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Flux-chain buckling in layered superconductors
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When a magnetic field is perpendicular to the c axis of a layered high-T, superconductor the
phenomenon of Aux-chain buckling near twin planes has been found. Both numerical simulation and an

analytical approach based on vortex-lattice instability give similar conclusions. The period of the buck-
led structure is estimated and results are in qualitative agreement with experimental observations.

I. INTRODUCTION

In macroscopically homogeneously layered high-T, su-
perconductors, the vortex lattice can be very anisotropic.
If the magnetic field is parallel to the ab plane the Abri-
kosov unit cell is compressed by the ratio A,,b/A, , ((1 in
the direction perpendicular to the ab plane. ' The Lon-
don penetration depths k, b and A,, correspond to the
current direction parallel and perpendicular to the ab
plane. In this situation the vortex distribution can be
considered as a system of vortex chains in the direction
perpendicular to the ab plane, because the distance be-
tween vortices of one chain is smaller than the interchain
distance.

This vortex structure for the magnetic field parallel to
the ab plane has been reported by Dolan et al. The
Bitter-pattern technique produced by an anisotropic vor-
tex lattice could be treated as a system of rectilinear vor-
tex chains in accordance with the theory. This picture

has been observed in dislocation-free samples.
In the presence of a dislocation plane, which is parallel

to the c axis and the magnetic-field direction, the vortex
distribution is quite different, as shown in Fig. 1. This
distribution corresponds to the presence of twin boun-
daries which appear presumably at the bottom of Fig. 1.
The twin edge goes horizontally. The main feature of the
vortex distribution in the presence of the twin boundary
is the buckling of vortex chains, as can be seen in Fig. 1.
This vortex-chain buckling can be imagined as separate
segments of a chain making an angle with respect to each
other.

The purpose of this paper is to explain the nature of
vortex-chain buckling. We will argue that the vortex-
lattice instability in the presence of a plane defect leads
to the buckling of flux chains. If the magnetic field is
parallel to the ab plane, interlayer pinned vortices can
slide over the ab direction when the magnetic field varies.
If the magnetic field decreases it leads to vortex-lattice in-
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FIG. 1. Pattern observed at a
field 8 G perpendicular to c. In-
dividual vortices are not
resolved. The horizontal length
of the picture represents 37 pm.
The twin boundaries in this sam-
ple are horizontal and one
presumably occurs below the
bottom of the picture.
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stability, when the vortex chains make a finite angle with
respect to the c direction. This angle can have both
signs in a three-dimensional homogeneous sample.

A twin boundary plays a double role. Firstly, it at-
tracts vortices, decreasing the local vortex line concen-
tration, which leads to the instability. Secondly, due to
boundary conditions on a twin plane, the angle between
vortex chains and the c direction alternates its sign, giv-

ing rise to the chain buckling observed in Ref. 2.
The analysis of Aux-lattice instability has been per-

formed on the basis of the London model. In Ref. 5 the
simulation of the vortex distribution in the presence of
twin boundaries has been done using the modified Bessel
function interaction between vortices. Both approaches,
the London model and numerical simulations, give
similar results for the shape of vortex chains near the
plane defect. Those chains become buckled. In this pa-
per we analyzed both approaches.
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II. NUMERICAL SIMULATION
z/g 144

Results of the numerical simulation are shown in Fig.
2. The twin plane is directed parallel to the c and B
directions. The magnetic field 8 is parallel to ab planes.
The boundary condition keeps vortices on the twin plane
and the interaction between vortices was chosen as the
modified Bessel function.

As one can see from Fig. 2, the triangular vortex struc-
ture is buckled near the experimental observation by Do-
lan et al. (see Fig. 1). The numerical simulation cannot
give an estimate of the buckling period or an expression
of this period via other parameters of the problem. In or-
der to do that we develop in the following sections the
analytical approach to the buckling problem.

III. FREE ENERGY OF DISTURBED LATTICE

ab planes twin plane

The values 4Ik determine deviations of the vortex system
from a perfect lattice. If 0'&k=0 and q=1/2, then ex-
pression (2) corresponds to the perfect vortex lattice with
an isosceles triangle unit cell. The unit-cell area is
xozo =ctco/B. Vortex chains lie parallel to the z axis with
the period xo/2.

For our purposes we will consider further only a slowly
varying dependence of 'Il&k on l and k. In this case one
can put

FIG. 2. The numerical simulation of the vortex distribution
near twin planes which are parallel to the c and B directions
(Blc~ Here A, =~A'ab~c ~

We start with the London model of a vortex structure.
For the magnetic field parallel to the ab plane, the Lon-
don free energy assumes the form
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Here H=H and the z axis is perpendicular to the ab
plane. In the anisotropic case, k, /A, ,b -g,b/g, &) 1. The
magnetic field H is determined by the generalized Lon-
don equation,
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Here u is a macroscopic displacement of a vortex lattice
in the x direction and the parameter p is determined as
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(2) Following the procedure given in Ref. 3, the free-energy
density can be written in the form
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where y =2~A.,b A,,B /No and

G(p, q)= g 2 sinh'I/p k +p/y —1 —lnp +&p ycoth(&p /4y ) —2y
k=& 'I/O +(yp) ' cosh'/p k +p/y —cos(2mqk)

+2 g &k'+ (yp )

IV. VORTEX-LATTICE INSTABILITY

In the absence of the lattice distortion, u =0, and the
minimum of the vortex-lattice energy F is determined by
the minimum of the function G(p, q). This minimum is
given by the values p =m. /&3 and q = 1/2. In the "natu-
ral" coordinates z QA., /1, ,& and x QA, ,I, /A,

„

it corre-
sponds to the hexagonal Abrikosov lattice.

The decrease of the magnetic field B in a highly layered
material leads to the decrease of the parameter p in (4),
because vortices can move only along layers separated by
distance zo due to strong interlayer pinning. If the pa-
rameter p decreases from the equilibrium value n.&3 at
some critical value p =p, (A.), the minimum of G(p, q) at
q = 1/2 splits in two minima at q =q & 2 so that
q, 2

—1/2-+(p, —p ). At p (p„the position with

q =1/2 becomes unstable. The plot of p, (y) is shown in
Fig. 3.

At p (p, each vortex chain in Fig. 2 tends to make an
angle 0 with the z axis so that

27TX
tanO= q, 2

——
~abP

In a bulk homogeneous sample, vortices arrange into a
new lattice with some particular value of q corresponding
to either q, or q2. This situation changes in the presence
of some obstacles directed along the x axis (i.e., twin
boundaries) where vortex chains should be parallel to the
z axis. In this situation the vortex structure becomes ma-
croscopically inhomogeneous along the z axis. If the
values of (p, —p) is much smaller than p, the scale of this
structure exceeds the unit-cell size and the problem can
be considered in terms of the vortex-lattice elasticity
theory.

V. EQUATION FOR VORTEX DISPLACEMENT

At small values of (p, —p) the function G(p, q) can be
expanded near the point q =1/2. It is convenient to in-
troduce new variables z =z/zo, x =x /xo, and u =u /uo,
where
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The parameters a —b —c —1 are defined as
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0.014 In these units the distortion energy of vortices can be
written in the form
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FICx. 3. Plot of the critical value of p =2vrzpk B/A, t, Cp vs

y =2~A, ,& k,B /N p. At p =p„the vortex-lattice instability
occurs.

where V(y ) = —,'y —
—,'y,

cA %Pa(p, p)—
16mb ~A,,b A, ,
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The equation for the displacement u follows from the
minimization of the energy (10),

8 ', BQ

az az
(12)

In the absence of the twin boundaries, the solution
does not depend on x and it has the formal solution of ei-
ther u =z or u = —z. The twin boundary fixes one row of
vortices parallel to the z axis and provides a repulsion of
the other rows. It leads to a buckling of the vortex struc-
ture with the period L,, along the z axis.

VI. BOUNDARY CONDITION

Suppose there are some twin boundaries which are
parallel to the z axis. At each boundary the displacement
u should be zero. The approximation used above is valid
in the distance x ))A,, from the twin boundary and for
this reason the effective boundary condition for (12) is re-
quired. In order to arrive at the boundary condition it is
sufficient to consider only an x-dependent displacement
Q =u~.

In order to model the twin boundary at the point x =0,
one can introduce the external force f=p5(x). Then the
Fourier component of the total force fk, including the
elastic part, has the form (k =k, )

fk = —k cll(k)uk+p, (13)

where c~l is the compression modulus. From the condi-
tion fk =0 we have

plxl &2ci~~(0)+uo, x ))1,,
u(x)= .

uo —P5(x) lim k c~~(k)] ', x &&A,k~ oo

(14)

So at x ))A, „putting c~~(0) =B /47r we have

x, lxl
u(x)=uo+ uo .
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(16)

This is equivalent to the boundary condition

au xo
sgnx = Q

Bx
(17)

if we consider the coordinate scale x ))A, In the units
of (8) the boundary condition (17) gives

Bu 4~'&c
sgnx =

ap
(18)

VII. BUCKLED VORTEX STRUCTURE

We consider the limit of large y ))1. One can consid-
er two limiting cases.

For a discrete lattice 5(x)=xo ' at x =0 and from the
condition u (0)=0, we obtain

uoxoP= li k „(k)—=
g2 4~

C

(a) (p, —p) «y '~ . In this case the coefficient on the
right-hand side of (18) is large and the boundary condi-
tion for (12) is reduced to u(0) =0. Neither the boundary
condition nor the equation depends on parameters so the
period of the buckling along the z axis is L, —1. In ordi-
nary units

(p, —p)' ' (19)

(b) y
' «(p, —p) «1. The scale of u in the x direc-

tion is x —1 and we can write

f dx V'
az3 f Bud

Bx
(20)

The right-hand side of (20), using formula (18), can be
evaluated as

1 au
dZ dz

(p, —p )Vl' dz (p, p)V— (21)

VIII. DISCUSSION

The decrease of the parameter p leading to instability
can be achieved either by decreasing the external magnet-
ic field or by a mechanism of vortice attraction to the
twin plane. In the second case, the local vortex concen-
tration diminishes in the vicinity of a twin, and this situa-
tion corresponds to that of Ref. 2. The parameter y for
yttrium materials can be evaluated as y =—0.2[B(G)]. It
means that for conventional Bitter-pattern experiments
the value of y is rather large, as it has been chosen in the
present consideration.
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FIG. 4. A qualitative picture of the vortex distribution near
single twin planes (bottom line).

This value should be of order unity and we get
L, -(p, —p )&y. In ordinary units,

1 /4
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The period of the buckled structure is determined by
formulas (19) and (22), and in the limit y ))1, this period
exceeds the intervortex distance zo. If the magnetic field
decreases so that (p, —p) becomes of order unity, or the
value of p becomes small, the picture of buckling can be
more complicated, because many new minima than ap-
pear in the free energy vs p.

The numerical simulation used the value y=—7 and p
was near to p, . The period of the buckled structure in
Fig. 2 is L, =22zo. This buckled structure is constricted
between two twin planes corresponding to the top and
bottom boundaries of Fig. 2. In the case of a single twin
plane, the decrease of an external magnetic field leads to
the qualitative picture shown in Fig. 4.

IX. CONCLUSIONS

We have found the phenomenon of Aux-chain buckling
near a twin boundary, when the magnetic field is parallel
to the ab plane. We have performed both analytical and
numerical analysis of the problem and have obtained
similar results. The analytical approach allowed us to ex-
press the period of the buckled structure through the
equilibrium intervortex distance and the magnetic induc-
tance. These results are in agreement with the experi-
mental observations.
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