves are a fit
with a model explained in the text.

B. Analysis of the data close to T, and below

As can be seen from Fig. 5, there is a small peak in X
and a temperature-dependent nonzero resistance R below
T,. This resistance is too large to be attributed to fluc-
tuations in the magnitude of the order parameter.
Several possibilities remain: The transition could be (ex-
tra) broadened due to a distribution of T,’s, the ambient
magnetic field (which introduces free vortices in the sam-
ple if it is larger than H ), or motion of unbound vortex-
antivortex pairs as considered in the Berezinskii-
Kosterlitz-Thouless (BKT) theory, which may be applica-
ble due to the granular structure of the film or the (quasi-)
2D nature of the superconductor. Previously, high-
resistance films of low-temperature superconductors,? as
well as thin films and single crystals of high-T, supercon-
ductors,’° 732 have shown the relevant features predicted
by the BKT theory. It is very easy to obtain an excellent

resistance R (Q)
(u) X @duejorad

88 90 92
T (K)

FIG. 5. Data and Lawrence-Doniach fit (drawn curve) of the
data at 60 kHz close to T.
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fit to the data if we add to our fitting model a linear-chain
Gaussian distribution (with a full width at half height of
1K) of T,.’s. Although a small spread in oxygen concen-
tration could account for the distribution of Tc’s,33 we do
not consider this a satisfying description for the reason
mentioned in Sec. II. The question about the precise ori-
gin of the broadening of the transition will be left open.

Because an accurate experimental determination of L,
was impossible, we determined the value of L, indirectly
by using the two-fluid model for the superconducting
state [Eq. (5)], with the value of T, taken from a fit of the
data to the Lawrence-Doniach model and A, of the order
of several thousand A. This procedure corresponds to
subtracting a value of X, that is very close to the mea-
sured constant X at low T (about 0.204 pH). Therefore,
only a rough estimate can be made for the penetration
depth A, of the film. As already mentioned, the fitting
curves of Figs. 4 and 5 were obtained with the aid of this
procedure.

To illustrate the effect that a parasitic inductance has,
we display in Fig. 6 o, as a function of T below T, ob-
tained from one single data set at 60 kHz but with
different corrections X,=wL, applied. The trend is
clear: Subtracting a value which is closer to the constant
X value below T, (corresponding to about 0.204 pH)
gives a higher peak at a lower temperature. When fully
accounting for the parasitic inductance, the upper most
curve is obtained. No clear peak feature is visible. In
contrast, is we subtract a value of X, that is obviously too
small, namely X, /0 =0.1 uH (half the value measured), a
clear peak is observable. We are then in the situation

12 T T 50
1 F .
.« 7 .
i " 0.204 uH 40
. 10 .- 8
E A : 2
~ g9 | S % 0.190 pH . 4 30 s
z s ) &
-~ 8F 7t § T 0100 puH 3
&) . N . —_— 1 20 8
o
= 7F N —
S q =)
,9{ Lot T ——_... i 10
T
5 [ c
. ) \ 1o
4 1 A 1
88 89

T (K)

FIG. 6. Left axis: o, as a function of T at 60 kHz. The three
curves were obtained by subtracting different values of L,,
which are displayed next to the curves. The upper curve, which
shows no clear peak feature because of the experimental noise,
is obtained by subtracting an L, value which is es}imated by us-
ing the two-fluid model for X with A,~3000 A. The lower
curve is artificial in the sense that the subtracted value of L, is
obviously too small, a conclusion drawn from both the two-fluid
model and experimental determination of L,. The middle curve
is shown to illustrate the trend mentioned in Sec. IV B. Right
axis: the resistance as a function of temperature.
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that R crosses a temperature-independent X,,. From Eqgs.
(2) and (4) it is evident that there is an (artificial) peak at
the crossing point. This artificial peak resembles to some
extent the peak that can arise from at least two phenome-
na. The similarities (and dissimilarities) are discussed in
the following.

The anisotropy of YBCO is rather modest, leading to
three-dimensional behavior within several degrees around
T,, as proved by the Lawrence-Doniach analysis of Sec.
IV A. The expected height of the 3D-fluctuation peak for
YBCO (see the Appendix) is of the same order of magni-
tude as the height of the artificial peak generated by L,,.
Although the theoretical fluctuation peak is much nar-
rower and occurs right at 7, a distribution of 7',’s could
account for a broadening of the peak and the shift to
lower temperature. For 3D fluctuations, the peak height
should behave as ™ '/2. In contrast, the artificial peak
has a @ ! dependence, which is explained with the argu-
ments given in Sec. II. The o~ ! dependence can only be
found in the case that fluctuations are of 2D nature, like
in for example Bi,Sr,CaCu,04.

The artificial peak resembles even more the peak pre-
dicted in the dynamic extension of the Berezinskii-
Kosterlitz-Thouless theory.>»3 It is predicted that the
height varies approximately as ! and that the location
is at a temperature between the vortex unbinding temper-
ature Tggr and the superconducting mean field TMF,
which lies slightly above Tggxr. The position of our
artificial peak (in the foot of the resistive tail), as well as
the variation of its height with frequency, agree with
these predictions. Because YBa,Cu;0,_s has predom-
inantly 3D character near 7,, we do not expect a true
Berezinskii-Kosterlitz-Thouless transition in our relative-
ly thick films. Paracchini and Romané>? have found that
their current-voltage data on bulk single crystals of
YBCO are well described by a quasi-2D extension®® of
the Berezinskii-Kosterlitz-Thouless theory, thereby in-
corporating the effect of coupling between the layers on a
transition within the layers. In this quasi-2D picture, the
jump in o, at Tggr (as predicted by the 2D theory) is
smeared out over a substantial temperature range and
there is a nonohmic resistance between Tyxr and TMF.
The BKT peak will then be broadened accordingly.

It is obvious that the above models do not describe the
artificial peak, because we explicitly did not remove all
parasitic effects and we have shown that these severely
affect the data, both theoretically and experimentally. In
general, because of the similarities between artificial and
theoretical peaks it may be difficult to identify a clean in-
trinsic peak unambiguously.

V. CONCLUSION

We stated, in terms of the impedance Z, the condition
for the appearance of a peak in the real part of the con-
ductivity o,. Two examples were given of conditions that
induce a nonintrinsic peak or modify an intrinsic peak: a
distribution of T,.’s and a parasitic inductance. Using ex-
periments on thin films of YBa,Cu;0,_; in the kHz re-
gime, we illustrate that the latter mechanism hinders an
experimental observation of an intrinsic peak in o;. The
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peak that appears when not fully accounting for the
parasitic inductance, shows similarities to peaks predict-
ed in fluctuation theory and the Berezinskii-Kosterlitz-
Thouless theory.
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APPENDIX: THE FLUCTUATION CONTRIBUTION
TO o 1

The real part

The fluctuation contribution to o, as calculated for
thin films by Aslamasov and Larkin,*” was generalized by
Schmidt*® 3 for finite frequencies. The result for films
with a thickness that is of the order of the coherence

9.4
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with €=|T—T,|. For small values of x, F(x)~x and
G (x)~V'x. Both functions increase monotonously to a
constant at large values of x. This leads to a finite peak
in 80, at T,. It follows from the properties of the func-
tions F and G that the height of the peak is proportional
to 1/w for films and to 1/V'w for bulk samples. For
w—0 the dc result is obtained, which means that
80, o if T—T,. The 3D regime extends to several K
away from T, in YBa,Cu;0;_5 (Sec. II A). Using the
3D-fluctuation result, the height of the narrow peak in
80, at a frequency of 60 kHz is about 7 X 10® (S/m), while
0,,~4X10° (S/m), which means that the ratio
0,/0,,~10% at T,. The width AT of the peak at half of
its height is obtained from the requirement that G
reaches half of its limiting value at 7,, which occurs
when 7 0/2=(w#m)/(8kz AT )~ 1. This implies that at
a frequency of about 60 GHz the peak width AT is of the
order of 1 K, while at 60 kHz the width is about 1 uK.
Likewise, large deviations from the limiting dc behavior
above T, can be expected only when 75w >1. Note,
however, that for the high-T, materials the critical re-
gime in which deviations from the Ginzburg-Landau
behavior are noticable, is expected to be larger than 1
uK.

The imaginary part

An expression for the imaginary part of the fluctuation
contribution to o below T, can be found in Ref. 39. To
obtain the imaginary part of the fluctuation conductivity
above T, we note that the real part is given by Schmidt*®

in reduced units (kzy =#=c=1):

Fq+(K/2)+rq~(K/2)

length &, written in a scaling form, is*
S0 (0)=—"LF |2 |, (A1)
1) €
while for a bulk sample
80 ()= ——G |2 (A2)
\/a) €
J
2
T,
Rea,»j(a),K)Z 2¢ ¢

V%: [a+(1/2m)(q—(K /2)][a+(1/2m)(g+(K /2)] [0*+(Ty 4 x/m+ Tq—x /2]

(A3)

with i,j=x,y,z, axe=(T—T,)/T, and I‘q=8Tce(7ra)"‘(a+q2/2m). Because o has no poles in the upper half

plane, we can write the complex o as

2
00, K)= 2e

T, q9:9;

1

v

m

The imaginary part then becomes
2

[a+(1/2m)(qg—(K /2)?][a+(1/2m)(qg+ (K /2))*] [—io+T,_x+ T k]

(A4)

| 2e T, q:49; 15}
Imo ;;(0,K)= | — 2 2 2 2 2
m | V< la+(1/2m)g—(K/2))[a+(1/2m)g+(K /2)P] {@*+[T44x/m+Tq- k]
(A5)
For K =0:
2
2¢ | T, q:9; ®
1 )= |— | — s . A6
AR P 7 % [a+(g?/2m)]* (0?+4T2) (A0

For o diagonal and with the substitutions @=mw/(16T.€), §=q(2ma)” ">=q¢ (with £ the temperature-dependent
Ginzburg-Landau coherence length) and x qu, we obtain for D =2 (T > T,):
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e? w x x e? 1 2, T 1 1
Imo = f dx = = —1+—=In(1+&°)+—— —arctan— | , (A7)
8dew ¥ 0 (1+x)*  &*+(1+x)? 8dew 2 26 @ @
with d the thickness of the layer.
For D =3 and T > T, the expression is
@e’ o 7'
Imo = dg
6mes fo 7 (1+g>)Ha*+(1+g%)]
_ @’ N @ +1 2g° 1 1
6meé o ala*+(1+g*)?] @ @*+(1+g)?] &(1+g°) @ (1+7°)’
2 ~ 3/4 ~ 2 1/4 _
__e _i+ (®+1) sin arctan(@) + (@°+1) sin arctan(@) (A8)
6etd 4 2% 2 P} 2

For conversion to S.I. units, in both expressions # should be added to the denominator of the prefactor and & should be

replaced by 7fiw /(16kg T €).
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